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ABSTRACT

This paper describes the design and implementation of a 
library of reusable UPPAAL template processes which 
support reasoning and property checking of concurrent 
programs, e.g. to be realized in the Java programming 
language. The stimulus to the development of the 
library originated in the context of a systems 
programming undergraduate course. The library, 
though, can be of help to general practitioners of 
concurrent programming which nowadays are 
challenged to exploiting the potentials of modern multi-
core architectures. The paper describes the library and 
demonstrates its usage to modelling and exhaustive 
verification of mutual exclusion and common 
concurrent structures and synchronizers. UPPAAL was 
chosen because it is a popular and continually improved 
toolbox based on timed automata and model checking 
and it is provided of a user-friendly graphical interface 
which proves very important for debugging and 
property assessment of concurrent models. Java was 
considered as target implementation language because 
of its diffusion among application developers. 

INTRODUCTION

Current technological trend on multi-core machines 
challenges developers to exploit concurrency in general 
purpose applications which can have a performance 
gain from the computational parallelism offered by 
modern personal computers. However, as students and 
developers know, concurrent programs are hard to 
design and difficult to debug. Common experimented 
problems include race conditions, deadlocks and 
starvation (Stallings, 2005)(Silberschatz et al, 2010). 
Motivated by the desire to help students of a systems 
programming undergraduate course to have a more 
critical approach to concurrent programming, authors 
have designed and prototyped a reausable library of 
UPPAAL (Bengtsson and Yi, 2003)(Behrmann et al., 
2004) template processes. The library enables a 
concurrent solution to be formally modelled as a 

network of timed automata (Alur and Dill, 1994), to 
animate it in simulation to check qualitative behaviour 
thus making a preliminary debug, and to prove 
(provided the model is not too large) 
functional/temporal properties of the system at hand 
through model checking (Clarke et al., 2000)(Cicirelli et 
al., 2007)(Cicirelli et al., 2009)(Furfaro and Nigro, 
2007). The approach is similar but independent and 
original with respect to that described in (Hamber and 
Vaandrager, 2008). A key factor of the work described 
in this paper concerns the development of concurrent 
structures and synchronizers which are inspired by the 
concurrent package of the Java programming language. 
The UPPAAL toolbox was chosen because it is popular, 
it is continually improved and it is efficient (in space 
and time) in the handling of large model state graphs. 
Moreover, the toolbox offers a friendly graphical user 
interface which facilitates reasoning upon model 
behaviour. 
This paper describes (part of) the developed library and 
demonstrates its usefulness by studying mutual 
exclusion algorithms and by showing some common 
concurrent synchronizers which are available in the 
Java programming language. Concurrent models are 
then applied to a sample problem. The approach makes 
it simple to transform a concurrent solution model into a 
corresponding Java implementation. The solutions, 
though, can be ported to other languages as well. 
Finally, conclusions are drawn with an indication of 
further work. 

MUTUAL EXCLUSION ALGORITHMS 

Concurrent processes accessing shared data require two 
kinds of mechanisms (see e.g. (Stallings, 
2005)(Silberschatz et al., 2010)): mutual exclusion 
which guarantees only one process at a time can enter 
its critical section, and synchronization, i.e. the 
possibility for a process in a critical section to suspend 
its execution when the data values do not permit the 
process to complete its operations. In this section the 
focus is on mutual exclusion based on busy-waiting by 
“pure software” solutions (other solutions can be based 
on the hardware support, e.g. test and set instructions or 
the interrupt system). Such mutual exclusion algorithms 
are normally discussed in a systems programming 
course for introducing students to race conditions and 
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interference problems among concurrent processes. In 
the following, algorithms for N>2 processes are 
considered. Examples include the Bakery algorithm and 
the Eisenberg and McGuire algorithm ((Silberschatz et 
al., 2010) page 302). Fig. 1 shows a pseudo code of the 
generic process according to the Eisenberg and 
McGuire algorithm. 

//shared variables used by the algorithm 
enum pState {idle, want_in, in_cs} 
pState flag[n]; //all elements initialized to idle 
int[0,n-1] turn; //no particular initialization 
//ith process 
int[0,n] j; 
do{ //enter part 
 while(true){ 
  flag[i]=want_in; //I want to enter my critical section 
  j=turn; //give priority to non idle processes, if there 
  //are any, from turn to i clockwise 
  while(j!=i){ //busy waiting 
  if( flag[j]!=idle ) j=turn; 
     else j=(j+1)%n; 
  } 
  flag[i]=in_cs; //I "enter" my cs 
  j=0; 
  //it there exists in the entire ring a 
  //process with in_cs status ? 
  while( (j<n) && (j==i ||flag[j]!=in_cs) ) j++; 
  if( (j>=n) && (turn==i || flag[turn]==idle) ) 
       /*no*/ break; 
  //yes, waits 
 } 
 turn=i; //its my turn 
 //critical_section 
 //exit part 
 //starting from me (turn==i) 
 //search the first not idle process 
 j=(turn+1)%n; 
 while( flag[j]==idle ) j=(j+1)%n; 
 turn=j; //give it its turn 
 flag[i]=idle; 
 //non_critical_section 
}while(true)

Figure 1. Eisenberg and McGuire mutual exclusion 
algorithm for N processes 

Now the goal is to model in UPPAAL the algorithm in 
Fig. 1 and proving it fulfils all the three basic 
properties: (a) only one process at a time can enter its 
critical section, (b) a process waiting for entering its 
critical section would not delay infinitely (absence of 
starvation), (c) no assumption is made about the relative 
speed of the processes. The modelling strategy 
purposely allows to concentrate on the essential of the 
algorithm while ensuring a certain efficiency of the 
model checking. The model abstracts away the duration 
of the single instructions carried out during the entry 
section and the exit section of the protocol, thus making 
it possible to determine the delay time of a process 
waiting to enter its critical section, in terms of the 
number and duration of critical sections executed by 
other processes. The “high resolution” approach, in 

which every single instruction is modeled and timed 
(e.g. each instruction consumes 1 time unit) is instead 
advocated in (Hamber and Vaandrager, 2008). Fig. 2 
shows the proposed UPPAAL model for the generic 
Process of Eisenberg and McGuire algorithm. Duration 
of the critical section is supposed to be in the [2,6] time 
interval. The template Process receives its unique id i as 
parameter.  
The use of committed locations mirrors the assumption 
that instructions executed during the entry/exit part are 
supposed to be time negligible with respect to the 
critical section duration. Of particular concern is the 
realization of the busy-waiting during the enter part. 
The process enters the Busy_Wait location from which 
it exits at each change of shared variables. To this 
purpose a broadcast channel check is used. The process 
which enters or exits from its critical section forces all 
processes in busy waiting to reconsider their situation. 
The following global UPPAAL declarations were used: 

const int N=5; //number of processes 
typedef int[0,N-1] pid; //process identifier subtype 
typedef int[0,2] pState; 
broadcast chan check; 
const int idle=0; 
const int want_in=1; 
const int in_cs=2; 
pid turn; 
pState flag[N]={idle,idle,idle,idle,idle}; 
clock x[N]; //process clocks 
clock y[N]; //decoration clocks 

The system declaration section consists only of: 

system Process; 

which ensures, due to the pid parameter of the Process 
template, that N instances of the template are created to 
populate the model. These instances have names 
Process(0), ..., Process(N-1). 

Table 1 shows the queries used to verify the mutual 
exclusion algorithm. Query 1 verifies the absence of 
deadlocks. Queries 2 and 3 check, with different syntax, 
the fundamental mutual exclusion property: no more 
than one process can find itself into the critical section. 
Queries 4 and 5 respectively determine minimal and 
maximal delay when waiting for entering the critical 
section. Query 4 is not satisfied if a value greater than 0 
is used. Query 5 is not satisfied if a value lesser than 24 
is used. Decoration clocks y[i] are reset when a process 
starts the enter part of the protocol and measure the 
elapsed time of waiting. Obviously, queries 4 and 5 
have the same conclusion for any process i. It is 
guaranteed that the waiting time is bounded and 
amounts as upper bound to (N-1) critical sections. 
Queries 6 and 7 check progress properties. In particular, 
query 6 guarantees that a process which starts the enter 
part of the protocol, eventually enters the critical section 
(this is of course also confirmed by bounded waiting 
time). Similarly, query 7 says that a process which starts 



 

 

the enter part of the protocol always comes back to 
home (Non_CS location). 

 Table 1  
Query Result 

1 A[] !deadlock satisfied 

2
E<> Process(0).In_CS+Process(1).In_CS+ 
Process(2).In_CS+Process(3).In_CS+ 
Process(4).In_CS>1 

not
satisfied 

3 A[] (forall(i:pid) Process(i).In_CS imply  
(forall(j : pid) j!=i imply !Process(j).In_CS)) satisfied 

4 A[] Process(0).End_Enter imply y[0]>=0 satisfied 

5 A[] Process(0).End_Enter imply y[0]<=24 satisfied 
6 Process(0).Start_Enter --> Process(0).In_CS satisfied 
7 Process(0).Start_Enter --> Process(0).Non_CS satisfied 

The model in Fig. 2 can easily be adapted to be 
analyzed using the “high resolution” approach 
suggested in (Hamber and Vaandrager, 2008). In this 
case the check channel is useless and the Busy_Wait 
location can be eliminated. 
Variable lock is true when a process wanting to enter is 
allowed to begin its critical section. Other details should 

be self-explanatory. This algorithm too ensures a 
bounded waiting time of at most (N-1) critical sections. 

CATALOG OF REUSABLE CONCURRENT 
MODELS

Mutual exclusion algorithms like those shown in the 
previous section can be the basis for implementing high 
level concurrent structures. Normally they are not 
directly used by the concurrent programmer which 
prefers instead to use such constructs as monitors, 
semaphores etc. which can provide both mutual 
exclusion and synchronization mechanisms. In the 
following some reusable UPPAAL templates are 
proposed which model some frequently used concurrent 
structures which are at the basis of common concurrent 
design patterns (Grand, 2002).  

The description makes some reference to Java 
concurrency (Goetz et al., 2006) but the solutions can 
be ported also to other programming languages. For 
brevity, some constructions like the Hoare’s monitor, 
barrier, exchanger etc., are not reported although they 
are implemented. 

Figure 2. An UPPAAL Process template for Eisenberg and McGuire mutual exclusion algorithm 

Java native monitor 

The essential semantics of the Java native monitor, 
which derives from the Lampson and Redell monitor 
(Lampson and Redell, 1979), is that any object has a 
lock which provides a waiting room, that waiting 
processes are not necessarily awaken in FIFO order and 
that notifying methods make only ready-to-run one or 
more waiting processes without giving to them any 
privilege with respect to newly arriving threads. All of 
this suggests the following structure for a typical entry 
procedure of a thread-safe class: 

return_type entry_proc(params) throws InterruptedException{ 
 synchronized( m ){ 
      while( condition_for_waiting_is_true )  m.wait(); 
      update_operation
     m.notify[All](); 
     … 
 } 
}//entry_proc 

m is the object which provides the lock, i.e. it is the 
monitor object. m can be this but often (better) is 
convenient for it to be a private object (Bloch, 2008) of 
the guarded class. In the following, a UPPAAL model is 
proposed which rests on four operations: enter, exit, 
wait and notifyAll (which is of more general use than 
notify) which are realized as channels, and a local 
boolean lock variable which holds the lock status.  

Figure 3. UPPAAL template of a Java native monitor 
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Figure 4. a) Producer model Figure 4. b) Consumer model 
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!LOCK[l]
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!LOCK[l]
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signalAll[c][l]?

!LOCK[l]
signalAll[c][l]?

LOCK[l]
await[c][l]?
LOCK[l]=false

Figure 5. a) Lock template model Figure 5. b) Condition template model 

A waiting process can only be awaken by a notifyAll 
operation (the interruption mechanism is ignored). Fig. 
3 portrays the template model for a Java monitor. 
Global declarations for introducing one or more 
monitors in an application model are: 

const int MONITORS=…; //number of monitor objects 
typedef int[0,MONITORS-1] mid; //monitor unique identifiers 
//monitor operations as array of channels 
chan enter[MONITORS]; 
chan exit[MONITORS]; 
chan wait[MONITORS]; 
urgent broadcast chan notifyAll[MONITORS]; 

A monitor model initializes by assigning false to the 
associated lock variable. Invoking a wait/notifyAll/exit 
on a monitor whose lock is false is a fatal error (the 
committed Error location is entered which has no 
outgoing edge).  

A wait[m]? synchronization opens the monitor lock. It 
is up to the invoking process to enter a waiting location 
from which it exits on receiving a notifyAll signall. Fig. 
4 shows a producer/consumer model with a bounded 
buffer. Producer and consumer instances receive a 
unique process id in the relevant category (p_id for 
producers and c_id for consumers) and the monitor 
object upon which mutual exclusion and 
synchronization are based. Models in Fig. 4 clarify that 
an awaken process has to re-gain the monitor as any 
newly arriving process. When a process updates the 
buffer, it awakes all the waiting processes by a 
notifyAll[m]! which is a broadcast channel. Each 
producer/consumer instance owns a local boolean cs 
variable (useful for analysis purposes) for registering if 
it is or not in the critical section. 

The producer/consumer model was checked with a 
varying number of producers and consumers. The 
following two queries (which are satisfied) check that at 
any time at most one process can be in its critical 
section: 

A[] (forall(i:p_id) Producer(i,0).cs imply (forall(j:p_id) j!=i 
imply !Producer(j,0).cs) && (forall(k:c_id)  
!Consumer(k,0).cs))

A[] (forall(i:c_id) Consumer(i,0).cs imply (forall(j:c_id) j!=i 
imply !Consumer(j,0).cs) && (forall(k:p_id)  
!Producer(k,0).cs))

Lock/Condition

Starting from Java 5, the concurrent Java library 
provides an alternative mechanism to the built-in 
monitor, which is based on the concept of a lock and 
associated conditions. The structure is just syntactic 
sugar built on the monitor (lock) mechanism. Now, 
though, processes can wait on different rooms 
(conditions) of the same lock. The lock/unlock 
operations are defined on a lock object, whereas 
await/signal[All] are the operations on a condition. Only 
the signalAll operation is considered (the signal method 
would awake a process without any order). In the 
UPPAAL modelling, the association of conditions to 
lock is achieved by using a bi-dimensional array of 
channels where the first index selects a condition, the 
second one the associated lock. Fig. 5 shows the 
developed Lock (with parameter lock id l) and 
Condition (with parameters the condition id c and lock 
id l) UPPAAL (sub) models. The array of LOCK 
booleans storing the lock statuses is made global so as 
to be shared by a lock and its conditions. Of course, the 
programming model is very similar to that shown for 
the Java native monitor: each use of enter[m]!/exit[m]! 
is replaced by a use of lock[l]!/unlock[l]!, an use of 
wait[m]! is replaced by await[c][l]! where c is a 
condition of l, an use of notifyAll[m]! is replaced by 
signalAll[c][l]! for awaking all the waiting processes on 
condition c. 

Semaphores

Can be counting or binary semaphores (see e.g. 
(Silberschatz et al., 2010)). They can be used for mutual 
exclusion and synchronization purposes (Downey, 



 

 

2007). In the following, the names of the operations on 
semaphores are the classic P and V (Dijkstra, 1965). 
The proposed implementation uses a bounded queue for 
storing the identifiers of processes waiting on the 
semaphore. The awaking of waiting processes follows 
the FIFO order. Each semaphore holds a private counter 
which cannot go negative, and stores the number of 
permits available on the semaphore. The following 
globals help defining the semaphore models: 

const int PROCESSES=…; //number of processes 
typedef int[0,PROCESSES-1] pid; //process ids subtype 
const int SEMAPHORES=4; //number of semaphores 
typedef int[0,SEMAPHORES-1] sid; //semaphore ids subtype 
//semaphore operation-channels 
chan P[SEMAPHORES]; 
chan V[SEMAPHORES]; 
chan GO[PROCESSES]; 
pid proc; //process id trying to P(ass through the semaphore

Error
initial<0

GO[pr]!
lock=false

count==0 && 
full()

size()==0
count++,
lock=false size()>0

pr=dequeue()

!lock
V[s]?
lock=true

count==0 && 
!full()
enqueue(),
lock=false

initial>=0

initialize()

count>0
GO[p]!

count--,
lock=false

!lock
P[s]?
lock=true,
p=proc

Error

GO[pr]!
lock=false

count==0 && 
full()

size()==0

count=1,
lock=false size()>0

pr=dequeue()

!lock
V[s]?
lock=true

count==0 && 
!full()

enqueue(),
lock=false

initialize()

count==1
GO[p]!

count=0,
lock=false

!lock
P[s]?

lock=true,
p=proc

Figure 6. a) Counting semaphore model Figure 6. b) Binary semaphore model 
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Figure 7. a) Producer model with semaphores Figure 7. b) Consumer model with semaphores 

Specific constant names can also introduced globally to 
make more readable a process model when accessing 
selected semaphores. Fig. 6 portrays the UPPAAL 
templates for the counting and binary semaphores. 
Parameters of both models are the semaphore id, the 
initial value (which for a binary semaphore is restricted 
to be 0 or 1), the expected length of the waiting queue. 
The design pattern which follows from the models in 
Fig. 6 is that a process which executes a P[s]! operation 
on a semaphore s must assign, in the update part of the 
command, its own process identifier to the global 
variable proc. In addition, following a P[s]! 
synchronization, the process has to wait for a GO[p]? 
synchronization which unblocks the process. Models in 
Fig. 6 immediately release a GO command if a permit 
exists at the time of a P[s]!. Note that indexes of the 
array of GO channels are process ids and not semaphore 
ids. 
Model implementation rests on a few C-like functions 
which hide the counter initialization and the 
management of the waiting queue of the semaphore. 
Mutual exclusion of P/V atomic operations is ensured 
by a local lock object of the semaphore, initialized to 
false. To clarify the use of the semaphore models, Fig. 7 
shows the producer/consumer models of classical 

bounded buffer application. The models receive as 
parameter their process id p (of type pid). Three 
semaphores are used: mutex (binary semaphore), empty 
and full (counting semaphores) having a number of 
permits, from time to time, which reflects respectively 
the number of empty/full slots in the bounded buffer. 
The ids of these semaphores are introduced in the global 
declarations.
The instructions for setting up the UPPAAL system 
model composed of two producers, one consumer and 
buffer capacity of n, are as in the following: 

//template process instances 
Mutex=BinarySemaphore(mutex /*sem id*/, 
 1/*initial value*/,2/*queue size*/); 
Empty=Semaphore(empty,n,2); 
Full=Semaphore(full,0,1);
prod1=Producer(0);
prod2=Producer(1);
cons=Consumer(2);
//system configuration 
system Mutex,Empty,Full,prod1,prod2,cons; 

The following query (which is satisfied) checks that 
mutual exclusion is correctly enforced on the three 
processes:



 

 

A[] cons.CS+prod1.CS+prod2.CS<=1 

Another template model (JSemaphore) was developed 
which was inspired by the Java Semaphore class. It 
allows atomically to withdraw/deposit more than one 
permit at a time. The channel-operations are 
AcquireX[jsid], ReleaseX[jsid], AvailablePermits[jsid] 
where jsid is the id of the semaphore in this particular 
category, and X can be absent to express the default of 
1 permit, or can be a natural up to a given allowed 
maximum. The AcquireX[] channels correspond to 
acquireUninterruptibly(...) methods of the Java 
Semaphore class. The same conventions on classic 
semaphores apply here: the global proc variable must be 
assigned the process id at the time of an acquire, which 
must be followed by a GO[]? command for unblocking. 
A process acquiring multiple permits at once will block 
if the requested number of permits is not available. A 
release command updates the number of permits of the 
semaphore and (possibly) awakes the oldest awaiting 
process, provided its permit request is now fulfilled. A 
process can check the number of available permits 
through the operation AvailablePermits[jsid] whose use 
must update the global proc in the usual way, and be 
followed by a GO[]? command as for an acquire 
command. The requesting process will find the output 
of AvailablePermits[jsid] in a global variable which is 
specified as the fourth parameter (passed by reference) 
to the JSemaphore template. 

EXAMPLES 

The following reports a few examples based on some of 
the UPPAAL developed concurrent structure models. 
When transforming a UPPAAL model to Java it is 
important to reflect that GO? synch? and similar 
synchronizations required in UPPAAL are implicit in 
the suspensive character of Java methods (e.g. wait(), 
s.P() on a semaphore s etc.). 

Sharable resource

The problem (Reek, 2004) concerns a sharable resource 
which can be accessed according to the rules: (a) as 
long as there are fewer than three processes using the 
resource, new processes can start using it right away, 
(b) once there are three processes using the resource, all 
three must leave before any new processes can begin 
using it. 
A first solution is based on the Java native monitor (or 
the equivalent lock/condition structure). Fig. 8 depicts a 
template model for the generic Process accessing the 
resource. Process has two parameters: its process id p 
and the monitor m. 
The variable release is true if currently there is a release 
of processes from the resource according to rule (b). 
Variable active stores the number of processes which 
are currently using the resource. Both must be acted 
under mutual exclusion. A monitor m is used as a 
guardian of the resource. As long as the number of 

active processes is 3 or there is a release in progress, the 
asking process is forced to wait (it reaches the Wait 
location and frees the monitor). On exiting from the 
critical section, if active is equal to 3, release is set to 
true. In any case the exiting process decrements the 
active counter. When active goes to 0, a notifyAll[m]! is 
issued and release is reset to false. Note that if active is 
0 but no release was in progress, the notifyAll[m]! 
signal reduces to a no-operation because no processes 
are really waiting.

Figure 8. Process model based on the Java native 
monitor 

A system model with 5 instances of Process was 
verified. It was found to be free of deadlocks but 
without liveness guarantee for any process. Liveness 
was checked e.g. with a query like this: 
Process(0,0).Start-->Process(0,0).RA (Resource 
Access) which is not satisfied. The query continues to 
be not satisfied even when the Try location is turned to 
be committed and the enter/exit/wait channels are 
declared urgent. 

public class Manager { 
private int active=0;
private boolean release=false;
private Object m=new Object(); 
public void want_to_enter() throws InterruptedException{ 

synchronized( m ){ 
       while( active==3 || release ) m.wait();
       active++;
  } 
 }//want_to_enter

public void exit() throws InterruptedException{ 
synchronized( m ){ 

        if( active==3 ) release=true;
        active--;
        if( active==0 ){ 
            m.notifyAll(); 
            release=false;
        } 
  } 
 }//exit
}//Manager
Figure 9. A Java thread-safe class corresponding to 
model in Fig. 8 

The problem is that process selection at entering and 
process awaking from waiting are not deterministic. A 
Java thread-safe class corresponding to the model in 
Fig. 8 is portrayed in Fig. 9. 
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Fig. 10 shows a solution based on semaphores, which 
mimics a solution based on the Hoare’s monitor. Two 
binary semaphores MUTEX and WAIT are used. WAIT 
serves to block a process when active is 3 or there is a 
release in progress. The solution exploits the “Pass the 
Baton” design pattern (Reek, 2004), i.e. when an exiting 
process finds the conclusion of a release and that there 
are waiting processes, it awakes (the oldest) one and 
passes to it the mutual exclusion. On the other hand, 

when release is true or there is no waiting process, the 
exiting process frees the MUTEX. 

The application model was model checked and found 
free of deadlocks too. Liveness was checked by the 
queries: 

Process(0).W --> Process(0).RA 
Process(0).Start --> Process(0).RA

Figure 10. Process model based on semaphores 

The above queries verify respectively if process 0 (or 
any other process) always is able to reach RA from W 
(start waiting), or from Start.  
These queries are not satisfied because of the non 
urgent character of P/V and GO channels, together with 
the fact that an UPPAAL timed automaton is not forced 
to abandon as soon as possible a normal location. 
Changing the channels to urgent, both the queries are 
satisfied, mirroring that a process is eventually chosen 
from the waiting queue of semaphores (FIFO behavior). 

Termination problems 

The first problem considered is proposed in (Stallings, 
2005) and involves five processes: three of type A and 
two of type B. The goal is finding the minimum number 
of semaphores and using exclusively P’s and V’s on 
these semaphores so as to have always that the five 
processes terminate according to the sequence ABAAB. 
Instead of trying intuitively to find a solution, the 
following  suggests a Petri net (see Fig. 11) which 
models in abstract terms a solution. Transition tA 
models a process A termination. Transition tB models a 
process B termination. Net topology and initial marking 
mirror the number of A and B processes (see places A 
and B) and the constraints on the termination sequence 
(see places cA and cB and weights of cB-tB and tB-cA 
arcs).
Obviously, there is no general rule to guide the 
transformation from a specification to an 
implementation which is guaranteed to be correct with 
respect to the specification. In this case, though, by 
interpreting places as semaphores and their initial 
marking as the initial value of the semaphores, and 
interpreting token withdraw and token deposit during 

transition firing respectively as P’s and V’s on the 
relevant semaphores, one can achieve a semaphore 
implementation from the net model. An important 
aspect to reproduce in the semaphore implementation is 
the atomicity of transition firing.  
In reality, semaphores corresponding to places A and B 
can be omitted because in the implementation the 
number of processes A and B is implicitly represented 
by instances of their class/template. As a consequence, 
five semaphores could be used: cA, cB, mA, mB, mAB 
where mA and mB are mutex semaphores guarding A 
processes each other and B processes each other, 
whereas mAB regulates mutex among As and Bs. As a 
first attempt, Fig. 12 sketches semaphore declaration 
and initialization, and the body of A and B process 
types: 

Figure 11. Petri net model for the termination problem 
ABAAB

The implementation in Fig. 12 is redundant: mA and 
mB can be eliminated by resting on cA initialization 
which excludes multiple A to initiate firing of transition 
tA in Fig. 11, and cB initialization along with the FIFO 
property of employed semaphores, so as to allow only 
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GO[p]?P[MUTEX]!
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one B to fire transition tB. Proposed implementation 
using three semaphores is shown in Fig. 13. 

Semaphore cA<-1, cB<-0 
BinarySemaphore mA<-1, mB<-1, mAB<-1 
A:
P(mA)
P(cA) 
P(mAB)
V(cB)
V(mAB)
V(mA)

B:
P(mB)
P(cB) 
P(cB) 
P(mAB)
V(cA)
V(cA)
V(mAB)
V(mB)

Figure 12. a) Global 
declarations and A process 
body sketch 

Figure 12. b) B process 
body sketch  

Figures 14 and 15 depict UPPAAL models for 
processes A and B. 

The semaphores cA and cB have ids respectively CA 
and CB. Figures 16 and 17 show a decoration 
automaton Checker along with the Synch automaton 
and urgent synch channel which were designed (with 
the help of counters tA and tB which count respectively 
the number of terminated A processes and B processes) 
to demonstrate correctness of the simplified solution. 

EndBegin

V[MUTEX]!
tA++

V[CB]!

GO[p]?P[MUTEX]!
proc=p

GO[p]?

P[CA]!
proc=p

End

Begin

V[MUTEX]!

tB++

V[CA]!

V[CA]!

GO[p]?

P[MUTEX]!
proc=p

GO[p]?P[CB]!
proc=p

GO[p]?

P[CB]!
proc=p

Error ABAAB

ABAA

ABA

AB

A

tA==2 &&
tB==2
synch?

tA==1 &&
tB==2
synch?tA==2 &&

tB==0
synch?

tA==0 && 
tB==1
synch?

tB==2
synch?

tA==3
synch?

tA==2
synch?tB==1

synch?

tA==1
synch?

Figure 14. Automaton of A process  Figure 15. Automaton of B process  Figure 16. Checker automaton 

Figure 17. Synch automaton Figure 18. Petri net model for the 
AABABB termination problem 

Figure 19. A Petri net model for the 
problem AABABABB 

Correctness of the semaphore implementation of the 
ABAAB termination problem was verified by the 
query: 

A[] !Checker.Error 

which was find satisfied. The same method was applied 
to the termination problem AABABB with three A and 
three B. In this case was designed the Petri net model of 
Fig. 18. 
A correct and minimal semaphore implementation based 
on four classic semaphores is sketched in Fig. 20. The 
more resource demanding termination problem of 8 

processes AABABABB proposed in (Stallings, 2005), 
was solved according to the Petri net in Fig. 19 and the 
JSemaphore automaton. Similarly to the AABABB 
problem, four classical semaphores could be used but 
the corresponding UPPAAL model is hard to verify.  

In Fig. 21 it is sketched a verified correct solution based 
on three JSemaphore automata, of which one serves as a 
mutex. Since a process B acquires 6 tokens at once or 
none and blocks, the mutex mB semaphore of Fig. 20 is 
no longer required. The resulting reduced model was 
found more amenable for the model checker. 

Semaphore cA<-1, cB<-0 
BinarySemaphore mAB<-1 
A:
P(cA) 
P(mAB)
V(cB)
V(mAB)

B:
P(cB) 
P(cB) 
P(mAB)
V(cA)
V(cA)
V(mAB)

Figure 13. a) Minimal A 
process body sketch 

Figure 13. b) Minimal 
B process body sketch 
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2cA4A
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Semaphore cA<-2, cB<-0 
BinarySemaphore mAB<-1, mB<-1 

A:
P(cA) 
P(mAB)
V(cB)
V(cB)
V(mAB)

B:
P(mB)
P(cB) 
P(cB) 
P(cB) 
P(cB) 
P(mAB)
V(cA)
V(cB)
V(cB)
V(cB)
V(mB)
V(mAB)

Figure 20. a) A process body 
sketch

Figure 20. b) B process 
body sketch 

JSemaphore cA<-2, cB<-0, mAB<-1 

A:
Acquire(cA)
Acquire(mAB)
Release(cB,3) 
Release(mAB) 

B:
Acquire(cB,6)
Acquire(mAB)
Release(cA) 
Release(cB,4) 
Release(mB) 

Figure 21. a) A process 
body sketch 

Figure 21. b) B process 
body sketch 

All the experiments were carried out on a Win7 64 bit, 
Intel i5 Core 750 @ 2.67GHz, with 6GB RAM. 

CONCLUSIONS

This paper proposes an approach based on UPPAAL for 
modelling and exhaustive verification of concurrent 
programs, e.g. destined to be implemented in Java. 
Some common patterns mainly inspired by the Java 
concurrent package were abstracted as reusable 
template processes of UPPAAL which can be easily 
integrated and composed in user-defined project 
models. The reasoning and visibility capabilities 
enabled by the UPPAAL toolbox are of paramount 
importance in the didactic (but also in other contexts) of 
concurrent programming which is a well-know difficult 
task to master. Nevertheless concurrency is emerging as 
a crucial factor for future complex application 
developments which can greatly benefit from the 
computing potentials offered by modern multi-core 
processor architectures. A lesson learned from the 
described experience is that rigorous modelling of 
concurrent structures not only help proving correctness 
of a solution but the efforts behind modelling and 
analysis highlight semantics of a concurrent pattern and 
can guide the implementation in an object-oriented 
language like Java.  

Prosecution of the research aims to  
� improving and extending the library of reusable 

concurrent models, e.g. with control mechanisms 
such as the Active Oberon (Active Oberon, on-

line) monitor which has boolean conditions and an 
implicit signalling mechanism 

� building a reference collection of solution models 
for significant classes of concurrent applications 

� experimenting with other model checkers such as 
SMV, PVS, TLA+ etc. 
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