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ABSTRACT 

The paper deals with continuous-time nonlinear 
adaptive control of a continuous stirred tank reactor. 
The control strategy is based on an application of the 
controller consisting of a linear and nonlinear part. The 
static nonlinear part is derived in the way of an 
inversion and exponential approximation of measured or 
simulated input-output data. The design of the two 
degrees of freedom (2DOF) dynamic linear part is based 
on approximation of nonlinear elements in the control 
loop by a continuous-time external linear model with 
directly estimated parameters. In the control design 
procedure, the polynomial approach with the pole 
assignment method is used. The nonlinear adaptive 
control is tested by simulations on the nonlinear model 
of the CSTR with a consecutive exothermic reaction. 
 
INTRODUCTION 

Continuous stirred tank reactors (CSTRs) are units 
frequently used in chemical and biochemical industry. 
From the system theory point of view, CSTRs belong to 
a class of nonlinear systems with mathematical models 
described by sets of nonlinear differential equations. 
Their models are derived and described in e.g. (Corriou 
2004; Ogunnaike and Ray 1994; Schmidt 2005).  
It is well known that the control of chemical reactors 
often represents very complex problem. The control 
problems are due to the process nonlinearity and high 
sensitivity of the state and output variables to input 
changes. In addition, the dynamic characteristics may 
exhibit a varying sign of the gain in various operating 
points as well as non-minimum phase behaviour. 
Evidently, the process with such properties is hardly 
controllable by conventional control methods, and, its 
effective control requires application some of advanced 
methods.  
One possible method to cope with this problem exploits 
a linear adaptive controller with parameters computed 
and readjusted on the basis of recursively estimated 
parameters of an appropriate chosen continuous-time 
external linear model  (CT ELM)  of  the process. Some 
results obtained by this method can be found in e.g. 
(Dostál et al. 2007; Dostál et al. 2009).  

An effective approach to the control of CSTRs and 
similar processes utilizes various methods of the 
nonlinear control (NC). Several modifications of the NC 
theory are described  in e.g. (Astolfi et al. 2008; Vincent 
and Grantham 1997; Ioannou and Fidan 2006; Zhang et 
al. 2000). Especially, a large class of the NC methods 
exploits linearization of nonlinear plants, e.g. (Huba and 
Ondera 2009), an application of PID controllers, e.g. 
(Tan et al. 2002; Bányász and Keviczky 2002) or  
factorization of nonlinear models of the plants on linear 
and nonlinear parts, e.g. (Nakamura et al. 2002; Vallery 
et al. 2009; Chyi-Tsong Chen1 et al. 2006; Vörös 2008; 
Sung and Lee 2004).  
In this paper, the CSTR control strategy is based on an 
application of the controller consisting of a static 
nonlinear part (SNP) and dynamic linear part (DLP). 
The static nonlinear part is obtained from simulated or 
measured steady-state characteristic of the CSTR, its 
inversion, exponential approximation, and, 
subsequently, its differentiation. On behalf of 
development of the linear part, the SNP including the 
nonlinear model of the CSTR is approximated by a 
continuous-time external linear model (CT ELM). For 
the CT ELM parameter estimation, the  direct 
estimation in terms of filtered variables is used, see e.g. 
(Rao and Unbehauen 2005; Garnier and Wang 2008). 
The method is based on filtration of continuous-time 
input and output signals where  the filtered variables 
have in the s-domain the same properties as their non-
filtered counterparts. Then, the resulting 2DOF CT 
controller is derived using the polynomial approach and 
pole assignment method, e.g. (Kučera 1993). The 
simulations are performed on a nonlinear model of the 
CSTR with a consecutive exothermic reaction. 
 
MODEL OF  THE CSTR 

Consider a CSTR with the first order consecutive 
exothermic reaction according to the scheme 

1 2A B Ck k⎯⎯→ ⎯⎯→  and with a perfectly mixed cooling 
jacket. Using the usual simplifications, the model of the 
CSTR is described by four nonlinear differential 
equations 
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with initial conditions s
A A(0)c c= , s

B B(0)c c= , 
s

r r(0)T T= and s
c c(0)T T= . Here, t is the time, c are 

concentrations, T are temperatures, V are volumes, ρ are 
densities, cp are specific heat capacities, q are 
volumetric flow rates, Ah is the heat exchange surface 
area and U is the heat transfer coefficient. The 
subscripts are denoted (.)r for the reactant mixture, (.)c 
for the coolant, (.)f  for steady-state inputs and the 
superscript (.)s for initial conditions. The reaction rates 
and the reaction heat are expressed as 

 0
r

exp , 1,2j
j j

E
k k j

RT
−⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 (5) 

 r 1 1 A 2 2 Bh h k c h k c= +  (6) 

where k0 are pre-exponential factors, E are activation 
energies and h are reaction entalpies. The values of all 
parameters, inlet values and steady-state values with 
used units are given in Tab. 1.  
 

Table 1: Parameters, Steady-State Inputs and Initial  
Conditions. 

 
Vr = 1.2 m3 
Vc = 0.64 m3 
ρr = 985 kg m-3 
ρc = 998 kg m-3 
k10 = 5.616 × 1016 min-1 
k20 = 1.128 × 1018 min-1 
h1 = 4.8 × 104 kJ kmol-1 

cpr = 4.05 kJ kg-1K-1 
cpc = 4.18 kJ kg-1K-1 
Ah = 5.5 m2 
U = 43.5 kJ m-2min-1K-1 
E1/ R = 13477 K 
E2/ R = 15290 K 
h2 = 2.2 × 104 kJ kmol-1 

s
Ac  = 1.5796 kmol m-3 
s

rT  = 324.80 K 

s
Bc  = 1.1975 kmol m-3 
s

cT  = 306.28 K 
s
Afc  = 2.85 kmol m-3 
s

rfT  = 323 K 
s
rq  = 0.08 m3min-1 

s
Bfc = 0 kmol m-3 
s

cfT = 293 K 
s
cq  = 0.08 m3min-1 

 
In terms of the practice, only the coolant flow rate can 
be taken into account as the control input. As the 
controlled output, the reactant temperature is 
considered. For the control purposes, the control input 
u(t) and the controlled output y(t) are defined as 
deviations from steady values 

 s
c c( ) ( )u t q t q= − ,  s

r r( ) ( )y t T t T= −  (7) 

The dependence of the reactant temperature on the 
coolant flow rate in the steady-state is in Fig.1.  
In subsequent control simulations, the operating interval 
for qc has been determined as 
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Fig. 1. Dependence of the reactant temperature on the  

coolant flow rate in the steady-state. 
 cmin c cmax( )q q t q≤ ≤  (8) 

With regard to the purposes of a latter steady-state 
characteristic approximation, the values cLq  and cUq  
are established that denote the lower and upper bound of  

s
cq  used for the approximation, and, rUT and rLT to them 

corresponding temperatures. 
 
CONTROLLER DESIGN 

As previously introduced,  the controller consist of a 
static nonlinear part and a dynamic linear part as shown 
in Fig. 2. 
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Fig. 2. The controller scheme. 

 
The DLP creates a linear dynamic relation 

0 r w( ) Δ ( )u t T t=  which represents a difference of the 
reactant temperature adequate to its desired value. Then, 
the SNP generates a static nonlinear relation betveen u0 
and a corresponding increment (decrement) of the 
coolant flow rate.  
 
Nonlinear Part of the Controller 

The SNP derivation appears from a simulated or 
measured steady-state charasteristic. The coordinates on 
the graph axis are defined as 

 
s
c cL

cL

q q
q

γ −= ,  s
r rLT Tψ = −  (9) 

where cLq  is the lower bound in the interval  

 s
cL c cUq q q≤ ≤  (10) 

and, rLT is the temperature corresponding to cUq . 
It can be recommended to select the interval (10) 
slightly longer than (8). In this paper, lower and upper 
values in (8) and (10) were chosen cL 0.016q = , 



cmin 0.02q = , cmax 0.12q =  and cU 0.13q = . 
In term of the practice, it can be supposed that the 
measured data will be affected by measurement errors. 
The simulated steady-state characteristic that 
corresponds to reality is shown in Fig. 3. 
Making the replacement of coordinates, the inverse of 
this characteristic can be approximated by a function 
from the ring  of  polynomial,  exponential,  rational,  
eventually,  by 
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Fig. 3. Simulated characteristics ψ  = f (γ). 

 
other type functions. Here, the second order exponential 
approximate function has been found in the form 

 
74071.7 2.4589 exp

3.967

74076 exp
697475

ψγ

ψ
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 (11) 

The inverse characteristic together with its 
approximation is in Fig. 4. 
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Fig. 4. Simulated and approximated inverse relation 

  γ = ϕ (ψ). 
 
Now, a difference of the coolant flow rate c( ) ( )u t q t= Δ  
in the output of the SNP can be computed for each rT  as 
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The derivative of the approximate function (11) takes 
the form 

0.6198 exp 0.1062 exp
3.967 697475

d
d
γ ψ ψ
ψ
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Its plot is in Fig. 5. 
 

0 10 20 30 40

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

ψmax

dγ
 / 

dψ
  (

K -1
)

ψ (K)

ψmin

 
Fig. 5. Derivative of γ with respect to ψ. 

 
CT External Linear Model of Nonlinear Elements 

A structure of the CT ELM of the SNP in conjuction 
with a nonlinear model of the CSTR was chosen on the 
basis of step responses simulated in a neighbourhood of 
the operating point ( s

cq  = 0.08 m3min-1, s
rT  = 324.8 K). 

The step responses for some step changes of u0 are 
shown in Fig. 6. 
For all responses, the gain of the SNP+CSTR system 

has been computed as 
0

( )lims t

y tg
u→∞

= . 

 

0 50 100 150 200 250

-4

-2

0

2

4

y 
(K

)

t (min)

1

2

3

4

 
Fig. 6. Step responses of the SNP+CSTR: 1 – (u0 = - 4, 

 gs = 1.30), 2 – (u0 = - 2, gs = 1.19), 3 – (u0 = 2,  
 gs = 1.01), 4 –  (u0 = 4, gs = 0.95). 

 
Taking into account profiles of curves in Fig. 6 with 
zero derivatives in t = 0, the second order CT ELM has 
been chosen in the form of the second order linear 
differential equation 
 1 0 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (13) 

or, in the transfer function representation as 
 

 0
2

0 1 0

( ) ( )( )
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= = =
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where s is the complex variable (parameter of the 
Laplace transform). 
 
CT ELM Parameter Estimation 

The method of the CT ELM parameter estimation can 
be briefly carried out as follows. 
Since the derivatives of both input and output cannot be 
directly measured, filtered variables u0f and yf  are 
established as the outputs of filters  



 0f 0( ) ( ) ( )c u t u tσ =  (15) 

 f( ) ( ) ( )c y t y tσ =  (16) 

where d d tσ =  is the derivative operator, c(σ) is a 
stable polynomial in σ that fulfills the condition 
deg ( ) deg ( )c aσ σ≥ .  
Note that the time constants of  filters must be smaller 
than the time constants of the process. Since the latter 
are unknown at the beginning of the estimation 
procedure, it is necessary to make the filter time 
constants, selected a priori, sufficiently small. 
With regard to (13), the polynomial a takes the concrete 
form 2

1 0( )a a aσ σ σ= + +  , and, the polynomial c can 

be chosen as 2
1 0( )c c cσ σ σ= + +  . Subsequently, the 

values of the filtered variables can be computed during 
the control by a solution of (15) and (16) using some 
standard integration method. 
It can be easily proved that the transfer behavior among 
filtered and among nonfiltered variables are equivalent. 
Using the L-transform of (15) and (16), the expressions  
 
 0f 0 1( ) ( ) ( ) ( )c s U s U s sμ= +  (17) 

 f 2( ) ( ) ( ) ( )c s Y s Y s sμ= +  (18) 

can be obtained with μ1 and μ2 as polynomials of initial 
conditions. Substituting (17) and (18) into (14), and, 
after some manipulations, the relation between 
transforms of the filtered input and output takes the 
form 

 f 0f 0f
( )( ) ( ) ( ) ( ) ( ) ( )
( )

b sY s U s M s G s U s M s
a s

= + = + (19) 

where M(s) is a rational function as the transform of any 
function μ(t) which  expresses an influence of initial 
conditions of filtered variables.  
Now, the filtered variables including their derivatives 
can be sampled from filters (15) and (16) in discrete 
time intervals tk = k TS , k = 0,1,2, ...   where TS is the 
sampling period. Denoting deg a = n and deg b = m, the 
regression vector is defined as 
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n
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m
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Now, the vector of parameters  

 [ ]0 1 1 0 1( ) ... ...T
k n mt a a a b b b−=Θ  (21) 

can be estimated from the equation  
 

 ( )
f ( ) ( ) ( ) ( )n T

k k k ky t t t tμ= +Θ Φ . (22) 
 
Dynamic Linear Part of the Controller 

The 2DOF DLP consist of the feedback part Q and the 
feedforward part R as shown in Fig. 7. 
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Fig. 7. Scheme of the 2DOF DLP. 

 
In the scheme, w is the reference signal, y is the 
controlled output, and, u0 is the input to the ELM. The 
reference w and the disturbance v that is taken into 
account in the next part are considered to be step 
functions with transforms  

 0( )
w

W s
s

= ,  0( )
v

V s
s

=  (23) 

The transfer functions of both parts of the DLP are in 
forms 

 ( ) ( )( ) , ( )
( ) ( )

r s q sR s Q s
p s p s

= =  (24) 

where q, r and p are coprime polynomials in s fulfilling 
the condition of properness  deg degr p≤  and  
deg degq p≤ . For a step disturbance with the 
transform (23), the polynomial p takes the form 

( ) ( )p s s p s= . 
The controller design described in this section follows 
from the polynomial approach. The general conditions 
required to govern the control system properties are 
formulated as follows: 
Stability of the control system, internal properness of 
the control system, asymptotic tracking of the reference 
and disturbance attenuation. 
It is well known that the admissible controller results 
from the solution of the couple of polynomial equations 
 ( ) ( ) ( ) ( ) ( )a s s p s b s q s d s+ =  (25) 
 )()()()( sdsrsbsst =+  (26) 

with a stable polynomial d on their right sides. The 
polynomial t(s) is an auxiliary polynomial which does 
not enter into the controller design but it is necessary for 
calculation of (26).  
For the transfer function (14) with deg a = 2, the 
degrees of controller polynomials can be derived as 
 deg 2q = , deg 1p = , 0deg =r , deg 4d =  (27) 

and, the controller transfer functions take forms 

 

2
2 1 0

0

0

0

( )( )
( ) ( )

( )( )
( ) ( )

q s q s qq sQ s
s p s s s p

rr sR s
s p s s s p

+ += =
+

= =
+

. (28) 



Moreover, the equality 00 qr =  can easily be obtained. 
The controller parameters then follow from solutions of 
polynomial equations (25) and (26) and depend upon 
coefficients of the polynomial d.  
In this paper, the polynomial d with roots determining 
the closed-loop poles is chosen as 

 2( ) ( ) ( )d s n s s α= +  (29) 

where n is a stable polynomial obtained by spectral 
factorization 

 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (30) 

and α is the selectable parameter that can usually be 
chosen by way of simulation experiments. Note that a 
choice of d in the form (29) provides the control of a 
good quality for aperiodic controlled processes. The 
polynomial n has the form 

 2
1 0( )n s s n s n= + +  (31) 

with coefficients 

 2
0 0n a= ,  2

1 1 0 02 2n a n a= + − . (32) 

The controller parameters can be obtained from solution 
of the matrix equation 
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where 

 
2

3 1 2 1 0
2 2

1 0 1 0 0

2 , 2

2 ,

d n d n n

d n n d n

α α α

α α α

= + = + +

= + =
. (34) 

Evidently, the controller parameters can be adjusted by 
the selectable parameter α. The complete adaptive 
control system is shown in Fig. 8. 
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Fig. 8. Adaptive control system. 

 
CONTROL SIMULATIONS 

The control simulations were  performed in a 
neighbourhood of the operating point 
 ( s

cq  = 0.08 m3min-1, s
rT  = 324.8 K). The filter c(s) 

parameters were chosen as 0 10.5, 1.5c c= = . For the 

start (the adaptation phase), a P controller with a small 
gain was used in all simulations. 
The effect of the pole α on the control responses is 
transparent from Figs. 9 and 10. Here, on the basis of 
precomputed simulations, three values of α were 
selected. The control results show relatively low 
sensitivity of the controlled output and the input signals 
to α from the selected interval.  However, unsuitable  
selection of this parameter can lead to controlled outputs 
with overshoots or even to instability. 
Evolution of the CT ELM parameters during control is 
shown in Fig. 11. In absence of disturbances, the 
evolution of parameters has a smooth character. 
A preference of the 2DOF control system  structure in 
comparison with the 1DOF structure with only feedback 
controller Q can be seen in Fig. 12. There exist 
expressive difference between control input changes. 
This fact can be important in control of some reactors 
where expressive input changes are undesirable.  
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Fig. 9. Controlled output for various α. 
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Fig. 10. Coolant flowrate for various α. 
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Fig. 11. Evolution of the CT ELM parameters during 

                control. 
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Fig. 12. Comparison of control inputs in the 1DOF and 

2DOF structures (α = 0.15). 
 

A comparison of the nonlinear adaptive control with the 
standard adaptive control without the nonlinear part can 
be seen in Fig. 13. The simulations were performed for 
α = 0.15. The responses document priority of the 
nonlinear control especially for greater changes of the 
reference signal. 
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Fig. 13. Comparison of nonlinear adaptive control (NA) 

with standard adaptive control (A). 
 
 

CONCLUSIONS 

In this paper, one approach to the nonlinear continuous-
time adaptive control of the reactant temperature in a 
continuous stirred  tank reactor   was  proposed.  The  
control  strategy  is based on a factorization of a 
controller into the linear and the nonlinear part. A 
design of the controller nonlinear part employs 
simulated or measured steady-state characteristics of the 
process and their additional modifications. Then, the 
system consisting of the controller nonlinear part and a 
nonlinear model of the CSTR is approximeted by a 
continuous time external linear model with parameters 
obtained through direct recursive parameter estimation. 
The resulting linear part of the continuous-time 
controller is considered in the 2DOF structure and 
derived using the polynomial approach. Tuning of its 
parameters is possible via closed-loop pole assignment. 
The presented method has been tested by computer 
simulation on the nonlinear model of the CSTR with a 
consecutive exothermic reaction. Simulation results 
demonstrated an applicability of the presented control 
strategy and its usefulness especially for greater changes 
of input signals in strongly nonlinear regions.  
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