
Physically Based Real-time Simulation of an Automation Plant

Stefan Rilling and Gerrit Lochmann

Institute for Computational Visualistics

University of Koblenz

Germany

Email: rilling@uni-koblenz.de

KEYWORDS

digital factory; phyics simulation; real-time simulation

ABSTRACT

We present a system to simulate the dynamic object be-

havior of an automation plant within an interactive vir-

tual environment. The area of application is the field

of industrial training and educational software systems.

Our contribution is a method to simulate the material

flow through the plant in real time using a time discrete

game physics simulator in combination with a petri net

based state model. The dynamic behavior of virtual ob-

jects and the user interaction with the virtual environment

is described using a component- and data flow based ap-

proach. We conducted several test series to assess the

physical plausibility of our model.

INTRODUCTION

The adoption of virtual technologies has made its way

into almost every area of industrial production. These

technologies have been running through a considerable

evolution, leading to a multitude of real time simulation

and visualization techniques. Using these technologies

for employee training has gained an increasing interest

by the industry within the last years, leading to various

research projects focusing on the topic, such as (Gerbaud

et al., 2008), for example.

Within our research project, we investigate to which

extent computer game technology is suitable to imple-

ment a realistic simulation of an automation plant and

how a virtual training environment can be embedded in

such systems.

Training simulations for the automation industry de-

mand several requirements from the underlying software

system. From a didactical point of view, it is desirable

to have a lifelike and realistic virtual counterpart of the

teaching content (Rilling et al., 2010), which implies,

in the case of the automation industry, having a system

which simulates and visualizes the dynamic behavior of

an automation plant in real time. Besides the simulation

aspect, interaction is the second requirement arising from

the scenario. The virtual automation plant has to repli-

cate all relevant user interactions of its real counterpart

and respond to these user interactions.

We have a real automation testing plant at our disposal

which gives us the opportunity to validate the outcome

of our developed training environment within a realistic

setting. This testing plant simulates procedures of the

automation industry and consists of several modules re-

sponsible for the filling of small glass-bottles with solid

parts, their closure with a cap, and their commission. The

movement of the bottles through the plant is realized by

conveyor belts, the flow control of the bottles is achieved

by the means of track switches, stopping-, and separating

stop elements. A single bottle is identified by the plant

management system by a bar code which is attached on

the outside of the bottle read by a bar code scanner. Bar

code scanners are placed at discrete positions within the

plant and serve to determine the position of the bottles.

RELATED WORK

Simulation models can be classified (Zeigler, 1985),

amongst others, by the used time model (discrete or con-

tinuous), by the involved state variables (discrete, con-

tinuous or a combination of both) and by their interac-

tivity (autonomous or non-autonomous). According to

(Klingstam and Gullander, 1999), two main simulation

approaches within the field of factory simulations can be

found: discrete event simulation (DES) and geometric

simulation.

Three-dimensional virtual environments (VE) are clas-

sified by the presentation form, the object behavior (Watt

and Watt, 1991) and the interactivity. A realistic appear-

ing VE involves an immersive presentation, dynamic ob-

ject behavior, and is fully interactive. These systems are

usually referred to as virtual reality.

The work of Choi et. al. (Choi et al., 2003) de-

scribes a virtual prototyping tool for an automated manu-

facturing system (AMS) simulator based on a DEVS and

a 3D-visualization. The DEVS results from a prelimi-

nary conversion of a graphical modeling language (JR-

net). The JR-net framework has been extended by vir-

tual resources, a visual (3D model) and physical descrip-

tion (animation data) for the simulated factory modules.

Virtual Resources comprise a state model as well as an

animation controller, which implements the 3D visual-

ization of the simulation results based on the approach

of (Hwang and Choi, 2001), where the sequence of sim-

ulation events is synchronized with the animation data.

A simulated stacker crane can be subject to user-defined

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)



control by a scripting language.

The work of Moon et. al. (Moon et al., 2007) is

another example of the virtual prototyping and system

design field of application. A DES is used to sim-

ulate the interaction of resources, buffers, transporters

and workers within an automotive transmission case line.

The authors point to the usefulness of the involved 3D-

visualization to evaluate spacial constraints and working

areas.

Within the work of Mueck et. al. (Mueck et al., 2002),

the problems arising from the connection of an interac-

tive 3D visualization (called walkthrough system) to a

DES concerning time synchronization are shown. The

authors propose an architecture which separates the sim-

ulation time from the visualization time. An intermedi-

ate layer arranges for the interchange of messages be-

tween the simulation system and the visualization sys-

tem. To provide a fluent visualization of the simulation

results, a forerun time is given to the simulator. The al-

gorithm presented in the paper makes sure that the time

forerun is small enough to respond to user interaction,

but large enough so that the visualization time does not

outrun simulation time.

Thapa et. al. (Thapa et al., 2008) show a comparable

approach to the connection of 3D visualization to a DES.

For each simulation event, the involved graphical repre-

sentation is selected and updated until visualization time

meets the simulation time.

The previous work showed in this section has the ap-

plication of a DES to describe the plants behavior in com-

mon. The problems arising with this approach are the

synchronization of a 3D visualization and the incorpo-

ration of user interactions. Within the field of training

simulations, these two factors are crucial.

1 SYSTEM DESCRIPTION

We formulated an entity-based description methodology

in which atomic elements, called Dynamic Object (DO),

form the basic structural element. In the field of game en-

gines, an entity-based classification of the virtual world

is common practice. In our system, a DO is defined as

an item in the virtual world, which has a perceivable, dis-

tinct behavior, resp. an influence on the behavior of the

virtual world. The DO acts as a container element which

encapsulates several components. The components them-

selves comprehend the according functionality.

Data flows

Alongside components, data flows are another key ele-

ment within our system. Data flows are used to imple-

ment communication among the various components of

a DO and actually among DOs themselves. For example,

the position and orientation of a physics component can

be written to the position and orientation of a graphics

component using the data flow mechanism. A data flow

connects one input slot with one output slot at a time (c.f.

Figure 1), whereas one input- or output slot can take part

in several data flows. A component can send data via an

input slot, and receive data via an output slot. Input and

output slots are typed, only slots of the same type can be

directly interconnected. In addition, there is a void slot,

which does not transport any data and which can be used

to implement event mechanisms.

dataflow

Component A

input slot

Dynamic Object A

Component B

output slot

Component C

Dynamic Object B

Figure 1: Data flow between objects and components.

Data flows are marked as blue boxes and connect one in-

put slot with one output slot at a time. The arrows within

the slots denote the data flow direction. Arrows pointing

outwards of the slot denote output slots, arrows pointing

inwards denote input slots.

Data flows, input- and output slots are identified via a

unique ID, so that the input- and output slots of a spe-

cific data flow can be denoted by a combination of the

DO's ID, the component's ID and the slot ID. This makes

the description of the whole data flow network on an ID-

basis possible and hence arranges for the extensibility of

the architecture.

The execution of a data flow can depend on the activity

state of the involved in- and output slots. Four possible

execution conditions can be defined: The input slot needs

to be active, the output slot needs to be active, the input

slot and the output slot need to be active, he input slot or

the output slot needs to be active.

Furthermore, the execution of a data flow can occur in

a continuous or singular manner. Continuous data flows

are executed with each update step of the runtime envi-

ronment, singular data flows are executed only once and

then deactivated until their reactivation is triggered.

Several data flows can be connected by logical data

flow connectors. A data flow connector contains two out-

put slots serving as signal input and one input slot serving

as signal output (cf. fig. 2). Each of the two signal inputs

can be negated. In- and output slots are void slots, which

means that no data is transported through the connector.

The connector performs a logical operation (AND, OR)

on the activity status of its two signal inputs within each

update step. If the logical operation results in TRUE, the

signal output is activated.

in0

in1

out

Figure 2: Logical data flow connector. The input signal

in0 is inverted. The connector activates its output as soon

as in0 is deactivated and in1 is activated simultaneously.

Components

Components encapsulate functionality of the different

middleware used within a virtual environment, such as

3D-graphics engines or physics engines, and provide an



interface to these self-contained software systems using

the input- and output slot system. Each component com-

prises basic functionality, e.g. registering and querying

input- and output slots. The implementation and integra-

tion of own specialized components can be realized via a

plugin-system, which arranges for the extensibility of the

system and enables the integration of various middleware

systems.

We developed different components to needed to

model the factory simulation with the project-specific

software rendering and simulation systems. We give an

overview of these components below.

The graphics component describes the visual proper-

ties of the virtual object, such as geometry data, position

and orientation. A DO can consist of several graphics

components, arranged in a transformation hierarchy. The

actual geometry data is not included into the dynamic ob-

ject description. Instead, the data is referenced by a sim-

ple alphanumeric URL, which has to be interpreted by

the run-time environment parsing the object description.

This mechanism eases the integration of various render-

ing systems. At a minimum implementation, the graphics

component provides input- and output slots for position

and orientation.

Simulation components describe time-discrete simu-

lation objects, whose state variables are advanced over

the simulation time by their supervising simulation sys-

tem. Within our system, simulation components gener-

ally include position and orientation within their set of

state variables. Thus, the simulation component pro-

vides input- and output slots for position and orientation,

whereas the position is stored as a three-dimensional vec-

tor and the orientation is expressed as a rotation quater-

nion. A physics simulation component is a specialization

of a general simulation component, which encapsulates

the physical description of a virtual object. The physical

description includes rigid body properties, the collision

model as well as mechanical constraints between two

physics simulation components. Furthermore, physics

simulation components can be equipped with box shaped

force field volumes with an extension ~e ∈ R
3, a direction

~d ∈ R
3 with

∣

∣

∣

~d

∣

∣

∣
= 1, and a target speed vtar ∈ R.

The physics simulation component provides several

input slots to provide access to the several simulation

state parameters like position, orientation or linear and

angular velocity. Furthermore, the component’s ability

to collide with other physically simulated objects can be

enabled and disabled via a data flow.

A DO’s state component represents a set of finite states

and the transitions between these states. Our system im-

plements a Petri-Net based state machine. A Petri net

is a tupel (P, T,F,B) where P is the set of places, T

is the set of transitions, F and B are the forward- and

backward-matrix. We refer to literature (e.g. (Priese and

Wimmel, 2008)) for a more comprehensive overview on

the topic. A DO’s state is defined by the marking of the

corresponding state component’s net. Within our system,

the petri net’s firing behavior in the case of forward con-

flicts (cf. (Nielsen et al., 1981)) defers from the specifi-

cations found in literature: Active transitions always fire

at the same time, resulting in a deterministic behavior of

the net (cf. fig. 3).

(a) (b)

Figure 3: Firing behavior for forward conflicts: A to-

ken on an input place activates both transitions shown in

(a), which thereafter fire simultaneously, resulting in the

marking shown in (b).

Within the state component, an output slot which trig-

gers the placement of a token, and an input slot which is

activated by a placement of a token, is provided for each

place. With this system, state transitions can be triggered

via data flows, and data flows can be triggered via state

transitions. Figure 4 shows an example representing an

on / off state component. The state transition is triggered

by a control state using its assigned output slot.

State Component 

off Input Slot

on Input Slot

ctrl Output Slot

t0 t1

on

off

ctrl

Figure 4: An example state component with the corre-

sponding petri net. For the sake of clarity, only the rele-

vant in- and output slots are shown. Places with outgoing

dotted arrows are related to an input slot, places with in-

coming dotted arrows are connected to an output slot.

The trigger component reacts whenever a DO resides

within the trigger’s area of influence. The component

provides output slots, which allow the connection of spe-

cific trigger mechanisms within the connected middle-

ware, as well as input slots, which are activated as soon

as the trigger component notices a DO. The trigger com-

ponent reacts whenever a DO resides within the trigger’s

area of influence. As specific trigger mechanisms can

be found within a multitude of existing middleware like

3D engines or physics engines, an abstract interface to

connect these specific trigger mechanisms is provided by

the component. A volume trigger component informs the

virtual environment whether an object is entering, stay-

ing inside, or leaving the volume defined by the trigger

component. In each case, one of the component’s corre-

sponding input slots is activated, thus a data flow can be

initiated by a volume trigger. The slots are named ”‘on

enter”’, ”‘on stay”’ and ”‘on leave”’, respectively.

MODELING THE AUTOMATION PLANT

Basically, two types of objects determine the plant’s be-

havior: actuating elements and the sensory system. The



group of actuating elements includes the system of 18

interconnected conveyor belts, switches, separators, and

robotic arms. The plant’s sensory system comprises bi-

nary sensors and ID-readers. In the following sections,

we describe how these elements are modeled with our

system in detail.

Conveyor Belts And Virtual Bottles

Conveyor belts are made up of a moving rubber band

where the bottles stand upon and are moved with the band

due to the large amount of friction between the rubber

and the glass. Metal guard rails are mounted at the sides

of the conveyor belts, preventing bottles from falling off

the track.

We modeled the conveyor belts using rigid bodies to

model the guard rails and force fields to simulate the fric-

tion between the rubber band and the bottles. Although

a simple approach, this method turned out stable and

showed good results regarding the physical plausibility.

The collision model of the guard rails was modeled us-

ing only the basic geometric primitives box and sphere.

Each conveyor belt is represented by a DO with a force

field physics component. Figure 5 shows a schematic

overview of the model.

(a) top view (b) section view

Figure 5: Schematic view of a conveyor belt. The rigid

body boundary elements are painted gray, the force fields

are painted red. The red arrow indicates the force field

direction ~d.

The force field applies a force ~F at the center of mass

of each physics component remaining within the force

field’s volume of influence. The force ~F is calculated by

a proportional control function

~F = k ·Mv · (~vtar − ~v) (1)

with the current physics component’s linear velocity ~v,

the user defined target velocity ~vtar to which the objects

are accelerated, the diagonal matrix of the force field’s

direction vector Mv = diag(~d), and a scalar multiplica-

tion factor k.

The DO of each bottle consists of one graphics compo-

nent and two physics components. Different 3D models

are attached to the graphics component depending on the

bottle’s fill state, i.e. all combinations of filled / empty

and capped / uncapped. The collision shape of the pri-

mary physics component is represented by the convex

hull, while the inertia tensor is approximated by a homo-

geneous cylindric shape. As the force field volume rep-

resenting the conveyor belt only affects the physics com-

ponent’s center of mass, the applied force does not grip at

the bottle’s bottom. To achieve an authentic torque dur-

ing the acceleration process, the bottle contains a second

(a) collision

model

(b) bottle on con-

veyor belt

Figure 6: The collision model of a bottle is shown on the

left. In the right image, the configuration of a bottle on a

conveyor belt is shown. The centers of mass of the two

physics components are shown by their respective local

coordinate system.

physics component in the center of its bottom, bound to a

fixed constraint which removes all 6 degrees of freedom

of relative movement. (c.f. fig. 6).

ID-reader And Binary Sensors

The plant’s sensory system is responsible for the control

of the several actuators’ movement and thus controls the

flow of bottles throughout the plant. Bottles are iden-

tified by a bar code ID which is read by the ID-reader

sensors and submitted to the plants control software. Bi-

nary sensors emit a signal depending on whether a bottle

is located within their measuring area. We use dynamic

objects equipped with volume trigger components to sim-

ulate both types of sensors.

Switches

There are five different switches located at the branch

connection points within the plant’s conveyor belt sys-

tem. A switch can take two different positions: The base

position and the working position. To each switch, a re-

lated ID-reader is located nearby, reporting the incoming

bottle ID to the plant’s management software, which in

return arranges the switch’s position depending on the

bottle’s destination.

Figure 7: A switch located at a T-junction of two con-

veyor belts. The switch is shown as an arcuated dark-

gray rigid body comprised of several box shaped colli-

sion shapes.

Switches are modeled as DOs aggregating a graphics

component, a physics simulation component and a state

component. The graphical representation of the switch

includes two predefined animations, the switch’s move-

ment from the base position to the working position and

vice versa.

The switch’s physical representation is made of a

physics component made of several box collision shapes



arranged to comply with the arctuated shape of the orig-

inal switch blade (c.f. fig. 7). We choose this simpli-

fied collision model instead of a concave collision mesh

to simplify the collision test and to increase the physi-

cal stability of the simulation, as most real-time physics

engines handle simplified collision geometries more ef-

fectively. The physical switching behavior is realized by

simply enabling or disabling the collision ability of the

switch’s physics component.

t0

t1

tcb

WorkingPos

BasePos
MoveToBasePos

MoveToWorkingPosBasePosAnimCtrl

WorkingPosAnimCtrl

tcw

ban

wan

BasePosStartAnim

WorkingPosStartAnim

Figure 8: The switch state model shows a configuration

where the switch is set to its BasePos state and is ready to

start the accordant animation which will be played when

transition ban fires and places a token on BasePosStar-

tAnim. The places with blue incoming arrows are con-

trolled by data flows, the places with green outgoing ar-

rows initiate data flows. The transitions tcw and tcb ar-

range for no token accumulation on MoveToBasePos and

MoveToWorkingPos respectively.

The state component of the switch is responsible for

the animation control as well as for the control of the ac-

tivation / deactivation of the switches collision represen-

tation (cf. fig. 8). The control of the physics component

is realized by the places BasePos and WorkingPos, whose

accordant input slots are connected via data flows to the

physics simulation component’s output slots responsible

for the activation or deactivation of the collision abil-

ity. The state transition from BasePos to WorkingPos and

vice-versa is triggered by the places MoveToBasePos and

MoveToWorkingPos, respectively, whose activations by

token placement is controlled by the plant’s transport sys-

tem simulation. Furthermore, the state component con-

trols for the playback of the graphics component’s anima-

tion. As soon as a token is placed on BasePosStartAnim

or WorkingPosStartAnim, respectively, the accordant an-

imation is played. The control places BasePosAnimCtrl

and WorkingPosAnimCtrl prevent the playback of the an-

imation if the switch has already reached the accordant

state.

Separators

Separators are actuating elements which separate bottles

to the following section of the conveyor belt system. A

bottle is let pass as soon as the section behind the sepa-

rator is ready to carry a new bottle, which is controlled

by a combination of binary sensors. Figure 9 shows a

schematic overview of the separation process.

Each separator is modeled, similarly to switches, as a

DO aggregating various components. Two physics sim-

(a) base position (b) working posi-

tion

Figure 9: The separation process is realized by two gates

with an alternating opening and closing behavior.

ulation components, whose collision ability is activated

in an alternating manner, are used to simulate the gates’

behavior. A state component is connected to the differ-

ent binary sensors via data flows and thus responsible for

the control of the two physics simulation components. A

timer component induces the speed of a separation cycle.

WP BP

B326
B327

B321

(a) separator and sensors

BasePos

WorkingPosStart

Timer finished

c0
c1

t0

t1

tc
B326 on stay

(b) separator state model

Figure 10: A separator at a T-junction with its corre-

sponding two gates (BP and WP) as well as the associ-

ated binary sensors (B321, B326 and B327) is shown in

the left image. The separator’s state model is shown in

the right image. The token placement of Start is con-

nected to the B326 sensor’s volume trigger component.

Figure 10 shows the separator’s state model as well as

an overview of a separator placed at a T-junction and the

configuration of the binary sensors. A sensor placed near

the base position gate initiates the separation process as

soon as a bottle stays inside the sensor volume. The ex-

tension of the sensor volume in conveying direction has

to be chosen adequately small in order for the sensor to

work correctly.

Dynamic Object: B327

Dynamic Object: Separator

State Component

start 

timer finished

base-pos.

reached

working-pos.

reached

Dynamic Object: B321

Timer Component

restart

finished

Physics Component

enable collision

disable collision

Physics Component

enable collision

disable collision

Trigger Component

on stay

Trigger Component

on stay

Dynamic Object: B326

Trigger Component

on stay

Figure 11: DO-model

Within this example, the separator should start work-

ing when sensor B326 reports a bottle within its volume

and sensors B327 and B321 report no bottle within their

measuring zones. In Figure 11, the DO model of the

separator and the sensors, and the data flows involved is

shown.



Robotic Arms

A robotic arm transfers bottles from a storage to a con-

veyor belt. Within our simulator, the robotic arm is an-

imated as a compound of preset skeletal animations and

dynamic motion. Positions of the skeletal bones can be

recalled and manipulated during the running animation

through the graphics component. The robot’s gripper

is represented as a DO comprising the trigger’s graph-

ics component, a volume trigger component and a spe-

cialized gripping component. The trigger is attached to

the gripper via a data flow connecting the position input-

and output slots of the graphics- and trigger component.

As soon as a bottle enters the trigger volume, the bot-

tle is reported to the gripping component which takes the

physics simulation component out of the dynamics sim-

ulation and installs a data flow to make the bottle fol-

low the gripper’s position. When the target destination

is reached, this data flow is disconnected and the bottle’s

behavior is reset to dynamic mode.

gripper DO with

volume trigger

Figure 12: Schematic view of the robotic arm with the

connected volume trigger component at the robot’s grip-

per.

RESULTS

Please take a look to our visual presentation of the

details at http://uni-koblenz.de/cg/PlantSim . This text

will not be included within the final paper (if accepted).

To judge the physical plausibility of the bottle simu-

lation, three scenes have been set up. We compare the

bottle transportation process simulated with our model

to the real-world situation. In the first test we measure

the acceleration in respect to slipping and traction. In

the second test we show the appearance of torque when

putting bottle a bottle on the running conveyor belt, in a

third test we measure the distance between bottles, which

are conveyed on a complex track over a longer period.

The tests run with a physics simulation frequency of 150

Hz, while all coefficients of friction and restitution are

set to 0.0.

Effect of Friction

On a real conveyor belt accelerating an object, the lin-

ear momentum of this object increases by the friction be-

tween the object and the conveyor belt. The amount of

slipping depends on the coefficient of friction. As our

model uses force fields, no friction is applied. Instead,

the accelerative force is scaled by the multiplication fac-

tor k of the force field control function. Set to a low

value (e.g. k = 1.0), the bottle slowly accelerates until

its velocity approximates the target velocity of the force

field. In the real transport system, this effect is not notice-

able, as the bottles apparently accelerate with an almost

non-slip traction. Hence, we set k = 16.0 to adapt this

behavior.

Figure 13: In three test runs we measured the acceler-

ation of a bottle dropped on a conveyor belt simulated

by a force field with a maximum velocity of 50 cm/sec.

A low multiplication factor k = 4 corresponds to a low

coefficient of friction, while a high value (e.g. k = 16)

simulates a non-slip traction.

Torque Caused By Acceleration

The acceleration at the bottom of a bottle causes a torque,

which leads to a rocking motion when dropped on the

conveyor belt. A large bearing area, a low center of mass

and a high mass value increase the creeping strength of

the bottle. In this test run, we measured the angle of in-

clination of the bottle depending on its mass. To enhance

the effect, we increased the velocity of the conveyor belt

to 100 cm/sec. Figure 14 shows the result of the test

run. A plausible behavior can be observed: The lower

the mass, the heavier the rocking motion of the bottles

gets.

Figure 14: In three test runs we observed a bottle ac-

celerated by the conveyor belt with a target velocity of

100 cm/sec. We measured the absolute angle between

the plumb-line and the inclination in the direction of mo-

tion. The bottle with a mass of m = 80 grams inclines

by ca. 1 degree, while a lightweighted bottle (m = 20)

inclines by ca. 3 degree and by ca. 1/3 degree in a second

motion, before it changes to creep behavior.

Constant Distances

In a third test run, we observed the aspect of stability of

the simulation over a longer period of time. Two bottles



Figure 15: A screenshot of our application showing bot-

tles dropped on a conveyor belt. Parameters are aug-

mented to enhance the effect of inclination for visualiza-

tion.

are conveyed in a loop with 1 left and 5 right turns as

well as 5 straight lines with a length between 20 and 500

cm. We measured the deviation of the bottle’s Manhat-

tan distance over 50 seconds starting with a distance of

20 cm. The target velocity of the conveyor belt is set to

50 cm per second in respect to the maximum velocity in

the real setting. The results show alternations in distance

between 15.8 and 22.4 cm with a variance of 1.6. Thus,

the collision behavior is susceptible to small geometric

meanderings, especially during turns.

CONCLUSION

We presented methods to simulate the dynamic behav-

ior of an automation plant within a three dimensional

virtual environment, as well as a system which imple-

ments these methods by the means of components and

data flows. We were able to build a lifelike model of an

existing automation plant, where the material flow and

the plant’s actuating elements like conveyor belts, sepa-

rators, and switches are described by physical properties.

The usage of well established middleware from the field

of virtual reality and video games allows an interactive

simulation of the plant’s behavior in real-time. Hence,

the simulation speed comes at the cost of simulation pre-

cision. However, we showed that our approach at least

leads towards a physically plausible behavior of the ma-

terial flow simulation.

We implemented a training simulator for automation

plants using our system. Within this scenario, interactiv-

ity and real-time presentation is of larger importance than

precise simulation results.

For further research, an integration of the proposed

simulation model into existing digital factory concepts.

An automated, or at least semi automated conversion

of already present factory simulations and mechatronics

descriptions of factory components is eligible. Further-

more, an increase in precision regarding the physical sim-

ulation while maintaining real-time simulation behavior

is desirable, especially the need to rely on simplified col-

lision models has to be evaded.

As the validation of the simulation results is only con-

ducted visually by comparison of the real plant to the

simulated one, a profound analysis should be in the scope

of future work.

REFERENCES

Choi, B.-K., Park, B.-C., and Park, J.-H. (2003). A formal

model conversion approach to developing a devs-based

factory simulator. Simulation, 79(8):440–461.

Gerbaud, S., Mollet, N., Ganier, F., Arnaldi, B., and Tisseau, J.

(2008). Gvt: a platform to create virtual environments for

procedural training. In VR, pages 225–232.

Hwang, M.-H. and Choi, B.-K. (2001). Gk-devs: geometric and

kinematic devs formalism for simulation modeling of 3-

dimensional multi-component systems. Trans. Soc. Com-

put. Simul. Int., 18:159–173.

Klingstam, P. and Gullander, P. (1999). Overview of simulation

tools for computer-aided production engineering. Com-

puters in Industry, 38(2):173 – 186.

Moon, D. H., Xu, T., Baek, S. G., Lee, J. S., and Shin, W. Y.

(2007). A simulation study of the transmission case line in

an automotive factory. In Proceedings of the 2007 spring

simulation multiconference - Volume 3, pages 24–29.

Mueck, B., Dangelmaier, W., Fischer, M., and Klemisch, W.

(2002). Bi-directional coupling of simulation tools with a

walkthrough-system. In Schulz, T., Schlechtweg, S., and

Hinz, V., editors, Simulation und Visualisierung, pages

71–84, Ghent, BE. SCS European Publishing House.

Nielsen, M., Plotkin, G., and Winskel, G. (1981). Petri nets,

event structures and domains, part i. Theoretical Com-

puter Science, 13(1):85 – 108.

Priese, L. and Wimmel, H. (2008). Petri Netze. Springer, 2

edition.

Rilling, S., Wechselberger, U., and Mueller, S. (2010). Bridg-

ing the gap between didactical requirements and techno-

logical challenges in serious game design. Cyberworlds,

International Conference on, 0:126–133.

Thapa, D., Park, C. M., Han, K. H., Park, S. C., and Wang,

G.-N. (2008). Architecture for modeling, simulation, and

execution of plc based manufacturing system. In Proceed-

ings of the 40th Conference on Winter Simulation, WSC

’08, pages 1794–1801. Winter Simulation Conference.

Watt, A. and Watt, M. (1991). Advanced animation and ren-

dering techniques. ACM, New York, NY, USA.

Zeigler, B. P. (1985). Theory of Modelling and Simulation.

Robert E. Krieger Publishing Company, Inc.

AUTHOR BIOGRAPHIES

STEFAN RILLING, born 1979 in Germany, is a com-

puter scientist working at the Institute for Computational

Visualistics of the University of Koblenz, Germany.

His research interests cover the field of dynamic object

behavior and interaction within virtual environments,

realtime simulation for the digital factory, as well as

game based learning and training.

GERRIT LOCHMANN, born 1986 in Germany, is

a master student of computer science at the University

of Koblenz, Germany. He works as a student research

assistant for the Institute for Computational Visualistics

working group since 2007.


