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ABSTRACT 

The main goal of this contribution is to show simulation 
results for two types of External Linear Models (ELM) 
used in the adaptive control as a linear representation of 
the originally nonlinear system. The nonlinearity is 
dispathed with the use of recursive identification which 
recomputes parameters of ELM in each step according 
to actual state of the system. The controller design 
employes polynomial approach with pole-placement 
method and spectral factorization and all these 
techniques together satisfies basic control requirements. 
The verification was done on the mathematical model of 
Continuous Stirred Tank Reactor (CSTR) as a typical 
member of the nonlinear equipment widely used in 
chemical industry. 
 
INTRODUCTION 

The adaptive control (Åström and Wittenmark 1989) is 
not new control technique but his advantages could be 
found in the big theoretical background and usability to 
cooperate with other control approaches such as a 
robust control, a predictive control etc. 
Several methods used in adaptive control are introduced 
for example in (Bobal et al. 2005). The polynomial 
approach (Kucera 1993) in the control synthesis can be 
used for systems with negative properties from the 
control point of view such as nonlinear systems, non-
minimum phase systems or systems with time delays. 
Moreover, the pole-placed method with spectral 
factorization satisfies basic control requirements such as 
disturbance attenuation, stability and reference signal 
tracking. 
Although the polynomial synthesis is considered for the 
continuous-time ELM, the recursive identification with 
exponential forgetting (Rao and Unbehauen 2005) runs in 
discrete time which is better from computation and 
programming point of view. This disagreement could be 
overcome with the use so called Delta (δ-) models 
(Middleton and Goodwin 2004) that belong the 
discrete-time models but parameters approaches to the 
continuous ones for the small sampling period 
(Stericker and Sinha 1993). 

The nonlinear plant in the verification part is 
represented by Continuous Stirred Tank Reactor with 
van der Vusse reaction inside and cooling in the jacket 
(Chen et al. 1995). The mathematical model of this 
reactor is described by the set of four nonlinear 
Ordinary Differential Equations (ODEs) which can be 
easily solved with standard methods for numerical 
solving. 
All simulation studies were done on mathematical 
simulation software Matlab, version 6.5.1. 
 
ADAPTIVE CONTROL 

The Adaptive control is based on the quality of real 
organisms which can change behavior according to 
environmental conditions. This process is usually called 
“adaptation”. There are several ways of use of the 
adaptation.  

The adaptive approach in this work is based on 
choosing an external linear model (ELM) of the 
original nonlinear system whose parameters are 
recursively identified during the control. The choice of 
ELM is usually based on the dynamic analysis of the 
system. The possible change of the ELM parameters is 
taken into account by the recursive identification of 
ELM during the control. 
 
External Linear Model (ELM) 

There are several types of ELM such as continuous-time 
and discrete-time models. ELM used here is described 
generally by the transfer function (TF): 
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As it can be seen, this model belongs to the class of 
continuous-time (CT) models. The identification of 
such processes is not very easy.  
One way, how we can overcome this problem is the use 
of so called δ–model. This model belongs to the class of 
discrete models but its parameters are close to the 
continuous ones for very small sampling period as it 
proofed in (Stericker and Sinha 1993). 
The δ–model introduces a new complex variable γ 
computed as (see (Mukhopadhyay et al. 1992)):  
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Where β  is an optional parameter from the interval  
0 ≤ β ≤ 1 and Tv denotes a sampling period. It is clear 
that we can obtain infinite number of δ-models for 
various β.  A so called forward δ-model for β = 0 was 
used and γ operator is then  
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v

z
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=  (3) 

The continuous model (1) is then rewritten to the form 
 ( ) ( ) ( ) ( )a y t b u tδ δδ δ′ ′=  (4) 

where polynomials aδ(δ) and bδ(δ) are discrete 
polynomials and their coefficients are different from 
those of the CT model a(s) and b(s). Time t' is discrete 
time. 
Now we can introduce substitution t k n′ = −  for k n≥  
and Equation (4) then will be 
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And the individual parts in Equation (5) can be written 
as 
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The regression vector ϕδ is then 
[
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and the vector of parameters θδ is generally 
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which is computed from the differential equation 
 ( ) ( ) ( ) ( )1Ty k k k e kδ δ δ= ⋅ − +θ ϕ  (11)  

where e(k) is a general random immeasurable 
component.  
 
Identification of ELM parameters 

The Recursive Least-Squares (RLS) method is used for 
the parameter estimation in this work. The RLS method 
is well-known and widely used for the parameter 
estimation. It is usually modified with some kind of 
forgetting, exponential or directional. Parameters of the 
identified system can vary during the control which is 
typical for nonlinear systems and the use of some 
forgetting factor could result in better output response.  
The basic RLS method is described by the set of 
equations: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1

ˆ 1

1 1

1

1 11 1
1 1 1

ˆ ˆ 1

T

T

T

T

k y k k k

k k k k

k k k k

k k k k
k k

k k k k k

k k k k

ε

γ

γ

λ λ

ε

−

= − ⋅ −

⎡ ⎤= + ⋅ − ⋅⎣ ⎦
= ⋅ − ⋅

⎤− ⋅ ⋅ ⋅ −
= − −⎡ ⎥⎣− − + ⋅ − ⋅ ⎥⎦

= − +

P

P

P P
P P

P

L

L

ϕ θ

ϕ ϕ

ϕ

ϕ ϕ
ϕ ϕ

θ θ

(12) 

RLS with the changing exp. forgetting is used for 
parameter estimation, where the changing forgetting 
factor λ1 is computed from the equation 
 ( ) ( ) ( )2

1 1k K k kλ γ ε= − ⋅ ⋅  (13) 

Where K is small number, in our case K = 0.001. 
 
Control System Synthesis 

The simple control system configuration with one 
degree-of-freedom (1DOF) was used here. As you can 
see in Figure 1, this basic configuration has controller in 
the feedback part. 
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Figure 1: 1DOF control configuration 

The block G denotes transfer function (1) of controlled 
plant, w is the reference signal (wanted value), v is 
disturbance, e is used for control error, u is control 
variable and y is a controlled output. The transfer 
function of the feedforward part Q(s) of the controller is 
designed with the use of polynomial synthesis: 
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where degrees of polynomials ( )p s� and q(s) are 
computed from: 
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and parameters of these polynomials are computed by 
the Method of uncertain coefficients which compares 
coefficients of individual s-powers from the 
Diophantine equation, e.g. (Kucera 1993): 
 ( ) ( ) ( ) ( ) ( )a s s p s b s q s d s�⋅ ⋅ + ⋅ =  (16) 

The polynomial d(s) on the right side of (16) is an 
optional stable polynomial. It is obvious, that the degree 
of this polynomial is: 
 ( ) ( ) ( )deg deg deg 1d s a s p s�= + +  (17) 

and roots of this polynomial are called poles of the 
closed-loop and their position affects quality of the 
control. 
This polynomial could be designed for example with the 
use of Pole-placement method. A choice of roots needs 
some a priory information about the system’s behavior. 
It is good to connect poles with the parameters of the 



 

 

system via spectral factorization. The polynomial d(s) 
can be then rewritten to the form 

 ( ) ( ) ( )deg degd nd s n s s α −= ⋅ +  (18) 

where α > 0 is an optional coefficient reflecting closed-
loop poles and stable polynomial n(s) is obtained from 
the spectral factorization of the polynomial a(s) 
 ( ) ( ) ( ) ( )* *n s n s a s a s⋅ = ⋅  (19) 

The Diophantine equation (16), as it is, is valid for step 
changes of the reference and disturbance signals which 
means that deg f(s) = 1 in (15). The feedback controller 
Q(s) ensures stability, load disturbance attenuation and 
asymptotic tracking of the reference signal. The control 
system synthesis is done here in continuous time, but 
recursive identification uses discrete time steps. The 
resulted, so called “hybrid”, controller works in the 
continuous time but parameters of the polynomials a(s) 
and b(s) are identified recursively in the sampling 
period Tv. This assumption results in the condition, that 
the parameters of the δ-model are close the continuous 
ones for the small sampling period. 
 
MODEL OF THE REACTOR 

The controlled process here is represented by the 
continuous stirred tank reactor (CSTR) with so called 
van der Vusse reaction inside the reactor (Chen et al. 
1995):  
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The mathematical model of this reactor is described by 
the following set of ordinary differential equations 
(ODE): 
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Table 1: Fixed parameters of the reactor 

k01 = 2.145·1010 min-1 

k02 = 2.145·1010 min-1 

k03 = 1.5072·108min-1.mol-1 

h1 = -4200 kJ.kmol-1 

h3 = 41850 kJ.kmol-1 

Vr  = 0.01 m3 

cpr = 3.01 kJ.kg-1.K-1 

mc = 5 kg 

cA0 = 5.1 kmol.m-3 

ρr = 934.2 kg.m-3 

E1/R  = 9758.3 K 
E2/R = 9758.3 K 
E3/R = 8560 K 

h2 = 11000 kJ.kmol-1 
U  = 67.2 kJ.min-1m-2K-1 

Ar = 0.215 m2 

cpc = 2.0 kJ.kg-1.K-1 

Tr0 = 387.05 K 
cB0 = 0 kmol.m-3 

 
 

The graphical scheme of this reactor can be seen in 
Figure 2. 

 
Figure 2: Continuous Stirred Tank Reactor (CSTR) 

 
This set of ODE together with simplifications then 
mathematically represents examined CSTR reactor. The 
model of the reactor belongs to the class of lumped-
parameter nonlinear systems. Fixed parameters of the 
system are shown in Table 1. 
The reaction heat (hr) in eq. (21) is expressed as: 
 2

1 1 2 2 3 3r A B Ah h k c h k c h k c= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅  (22) 
where hi stands for reaction enthalpies. 
Nonlinearity can be found in reaction rates (kj) which 
are described via Arrhenius law: 
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where k0 represent pre-exponential factors and E are 
activation energies. 

 
STEADY-STATE AND DYNAMIC ANALYSES 

Steady-state and dynamic analyses can help us with the 
description of the system’s behaviour. Both analyses are 
discussed for example in (Vojtesek et al. 2008). An 
optimal working point coming from steady-state 
analysis is represented by the volumetric flow rate of 
the reactant qr = 2.4·10-3 m3.min-1 and heat removal of 
the coolant Qc = -18.56 kJ.min-1. The steady-state values 
of the state variables for this working point are then 
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Figure 3 shows course of the output temperature of the 
reactant, Tr, after the step change of the input heat 
removal, Qc in dynamic analysis. These variables are 
used as an input and an output variables u(t) and y(t) in 
the adaptive control and 
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What is interesting and can be clearly seen from 
previous figure, is that the ELM used in adaptive 
approach described above can be chosen as a transfer 
function (1) of different orders, e.g. 
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Figure 3: Dynamic analysis for various step changes of 

the input heat removal ∆Qc 

The usability of both TF G1 and G2 in (26) can be easily 
tested if we use recursive identification with 
exponential forgetting described in previous chapters to 
the dynamic study. Results for the step change of the 
heat removal ∆Qc = +20% displayed in Figure 4 show 
that both ELM G1 and G2 describes output y(t) in proper 
way and also the recursive identification has no problem 
with the on-line identification of the simulated data. 
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order and 2nd order TF ELM for ∆Qc = +20% 

 
ADAPTIVE CONTROL 

The goal of this chapter is to show the use of different 
ELM in the way of the order of the transfer fuction. 
Two ELM transfer functions G1 and G2 with the first 
order and the second order with relative order one as 
displayed in (26) were used.  
The presence of the parameters a1 and a2 in the G1(s) 
and G2(s) makes these TF multivalent. This feature 
could be overcome with the condition a1 = 1 for G1 and 
a2 = 1 for G2, i.e. 
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As it is written in the theoretical part, the degree of the 
polynomials a(s) and b(s) in (27) affects the degree of 
the controller’s polynomials ( )p s� and q(s) in (15) and 
the degree of the stable optional polynomial d(s) on the 
right side of the Diophantine equation (16) which is 
computed from (17). The form of these polynomials and 
the form of the vector of parameters δ̂

Τθ  for both types 
of ELM are shown in following Table 2. 
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SIMULATION RESULTS OF CONTROL 

The proposed controller could be tuned via the choice 
of the parameter α in the polynomial d(s) and this was 
tested in the following simulation studies. All 
simulations have the same properties, such as sampling 
period Tv = 0.3 min, simulation time 350 min and seven 
different step changes were done during this time. The 
input variable was limited to u(t) = <-75; 75> % due to 
the physical properties of the reactor. 
The first simulation study for the first order ELM G1(s) 
was done for the position of the root α = 0.04, 0.1 and 
0.3 and results are shown in Figure 5 and Figure 6. 
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Figure 5: The course of the input variable, u(t), for 

different value of the parameter α, 1st order ELM G1 

It can be clearly seen, that the tuning parameter α 
results in slower but smoothe output response. Small 
value makes very quick output response but overshoots 
from the reference signal. Ideal value should be chosen 
somewhere between 0.04 and 0.1. The recursive 
identification has very good results two although the 



 

 

controller does not know about the system behaviour at 
the begging which is represented by the starting vector 
of parameters [ ]ˆ 0.1,0.1=Τθ . The only improvement is 
the use of proportional controller for initial 15 minutes. 
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Figure 6: The course of the output variable, y(t), for 
different value of the parameter α, 1st order ELM G1 

The course of the identified parameters is shown in 
Figure 7. 
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Figure 7: The course of the parameters a0
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different value of the parameter α, 1st order ELM G1 
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Figure 8: The course of the input variable, u(t), for 

different value of the parameter α, 2nd order ELM G2 

The second analysis was done for ELM G2(s) which is 
the second order transfer function with relative order 
one. Simulation studies for the same value of α as in 
previous study produces much slower output responses. 
Parameters α have not purely equal meaning in both 
studies because the first order transfer ELM makes the 
second degree polynomial d(s) with single root α on the 
right side of the Diophantine equation (16) while the 
second order ELM means d(s) of the fourth degree and 
α is double root. That is why this controller was tested 
for tuning parameter α = 0.02, 0.05 and 0.09 which 
produces similar output responses as in the first case. 
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Figure 9: The course of the output variable, y(t), for 
different value of the parameter α, 2nd order ELM G2  

This controller have not very optimal results at the 
begging which was caused mainly by the recursive 
identification which again started from the general 
values [ ]ˆ 0.1,0.1,0.1,0.1=Τθ  and employes the 
proportional controller at the beginning again. Even 
though the course of the input variable u(t) in Figure 8 
is very special and not very good, the resulting output 
response y(t) is not as bad as we expect – see Figure 9. 
Courses of the identified parameters during the control 
are confront in Figure 10 and Figure 11. 
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Figure 11: The course of the parameters b1

δ(t) a b0
δ(t)  

for different value of the parameter α, 2nd order ELM 
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It is good to qualify the results somehow. The quality 
criteria Su and Sy were used in our case. These criteria 
are computed from 

 
( ) ( )( ) [ ]

( ) ( )( )

2

1

2

1

2

1

2 2

1
k

u
k

k

y
k

S u i u i

S w i y i K

+

= − − −

⎡ ⎤= − ⎢ ⎥⎣ ⎦

∑

∑
 (28) 

where the computation interval <k1;k2> is <50;350> min 
due to unappropriate results at the beginning during the 
first step change. The resulting values of the criteria are 
in Table 3.  
We can say that the compromise between the speed of 
the control and the control quality are the middle values 
of parameter α, i.e. α = 0.1 for 1st order ELM and  
α = 0.05 for 2nd order ELM. These simulation results 
are compared in the last Figure 12 and Figure 13. 
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Figure 12: Comparison of the course of the input 

variable u(t) for 1st and 2nd order ELM 

 

 
Table 3: Control quality criteria Su and Sy 

 Su [-] Sy [K2] 
The first order transfer function G1(s) 

α = 0.04 
α = 0.1 
α = 0.3 

15 686 
41 171 
75 510 

435.62 
218.96 
161.17 

The second order transfer function G2(s) 
α = 0.02 
α = 0.05 
α = 0.09 

  518 
2 282 
6 178 

961.72 
466.35 
312.07 
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Figure 13: Comparison of the course of the output 

variable y(t) for 1st and 2nd order ELM 

  
CONCLUSION 

This paper presents simulation results of the adaptive 
control of the nonlinear system based on the choice of 
the External Linear Model parameters of which are 
estimated during the control and parameters of the 
controller are then adopt to these identified ones. There 
were used two ELM differing in the order of the 
transfer function. Obtained results have shown that the 
more simple first order transfer function have very good 
control results and the estimation has no problem 
although it starts from the general values. The controller 
derived from the second order transfer function with 
relative order one as an ELM has a bit worthier results 
especialy at the very beginning of the control because of 
the unappropriate identification but the course of the 
input and the output variables after the second step 
change in the time t = 50 min is then similarly good as 
in previous case. The speed and the quality of the 
control could be affected by the choice of the parameter 
α while decreasing value results in steepening output 
response but overshoots. Although this system has 
nonlinear behavior and other negative control 
properties, both proposing controllers produces good 
control results. The first order ELM could be in this 
case better choice from the computing, programming 
and practical point of view. 
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