
Game-logic simulation based on cellular automata and flocking techniques.

Sławomir Nikiel

Institute of Control and Computation Engineering

University of Zielona Góra

Address:

ul. Podgórna 50, 65-246 Poland

E-mail:S.Nikiel@issi.uz.zgora.pl

KEYWORDS
Cellular Automata, Flocking, Game Logic.

ABSTRACT

In the paper, a novel approach to simulation for game

logic is proposed. It is based on the Cellular Automata

augmented by grouping rules. The idea behind the

proposed method uses local interaction on the cellular

grid to obtain a global goal: a simulation of ‘intelligent’

behavior of groups. Locally acting bots organize

themselves in groups to strengthen and perform attack

on the game user. The proposed method can be used in

action, role-playing and survival games offering real-

time interaction with dozens and hundreds of bots. A

prototype implementation of the method is discussed

along with the performance analysis.

INTRODUCTION

We can observe the growth of the game industry.

Entertainment powerhouses exploit to the limits current-

gen consoles and multimedia mobile devices

(Rasmusson 2007; Von Lehn and Heath 2003). They

games are equipped with even better user interfaces,

complex game stories and 3D graphics simulating real

life environments (Teo et al. 2000). Game engines

include combat, open worlds, engaging story and

multiple characters (Buckland 2005; Rucker 2002;

Schwab 2004). At the core of modern game, it is

always the interaction with player (Johnson 2009).

Current game environments offer interaction with a

dozen of characters, which is sometimes explained by

the rule of simplicity (Alexander 1964; Sirlin 2009).

However, the action, role-playing and survival games

require larger number of actors. When we look at the

film industry, we can observe simulated interactions of

hundreds or thousands of creatures. It is not

straightforward to apply similar interaction techniques

in real-time game environment. However it is possible

to use potential of high-performance simulations to

offer massive interactions. The capability of Cellular

Automata (CA) to perform simulation of thousands of

entities can be used to enhance the gamer experience.

Many studies on CA have been published. The

publication areas include the simulation and analysis of

microwave propagation and the distribution of plants in

ecological models, astrophysics and cosmology models.

Some of them share real-time simulation property, very

attractive from the game design point of view (Burks

1972; Choffurt and Culik 1984).

The organization of this paper is as follows. Section 2

provides the brief description of concepts and the main

properties of the Cellular Automata and Flocking

techniques. In Section 3, the core of the paper, the game

logic and simulation procedure is presented. Software

implementation of a prototype application for mobile

devices is discussed in Section 4. The performance

analysis is in Section 5, followed by Section 6, which is

conclusion.

CELLULAR AUTOMATA AND FLOCKING

Cellular Automata methods have been developed to

perform the simulation and analysis of complex

interactions through relatively simple rules of inter-cell

interactions. They are discrete dynamical systems

whose behavior is completely specified in terms of the

local relation. The CA space is typically represented by

a uniform grid with each site or cell containing a limited

number of information. The time of simulation advances

in discrete steps, and the rules of transformation are

usually expressed with a simple recipe. Given a suitable

recipe, a whole hierarchy of structures and phenomena

is modeled (Preston and Duff 1984; Toffoli and

Margolus 1987; Wolfram 1996). The simulation

procedure is based on a limited region of space that

forms a mesh of cells. A number of objects is placed

either randomly (with a given distribution) or manually.

Each cell is empty or occupied by an object. In the

simplest case, the cell is emptied or filled with a

selected object with some probability. The final

structure is obtained after several iterations, where each

cell of the mesh is checked. More complex models can

be constructed with CA. When we permit interactions

between cells we obtain simulations of ecological

models (Burks 1972). Cellular Automata is used to

simulate large number of entities, but the interaction is

always a matter of neighboring cells.

A different approach is used to simulate the complex

motion of a flock of birds, herds of animals or group of

fishes as seen in the natural world. This type of

aggregate motion is rarely seen in computer games. The

simulated flock is usually an elaboration of a particle

system, with the simulated elements being the particles.

The motion is created by augmented behavioral model.

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)

User
Rectangle

Each simulated element of flock is designed as an

independent entity that moves according to its local

perception of the surrounding environment, the laws of

simulated physics and a set of pre-programmed

behaviors. The composite motion of the simulated flock

of birds is the result of the cross-interaction of the

relatively simple behaviors of the individual simulated

birds (Reynolds 1987).

This paper explores an approach based on combination

of CA simulation and flocking/grouping rules as an

alternative to scripting the logic of bot navigation

individually.

GAME LOGIC BASED ON CA

Game logic is usually perceived to be an Artificial

Intelligence (AI) of the virtual enemy (ro-bot)

(Buckland 2005). In particular it is responsible for the

bot navigation and its decision making. This Section

describes and game logic based on CA and grouping.

Derivation of the CA and Flocking Algorithms

The starting point for game logic based on CA is the

automaton grouping cells of the same characteristics

augmented by ‘infection’ capability. The result of this

iteration is processed by another automaton equipped

with the rules triggering attack for ‘large’ groups of

bots. The control of bots is performed by Cellular

Automata acting on a two-dimensional grid, where each

cell can be a virtual actor. Three general rules govern

the simulation:

• The grouping rule- based on the Moore

neighborhood.

• The infection rule- two ‘zombies’ in the Moore

neighborhood of ‘human’ infect him and turn

into another ‘zombie’.

• The attack rule- when the group of ‘zombies’

is large enough, it can attack the player’s

avatar. In the counting process, similar to

Margolus neighboring is used.

Grouping and Infection Processes

Cellular Automata operates on a two-dimensional grid

size n x m (to simplify n = m). Cells can have any

number of states s. The border conditions are described

as periodical. The Moore neighborhood with excluded

central cell is used.

The automaton rule- one iteration consist of repeated n
2

following steps:

1. Randomly pick cell C, with less than S

neighbors with similar state.

2. In the vicinity of C randomly choose

neighboring cell N

3. if C -cell state is equal to N -cell state then go

to step 6.

4. if N -cell is empty (state=0) – the growth factor

G is counted: the number of neighboring cells

with C-cell state on location N diminished by

the number of neighboring cells with C-cell

state on location C. If G >= 0 then C is

‘moved’ to N (change C- cell state to 0, a N-

cell state to C-state) and go to step 6.

5. Count the growth factor G: number of

neighboring cells to C -cell on location N

diminished by number of neighboring cells to

N on location C. If G ≠ 0 then swap N and C

cells.

Infection is performer by: If C is ‘human’ and

N has G neighbors then C-cell changes its state

to N – is changed into the ‘zombie’. The value

of G determines the ‘infecting’ power.

6. End if iteration

Attacks

Attack of ‘zombies’ is performed by moving the group

of infected bots towards the game player’s avatar. The

‘infection’ is caused by touching a given number of

‘zombies’ G. The group of ‘zombie’ bots should be

large enough to perform the assault. Another

‘triggering’ condition is the limited movement of the

avatar. The estimation of the zombie group count is

performed by the automaton working on the output of

the grouping algorithm presented in the previous

Section.

The automaton defines a similar to Margolus

neighborhood, the number of cells (9) is larger than in

original (4) version. The size of zombie groups can be

changed according to a given game level (with the

parameter S- discussed in the next Section). The

automaton can set the preferred direction of movement

for group cells.

Choosing S-parameter

The algorithm was tested in a prototype test-application

to help choose experimentally the appropriate S value.

This parameter determines the minimum number of

neighboring cells counted in the grouping process. The

most interesting results were obtained for S=3 (after 500

iterations), as illustrated on Fig. 1.0

The grouping procedure worked when number of active

cells is larger than 40. Smaller number of cells results in

chaotic behavior (Fig. 1.0.a). For larger number of cells,

the influence of S on grouping process is clearly visible.

Smaller values of S result in numerous but smaller

flocks of cells (Fig. 1.0.d) while larger values of S (6 or

7) end up in two big Groups of each type of cell (Fig.

1.0.b and 1.0.c).

SOFTWARE IMPLEMENTATION

Game Rules

Based on classical (win-lose) game economy, a set of

rules for a prototype game was constructed:

• The main task of the game player is to save in

limited time a given number of ‘humans’ from

infection changing them into ‘zombies’.

a)

b)

c)

d)

Figure 1.0 Experimental Results Obtained for the

Grouping Simulation (after 500 Iterations):

a) 20 Active Cells, S = 3; b) 70 Cells, S = 7; c) 90 Cells,

S = 6; d) 90 Cells, S = 3.

• The player and ‘humans’ are attacked by

‘zombies’ that can form flocks to cumulate

their ‘strength’.

• During the game, individual ‘zombies’ are

trying to group and if there is no apparent

activity of the player they try to attack him.

• Contact of player’s avatar and ‘zombies’

decreases its ‘life power‘. Game is over when

it reaches zero. When a given number of

‘zombies’ contact ‘humans’ they turn them into

new ‘zombies’.

• The avatar can ‘refill’ life power picking up the

‘med-aids’ appearing in various places.

• The avatar has two weapons: the first one, with

limited ammunition, can be used to destroy

other game actors. The ammunition can be

collected over the game area. The second one,

unlimited, ‘heals’ zombies and turn them into

‘humans’.

• When a ‘human’ is destroyed it increases the

required number of ‘humans’ to save.

• There is a ‘teleport’ facility on game area,

enabling teleportation to a random game spot.

Simulation

Simulation and testing environment for the Java

prototype application was as follows:

Mobile phone SE K300i – with CLDC1.1 and MIDP2.0,

with 30MHz Java processor (an equivalent to Intel

Pentium III 540MHz), 512KB stack RAM, with screen

of 128x128 pixels (Hi-color).

Figure 2.0 A Sample Screen Shot Depicting the Game

Prototype.

The prototype application performed well, achieving

real-time frame rate during the simulation. There were

no visible differences for different RAM sizes (128 and

512KB).

SYSTEM ANALYSIS

In this paper, a game logic simulation is based on

Cellular Automata and Flocking rules. Cellular

Automata has sufficient performance to simulate in real-

time hundreds and thousands of interactions. The

‘intelligence’ of flocks give the additional feature for

bots to gather in groups to prepare ‘attacks’ at gamer

avatar and to disperse in case of his ‘violent’ response.

The simulation process has to leverage the number of

drones with their collective behavior. Mobile solution

presented in previous section, is the most demanding

programming environment, as far as application

efficiency is considered (Brecken et al. 2003; Leiterman

2003, Mulholland and Murphy 2003). Thus, the

working mobile game logic model opens doors to more

intricate simulations in PC and console-based

applications.

Game Logic

Given game logic has some drawbacks, the random

choice of a cell on the CA grid with large number of

‘empty’ cells is a waste of processing power. This can

be changed by introducing and checking lists of non-

empty cells instead of the entire grid. Another problem

is a possibility that the same cell is chosen several times

during one iteration (performs the ‘Lévy flight’). The

possible solution to that problem is to attach to active

cells information index with limitation of movement for

each iteration.

Another drawback of the prototype implementation is

the discreet movement of bots on the game arena. This

is the result of straightforward implementation of CA

grid to the game space. The solution to that problem

may be the “off-the-screen” calculation of CA and then

fluent animation of moving bots. Extension of grid size

may also reduce the movement aliasing effect. Another

problem that occurred during the simulation, is chaotic

movement and ‘looping’ of bots around the obstacles.

This is visible in the straightforward implementation of

CA, more elaborated versions should reduce that

artifact.

Efficiency Analysis

The CA algorithm is able to perform simulation of large

number of cells on the grid. The performance of

proposed CA plus flocking game logic simulation is

examined in terms of its evaluation parameters. The

performance comparison is done in terms of frame rate

at Table 1.0 and 2.0. The Tables show time comparison

of the ‘clear’ CA grid and filled CA grid and needed

generation time.

CONLUSIONS

The game programming delivers constant challenges in

the field of simulating logic and behaviour of bots. The

paper proposes an alternative approach based on

Cellular Automata and flocking techniques. The novel

scheme utilizes local interaction of bots on the cellular

grid to obtain a global goal- the ‘intelligent’ behavior of

bot groups. The performance of the method allows user

interaction with dozens and hundreds of bots, extending

Table 1.0 Test Results for a Mobile Phone

Map 30x30

No ‘zombies’ and

‘humans’

Map 60x60

No ‘zombies’ and

‘humans’

No. FPS FPS

1 56,70 54,60

2 56,34 55,09

3 55,27 55,03

4 57,00 55,10

5 55,90 55,15

Average: 56,24 54,99

Map 30x30

20 ‘zombies’ and

5 ‘humans’

Map 60x60

20 ‘zombies’ and

5 ‘humans’

No. FPS FPS

1 45,01 44,99

2 45,13 45,54

3 45,90 45,01

4 45,67 45,49

5 45,78 45,37

Average: 45,50 45,28

Table 2.0 Test Results for a Mobile Phone

Map 30x30

40 ‘zombies’ and

10 ‘humans’

Map 60x60

40 ‘zombies’ and

10 ‘humans’

No. FPS FPS

1 34,67 34,86

2 34,55 34,87

3 34,70 34,57

4 34,23 34,01

5 34,17 34,17

Average: 34,46 34,50

Map 30x30

80 ‘zombies’ and

20 ‘humans’

Map 60x60

80 ‘zombies’ and

20 ‘humans’

No. FPS FPS

1 24,96 24,39

2 25,01 24,45

3 23,91 24,58

4 24,78 24,10

5 24,59 24,17

Average: 24,65 24,34

programming possibilities in action, role playing and

survival games. It is possible to greatly enrich the

interaction in gaming. The author plans to develop

further the method in order to support more demanding

first-person shooter games.

ACKNOWLEDGEMENTS

Application prototype results are part of M.Sc. diploma

thesis by Mr. Michal Jackowski, entitled

“Implementation of CA model to game logic in mobile

systems”, at University of Zielona Góra, Poland, 2006.

REFERENCES

Alexander, C. 1964. Notes on the synthesis of form. Harvard

University Press.

Brecken, D.; Barker B. and L. Vanhelsuwe L. 2003.

Developing Games in Java. New Riders Publishing.

Buckland, M. 2005. Programming Game AI by Example.

Wordware Publishing.

Burks, E. 1972. Essays on Cellular Automata. University of

Illinois Press, Champaign, IL.

Choffurt, C. and I.K. Culik. 1984. “On real-time cellular

automata and trellis automata” Acta Informatica, No. 21,

393–407.

Johnson, S. 2009. “Asynchronous design”. Game Developer,

(March issue), 64-65.

Leiterman, J.C. 2003. Vector game math processors,

Wordware Publishing.

Mulholland, A. and G. Murphy. 2003. Java 1.4 game

programming. Wordware Publishing.

Preston, K. Jr. and J.M.B. Duff 1984. Modern Cellular

Automata. Plenum Press, New York.

Rasmusson, J. 2007. Multimedia in mobile phones,

architectures and trends. Ericsson (Mobile platforms),

Lund.

Reynolds, C. 1987. “Flocks, herds and schools: a distributed

behavioral model”. Computer Graphics, 21(4), 25-34.

Rucker, R. 2002. Software engineering and computer games.

Addison Wesley.

Schwab, B. 2004. AI game engine programming, Charles

River Media.

Sirlin, D. 2009. “Subtractive design”. Game Developer, March

issue, 23-28.

Teo, L.; J. Byrne and D. Ngo D. 2000.”A method for

determining the properties of multi-screen interfaces”.

International Journal of Applied Mathematics and

Computer Science, Vol. 10, No. 2., 413-427.

Toffoli, T. and N. Margolus. 1987. Cellular Automata

machines, a new environment for modeling. MIT Press,

Cambridge, MA.

Von Lehn, D. and C. Heath. 2003. “Displacing the object:

mobile technologies and interpretative resources”. In

Proceedings ICHIM Paris.

Wolfram, S. 1996. Theory and Application of Cellular

Automata. World Scientific Publ., Singapore.

AUTHOR BIOGRAPHY

SŁAWOMIR NIKIEL is currently the

Professor at the Institute of Control and

Computation Engineering, Department of

Electrical Technology, Computer Science

and Telecommunication, University Of

Zielona Góra, Poland. His research interest include

virtual reality systems, game programming and

multimedia.

