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ABSTRACT 

This paper deals with the stability analysis of a class of 
switched bond graphs where all the storage components 
remain unchanged and in integral causality under mode 
switching. These properties assure the existence of a 
unique energy function common to all the switching 
modes, and the non occurrence of state jumps or 
discontinuities in the switched system trajectories. A 
result on stability of equilibria in the sense of Lyapunov 
is presented. The derivation of this result is done using a 
bond graph technique for Lyapunov stability analysis 
(previously developed by one of the authors of this 
paper) in association with results available in the 
literature related to the satisfaction by a candidate 
Lyapunov function of a sequence nonincreasing 
condition for the state trajectories of a general 
autonomous switched system. Because of its versatility, 
the Switched Power Junction formalism is chosen in this 
paper to model and simulate the commutations in the 
bond graph domain. 
 
1. INTRODUCTION 

Frequently in engineering problems, abrupt changes in 
physical systems are considered to occur instantly. This 
is mainly due to the facts that the behavior the engineer 
is interested in has a time scale much bigger than that of 
the abrupt change, and that the details inside the time 
window of this change are not relevant to the behavior 
under study. Thus, ignoring them results in saving time 
and effort. As this practice departs from the assumptions 
of continuity and smoothness underlying classical 
physics, it requires special modeling, simulation and 
analysis tools to handle the systems it yields, see 
(Mosterman and Biswas, 1998) for a detailed discussion 
of modeling and simulation issues related to this 
problem. 

This paper deals with the stability analysis of switched 
physical systems modeled as switched bond graphs. The 
main tools employed to represent the commutations 
among the continuous bond graph (BG) models 
constituting the switched bond graph (SwBG) is the 
Switched Power Junction formalism, which has been 
introduced in (Umarikar and Umanand, 2005), and 
revisited in (Junco et al., 2007) in view of its 

implementation in the simulation tool 20sim®. There 
are two kinds of SPJ, the 0S and the 1S, which are 0- and 
1-junctions admitting more than one bond graphically 
imposing effort or flow on them, respectively. The rules 
of causality are not violated because one and only one 
of these bonds is behaviorally connected (transferring 
power and relating variables) at a given arbitrary time 
instant, the others being excluded from the model. The 
decision on what bond to connect is made by a control 
variable associated to the SPJ.  

A big amount of research has been dedicated to the 
stability of switched and, more generally, hybrid 
systems, as stability is both, theoretic and practically 
important. This problem has been approached with 
varied mathematical tools, ranging from differential 
inclusions, variational principles, multiple Lyapunov 
functions, Lie algebra, etc. Some relevant surveys on 
this subject are (Antsaklis and Nerode, 1998), (Morse et 
al., 1999), (Antsaklis, 2000), (Liberzon, 2003), 
(Margaliot, 2006). 

The stability analysis of (continuous) BG has been 
approached in several works. An approach based on 
Lyapunov’s Second Method and extensions (LaSalle’s 
Invariant Principle), which exploits the system’s energy, 
interconnection and causality features directly on the 
BG domain, has been presented in (Junco, 1993 and 
2001), and further applied to analyze stability of 
equilibria and input-output passivity, as well as to 
synthesize stabilizing controllers for electrical machines 
in (Junco, 1999 and 2000) and (Junco and Donaire, 
2005). More results on stability on BGs are presented in 
(Wu and Youcef-Toumi, 1995) and related papers by 
the same research group, and in (Grujic and Dauphin-
Tanguy, 2000; see also previous work referenced 
therein). The first group of researchers presents a (non-
Lyapunov) technique taylored to analyze stability 
properties of zero dynamics on BG. The second 
introduces the concept and method of energetic stability, 
which is Lyapunov-related but, because explicitly using 
state equations, it is not a pure BG-technique. For the 
case of linear BGs, (Morvan et al., 2003) introduced an 
observability-related algebraic criterion. The same work 
addresses a condition for the asymptotic stability of the 
origin being considered as a common equilibrium point 
(EP) of a linear, sourceless switched BG (i.e., an 
autonomous linear switched system). This result makes 
use of the notion of state observability from the power 
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variables of the R-elements of each linear BG 
constituting the SwBG. 

In this paper we approach the stability analysis of 
SwBG using the energy-based methods developed by 
Junco for continuous BG (see (Junco, 2004) for a 
summary of the above cited results) immersed in a 
framework for general switched and hybrid system 
analysis as presented in, for instance, (Branicky, 1998) 
and (DeCarlo et al., 2000). More specifically, a class of 
SwBG is considered, where all the storage components 
remain unchanged and in integral causality under mode 
switching, what assures the existence of a unique energy 
function common to all the switching modes. Assuming 
that it is definite positive wrt an EP common to all the 
switching modes, stability in the sense of Lyapunov is 
proven provided that the energy function satisfies a 
sequence nonincreasing condition for the state 
trajectories. 

This research is a first step towards the dynamic 
analysis of hybrid systems on graphical models, in our 
case SwBGs augmented with the graphical 
representation (via block diagrams or flow graphs, etc.) 
of the subsystems controlling or determinig their 
commutation rules. As shown in (Junco et al., 2007) the 
SPJ-formalism allows for this simultaneous 
representation of the complete hybrid system. 
Moreover, some preliminary studies, which will be the 
object of a future paper, indicate the feasibility of 
analyzing the hybrid dynamics on this representation 
with graphical tools in the style of (Rahmani and 
Dauphin-Tanguy, 2006), (Hihi and Rahmani, 2007a, b) 
and (Reinschke, 1988). 

The remaining of this paper is organized as follows: 
Section 2 presents the modeling of SwBG means the 
SPJ formalism, addresses some previous results on 
stability of continuous BGs, and summarizes the 
background on stability of switched systems. Section 3 
presents the main result of the paper concerning the 
stability of SwBG. Section 4 illustrates some properties 
and results with simulation examples and, finally, 
Section 5 presents the conclusions of this research. 

 
2. BACKGROUND ON STABILITY AND 

SWITCHED BOND GRAPHS. 

This section summarizes some background results on 
stability of BGs and stability of switched systems that 
will be used in the sequel, and presents the SPJ-
formalism as the modeling tool chosen to represent the 
switched bond graphs. 

Lyapunov Stability on Bond Graphs 

To fix ideas consider the (possibly) nonlinear dynamical 
system  and, without loss of generality, 
suppose that the state space origin is an EP, i.e., f(0) =0. 
Analyzing the stability of the origin using Lyapunov’s 
second method basically implies choosing a scalar 
positive definite function (pdf) V(x) (written V(x) > 0) 

and studying the sign of   (where ≡ 

dV(x(t))/dt or, for short, ≡ , is the orbital or 
Lie-derivative of V i.e., its time-derivative along the 
orbits, or trajectories, or solution paths of the state 
equation system). This is usually done evaluating the 
scalar product between the gradient of V(x) and the 
vector field f(x), i.e., = . If  

is negative semidefinite (written ≤ 0), then the EP 

is (at least) stable in the sense of Lyapunov; if  is 

negative definite (written < 0), then the EP is 
asymptotically stable (applies only to isolated EPs). In 
this latter case, V(x) > 0 is (called) a Lyapunov function 
for the EP. For details on Lyapunov’s theory and its 
applications to control problems refer for instance to 
(Sontag, 1998). 
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When studying physical systems a natural candidate for 
a pdf V(x) is the energy E stored in the system. If this 
assumption is satisfied, then  is the power 
flowing into the storages, and can be evaluated directly 
on the BG as the power flowing out of the sources 
minus the power into the dissipative elements. Thus, 
there is no need of computing the scalar product 
determining  nor the vector field f(x), i.e., the state 
equations. This fact constitutes the rationale underlying 
the Internal Stability Analysis Procedure given as 
Proposition 2.1 in (Junco, 2001). Further results on the 
direct application on BGs of Lyapunov’s Second 
Method are summarized next. Without loss of 
generality, the isolated EP considered is always the 
state-space origin. The results apply without restriction 
to BGs consisting of elements out of the basic nine-
component set, but they also hold in many cases on BGs 
containing modulated components. In all cases of the 
transcription below, the energy E is supposed to be a 
pdf of the states, if not, energy-based pdfs can be 
considered, as formulated in (Junco, 1993). 

EV && ≡

,V&

Proposition 1 (Junco, 2004; Proposition 2.2 in [Junco, 
2001∗]). 
If the energy stored in a BG is a Lyapunov function V(x) 
(i.e.,  and V ), then each storage-element 
imposes causality on at least one R-element of the BG. 

V 0> 0<&

Proposition 2 (Junco, 2004; Proposition 2.3 in [Junco, 
2001]). 

A) The EP is asymptotically stable if the following 
conditions hold: 
(i) all R-elements are truly dissipative, i.e., each e-f 
relationship goes through the origin and is completely 
contained in the first and third quadrants; 
(ii) each storage in integral causality imposes causality 
on at least one R-element. 
                                                           
∗ In the uncorrected conference version of this paper the proposition is 
erroneously stated as “A necessary condition for asymptotic stability”. 
In fact it is “A necessary condition for E  being a Lyapunov function”. 

 



 

Condition (ii) guarantees that the power dissipated in 
the R-elements depends on all the state variables; 
together with condition (i) this ensures that this 
dependence is a pdf function of the state. As  equals 
minus the dissipated power, the sufficient condition for 
asymptotic stability is satisfied. 

V&

In fact, the following stronger property holds for the 
simplest class of BGs: 

Proposition 3 (Junco, 2004). 
The EP of any connected BG (i.e., a BG not composed 
of disjoint BGs) constructed with elements out of the 
basic set and including strictly dissipative R’s is 
asymptotically stable. 
This property follows from the assumed positive 
definiteness of the stored energy, the strictly dissipative 
features of the R’s, and the pure power-connected 
structure of this class of BGs. It can be proved applying 
Lyapunov’s Second Method and LaSalle’s Invariance 
Principle on BGs, see (Junco, 2001), Proposition 2.4. 

Lyapunov Stability of Switched Systems 

Among the many results on stability of switched 
systems, we will use the version of the approach via 
multiple Lyapunov functions presented in (Branicky, 
1998), reproduced next with slight simplifications for 
the sake of brevity. 

Theorem 2.7 (Branicky, 1998). Suppose the candidate 
Lyapunov functions Vi(x) for the switched dynamics 
defined by , i ∈ {1, 2, 3, …,N} with 
f

))(()( txftx i=&

i(0)=0. Let S be the set of all switching sequences 
associated with the system. 
If for all i and each switching sequence S∈S, Vi is 
Lyapunov-like for fi and the trajectory-segment in 
mode-i, and the Vi satisfy the sequence nonincreasing 
condition for the whole trajectory (encompassing all the 
modes of S), then the system is stable in the sense of 
Lyapunov. 

Definition 2.6 (Branicky, 1998). The sequence non-
increasing condition for the candidate Lyapunov 
functions Vi(x) in Theorem 2.7 above means that 
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The ideas behind this theorem is that “these possibly 
multiple Lyapunov-like functions can be pieced together 
in some way to produce a global (nontraditional) 
Lyapunov function whose overall energy decreases to 
zero along the system state trajectories” (DeCarlo et al., 
2000). 

Modeling Switched BGs with the SPJ-formalism 

The need to incorporate some tools to handle switching 
phenomena with the BG-formalism, originally 
conceived to handle continuous physics, was quickly 
recognized by the BG research community. Among the 
many ideas and techniques proposed to treat idealized 
commutations we have selected the Switched Power 
Junction or SPJ-formalism. This is because of the 

advantges of the SPJs in order to circumvent some 
associated modeling drawbacks like varying causality of 
switching-modeling components, hanging junctions, 
failure to disconnect subsystems, and other 
inconsistencies. Most important for this research is the 
already mentioned fact that SPJs allow for a complete 
graphical representation of a hybrid system, via the 
bidirectional coupling of the SwBG with any 
informational graph used to explicit the subsystems 
determinig the commutations of the former. 

Switched Power Junctions have been introduced in 
(Umarikar and Umanand, 2005) as a generalization or 
extension of standard BG-junctions. The generalized 
models of both 0S and 1S (the notation for 0- and 1-
switched power junctions, respectively) are shown in 
Fig. 1. If they were standard junctions there would be a 
causal conflict in each of both cases. In the new 
formalism the causal conflict is removed via imposing 
the constraint that one and only one of the effort- (flow-
) deciding bonds imposes the effort (flow) to the 0S (1S) 
at any given time instant. This convention is graphically 
represented by the presence of the activated bond in the 
junction symbol, and mathematically formalized in (1) 
and (2) for the 0S and 1S, respectively. One and only one 
of the “boolean” variables in the set {U1, U2, U3, …, 
UN} is allowed to have the value 1 at a given time 
instant, the rest are zero. Looking at (1) and (2) it is seen 
that the boolean variables assuming the zero values 
annihilate both effort and flow in each of the associated 
bonds, and thus completely disconnect all subsystems at 
the bond-ends opposite to the junction. 

 

Table 1. Constitutive relations of the SPJs 
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3. LYAPUNOV STABILITY OF SWITCHED BG 

Some definitions are first introduced in order to 
characterize the class of SwBG this section deals with. 

Definition 1. A Storage Invariant Integral SwBG (SI-I 
SwBG) is a switched BG where i) the storage elements 
are the same in all modes, and ii) all the storages are in 
integral causality in all modes. 
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Fig. 1. Generalized 0S- and 1S-junctions. 

 



 

Lemma 1. A SI-I SwBG has a unique energy function 
common to all its modes. This property follows 
immediately from the definition above and the fact that 
the energy function in a BG is fully determined by the 
state variables of the integral storages (the storages in 
integral causality). 

Stability of Storage Invariant Integral SwBGs 

Theorem 1. Consider a SI-I SwBG where the state space 
origin is an isolated EP common to all its modes. 
Further consider that the number of switchings in any 
finite time interval is finite, and that: 

i) the energy function E(p, q) is a (at least locally) pdf 
around the origin. Here p and q denote, respectively, the 
vectors collecting all generalized impulses and displace-
ments of the SwBG. 
ii) the BGi associated to each mode is connected (i.e., it 
is not composed of disjoint BGs). 
iii) all the R-elements are strictly dissipative. 
iv) in each BGi, each integral storage imposes causality 
on at least one R-element. 

Then, the state space origin of the SwBG is 
asymptotically stable. 

Proof. Because of assumption i) the energy function 
E(p, q) is a candidate Lyapunov function in the sense of 
Theorem 2.7 of Branicky. This is a particular case 
where Vi(x)≡E(p, q) is the same for all modes indexed 
by i ∈ {1, 2, 3, …,N}. Assumptions ii)-iv) imply that 
each mode, as considered per se, is asymptotically 
stable (Proposition 2, Junco 2004, see above), and thus, 

 decreases with time. Piecing all this together 
shows that the conditions for the energy function E(p, q) 
to satisfy the sequence nonincreasing condition 
(Definition 2.6 of Branicky) are satisfied.    

)(xVi
&

Some of the conditions of Theorem 1 can be relaxed and 
asymptotic stability still retrieved, as commented next. 

Remark 1. Assumption iv) implies that there is at least 
one R-element present in each mode. This condition can 
be removed, imposing instead the following condition to 
the switching sequences: 
iv-bis) in each BGi containing R-elements, each integral 
storage imposes causality on at least one of them. There 
is no switching sequence in S such that the system 
remains indefinitely in a (sequence of) mode(s) without 
R-elements. 

Indeed, the sequence nonincreasing condition is 
recovered if we consider as a single mode the 
concatenation of the mode preceding the mode without 
dissipation with this latter one.    

Remark 2. Assumption ii) can be relaxed to handle non-
connected or disjoint BGi. In this case condition iv) 
should be imposed to each sub-BG composing a disjoint 
BGi. If there are sub-BGs without R-elements, condition 
iv) can again be relaxed in the sense of condition iv-bis).
       

Remark 3. Assumption iv) can be relaxed if the 
concerned BGi’s satisfy the conditions of Proposition 3 
above.        

We remark that, rigorously speaking, the class of SwBG 
considered here does not strictly imply a multiple, but a 
single Lyapunov function, and thus, we handle a 
particular case of Branicky’s theorem. Note however 
that a multiplicity is associated to this single energy 
function through the switching dynamics. Indeed, any 
switching sequence provokes a sequence of negative 
(semi)definite orbital derivatives, i.e., a multiple orbital 
derivative state-function Ė(p,q)|=)(xVi

&
Mode i.  

 
4. A MODELING AND SIMULATION EXAMPLE 

Consider the mechanical sketch of Fig. 2. Two ideal 
mechanical couplers indicated Sw1,2 can be noticed, 
which serve to couple the mass+two-dampers system in 
the middle to the mass-spring-damper systems on the 
sides. The following switching conditions are assumed 
for each coupler: i) switch closes on contact; ii) switch 
opens when b1/2-damper compression force becomes 
zero. We identify the switch binary states as follows: 
Swi=0, switch open (disengaged); Swi=1, switch closed 
(engaged). The SwBG consists then of four switching 
modes, corresponding to the four binary states of the 
pair (Sw1, Sw2) {(0, 0), (1, 0), (0, 1), (1, 1)}. This is 
represented in Fig. 3 by four separated BGs. As inactive 
dampers do not play any role (dampers b1,2 when related 
switch in the off-state), the associated R-elements have 
not been retained in the corresponding BGs. 

 
Fig. 2. Mechanical system 

Sw- 
states Physical system Bond graph 

(0, 0)  
 

(1, 0)  
 

(0, 1)  
 

(1, 1)  

 

Fig. 3. The four modes of the switched system 
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Switched Bond Graph Modeling 
 the example system 
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Fig. 4 is a SwBG representation of
using the (primitive) switch element or Sw-element 
(Strömberg, 1994, p. 86). Naturally, here all the BG-
elements are present, even if they may not be active in 
some modes. As in the previous series of BGs, also here 
causality has been indicated: note that the causal stroke 
is pictured in the middle of a bond when this changes 
causality in dependence of the switch state, i.e., 
causality is undecided unless the switch state is 
specified. It means that the switched system is only 
specified up-to causality when using this formalism to 
construct the SwBG. 

 
Fig. 4. The SwBG model using the ideal Sw-element. 

ig. 5 is a representation of the SwBG using the SPJ-
formalism. The 0S-SPJs are controlled by the signals ui, 
which correspond to the states Swi as follows: ui = 1 
means Swi closed; ui = 0 means Swi open. Consider for 
instance the Sw1: when u1 = 1 the 0S ignores the effort 
eC1=0 on the lower bond (associated to the auxiliary Se 
with null effort), chooses the effort on the upper bond 
(associated to the R-element), and transmits it to the 
right and left bonds. Simultaneously, a net flow equal to 
the flow on the left bond minus the flow on the right 
bond is transmitted to the upper bond, and zero flow to 
the lower bond. This corresponds to a situation where 
the coupler is engaged. The opposite effort selection 
happens when u1 = 0, meaning that zero effort is 
transmitted to left and right (coupler disengaged). 
Simultaneously, zero flow is transmitted to the R-
element, what determines its inactivity during this 
mode. The behaviour just described is what Eq. (1) 
means in this particular case (see Table 1) (along with 
the rules on the switching conditions). Clearly, the 
SwBG is fully specified when using the SPJ-formalism 
for its representation; see (Junco et al., 2007) for other 
examples, including changing causality in storages and 
R-elements. 

 
Fig. 5. SPJ- representation of the SI-I SwBG model 

associated to the example of Fig.2. 

nalysis of Switched Bond Graph 
As the storages remain invariant and in
causality under switching (only the two R-elements with 
coefficients b1,2 become inactive here), the SPJ-BG of 
Fig.5 is a SI-I SwBG. The state vector is the same in all 
modes xT = [q1, p1, p2, p3, q2], and so is the energy 

function. Clearly, all the BGi share the state space origin 
as an isolated EP, i.e., it is a EP common to all the 
modes. Observe that the position of mass m2 is not a BG 
state, if it were the EP would not be isolated. Naturally, 
the inertias are linear, but even if so depicted in the 
figure, the springs do not need to be linear. We do not 
write them down, but simply assume possibly nonlinear 
constitutive laws of the C’s such that the energy 
function is a pdf of the states, so that assumption (i) of 
Theorem 1 is satisfied. Considering pure dissipative 
(also not necessarily linear) R-elements, assumption (iii) 
is also satisfied. Assumption (ii) is not satisfied because 
BG(0,0) (the BG of mode (0,0)) is disjoint. Assumption 
(iv) is not satisfied because (a), none of the two C’s 
imposes causality in a R-element, and (b), in mode 
BG(0,0) the mass m2 is isolated without R. The first 
situation is solved by Remark 3 and, regarding the 
second, we are in the situation foreseen in Remark 2 
with a condition similar to iv-bis, because, when out of 
equilibrium, mass m2 will eventually contact either 
damper b1 or b2 and this mode will be abandoned in 
finite time. 

All the above means that, by virtue of Theorem 1 and 
the modific
space origin of the switched system given in Fig. 2 is an 
asymptotically stable equilibrium point. 

We calculate next the orbital derivatives of the energy 
function in the different modes. The e
itself is: 

),( qpE =E1(q1)+E2(q2)+ 2 2/ mp + 2 2/ mp + 2 2/ mp  1 2 3

a simpler formula  o riv is
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obtaine nce of negative semidefinite 

The SPJ-model of Fig. 5 has been implemented in the 
20sim™ simulator, and a simulation experiment has 
been conducted with the example system parameterized 

0 
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33vm  

Clearly, with the assump ade  constitutive 
laws of the C-elements, t gy fu
the states. Its orbital derivative in each of the modes is 
as follows: 
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functions of the state, as none of them depend on the q-
variables in any of the modes, because none of the C-
elements imposes causality to any of the R-elements in 
any of the BGi. 

Simulation Results 
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as follows: b1 =1; b2 =1; bl  =0.1; br  =0.5; k1 =0.1; k2 =2; 

ode the energy 

m1 =1; m2 =4 and m3 =1. The initial conditions of the 
experiment are: x1(0)=0.2; x2(0)=0.8; x3(0)=1.1; where xi 
is the position of the i-th mass. The left end of damper 
b1 is at a distance z1(0)=0.15 to the left of mass m2; the 
right end of damper b2 is at a distance z2(0)=0.05 to the 
right of mass m2; v1(0)= – 0.025. SI-units are used for 
all magnitudes –but are not given here. 

Figs. 6 and 7 plot the positions and the speeds of the 
three masses. With masses 1 and 3 at rest and mass 2 
moving (at constant speed v1= – 0.025) to the left, the 
system is initially in mode (0,0). In this m
function remains constant and no power is dissipated, 
cf. the expression of )0,0(V&  above (where v3 and v1 are 
zero), as well as Fig. 8 below. This latter figure also 
shows that the switches are open (U1=Sw1=0, 
U2=Sw2=0). The system commutes to mode (1,0) when 
the left end of dampe ets in contact with mass 1, 
which initiates an oscillatory movement, while mass 2 
decelerates first and inverts its motion later. Most of the 
energy originally stored in the system gets dissipated (in 
dampers b

r b1 g

l and b1) during this mode, cf. )0,1(V&  (where 
only v3 is zero) and Fig. 8, which also shows that the 
control signal of switch 1 is high, i.e., U1=Sw1=1. 

 
Fig. 6. Time trajectories of the mass positions. 

 

 
Fig. 7. Time trajectories of the mass velocities. 

The back oscillation of mass 1 pushes mass 2 to the 
right and brings the switch 1 to its disconnection 
condition, so that the system commutes back to mode 
(0,0), but with a different energy configuration: while 
mass 2 moves at (positive) constant speed, the left mass-
spring-damper subsystem is (slightly) excited, what 
means that (a small amount of) energy continues to get 
dissipated, cf.  (v3 is zero, but not v1). After a 
while, the righ  end of damper b2 contacts mass 3, the 
switch 2 goes in the on-state (see U2 in Fig. 8), and the 
system commu ode (0,1). With the movement of 
the left subsyste  already faded (v1=0), energy is only 
dissipated in upled subsystem on the right, cf. 

, where only v1=0, and Fig. 8. 

 )0,0(V&

t

tes to m
m

 the co

)1,0(V&

 
Fig. 8. The energy function, the power dissipated in the 
system, and the control signals of the switches (Ui=Swi) 

The first plot of Fig. 8 shows the nonincreasing nature 
of the energy, which is the candidate Lyapunov function 
in this problem. It converges to zero, what means that 
the state converges to the origin, what in turn proves the 
asymptotic stability of this EP. This convergence of the 
state variables can be partially  seen on the speeds (Fig. 
7). The complementary conditions, namely that the 
deformations of the springs also go to zero, are also 
verified, even if not shown on the plots. 

 

 
5. CONCLUSIONS 

applied directly in the BG-domain. The study is 

The stability of a particular class of switched bond 
graphs has been analyzed with Lyapunov-like tools 

restricted to BG where the storages remain invariant 
under switching, both in their constitution and causality. 
Further research will focus on switched bond graphs 
admitting derivative causality when switching among 
modes. This implies the lost of a unique energy function 
common to all modes of the BG, the possible variation 
of the system order when switching, and the appearance 
of discontinuities in the state trajectories. 
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