

KEYWORDS

Software development; design patterns; dynamic factory;

dynamic languages; intermediate language; byte code; just

in time compilation; runtime environment.

ABSTRACT

Software design patterns have been within developers’

realm of influence for several years now. They come from

every possible direction, indicating the best courses of action

for problem-solving, and are well documented in numerous

articles, magazines, and books. Some are corner stones,

constituting the foundation of software development. Others

are highly evolved complex constructions using other

patterns as building blocks to bring about higher quality in

more challenging situations. After years of experience in the

Information Technology industry, every experienced

developer has his own way of perceiving certain design

patterns which he has used, and heard, read or talked about.

But as the years pass, technology evolves, software design

pattern knowledge is still not yet finally distilled, and new

design patterns are created. In this article a new design

pattern, which the author has called the dynamic factory, is

explained. The new type of factory enhances the design

pattern possibilities known so far. It creates new object types

according to the situation, containing just what is needed,

and nothing redundant.

INTRODUCTION

The factory design pattern in software manufacturing is a

way to implement the object creation process in a situation

where a constructor is not preferred. It is the standard

manner of encapsulating logic that lies behind an object’s

construction. Although this seems somewhat

straightforward, it can bring about a great deal of

misunderstanding.

SOFTWARE DESIGN PATTERNS

A design pattern is a well-known and technologically

independent way to solve a family of problems and is

carefully documented, proven to be effective and

recommended for use in developed projects.

CONSTRUCTORS

As software trends evolved and procedural languages

changed to object ones, there becomes a need to construct

objects. The foremost method in which to do this are

constructors - factory functions, which reside in a class

definition and always return objects of the class they are

placed in. Constructor methods may be parameter-free, but

may also have various arguments. But one thing is certain; it

can never return an object of any derived class. Constructors

can only produce instances of the exact class in which they

are contained.

Let us suppose there is a class named Shape. The line

initializing a new instance and assigning it to a variable

would look similar to the following in most of today’s

known languages:

var shape = new Shape(); // Declare the shape
// variable, and initialize it with a new Shape
// class instance.

This generally means that an instance is created using

default initialization logic. If a developer wants to pass some

logic to an initialization block it is still as simple as it seems,

assuming the class supports it.

var color = Color.Blue;
// Built-in enumeration of colors is used
// to initialize the variable.
// Then the color is passed to the Shape
// constructor.
var shape = new Shape(color);

If, on the other hand, a developer wants to create a circle,

knowing that circle is a shape in its nature, meaning in the

inheritance chain, a special convention is needed.

// Enumeration of shape types was
// previously declared in the code.
if (type == ShapeType.Circle)

var shape = new Circle(color);
else

; // TODO: Handle other shape types here.
// Developer cannot write
// var shape = new Shape(type);
// because it might only return Shape, but not

Circle.

DYNAMIC FACTORY

New Possibilities for Factory Design Pattern

Dawid R. Ireno

Jagiellonian University,

6 Profesora Stanisława Łojasiewicza Street, Kraków, Poland

alamandra007@gmail.com, dawid.ireno@uj.edu.pl, ireno@ii.uj.edu.pl

Proceedings 28th European Conference on Modelling and
Simulation ©ECMS Flaminio Squazzoni, Fabio Baronio,
Claudia Archetti, Marco Castellani (Editors)
ISBN: 978-0-9564944-8-1 / ISBN: 978-0-9564944-9-8 (CD)

In [5] one can read about still more dangerous creation

scenarios.

When the knowledge for creating an

object is spread out across numerous

classes, you have creation sprawl: the

placement of creational

responsibilities in classes that ought

not to be playing any role in an

object's creation.

Therefore, in the following chapter, it is demonstrated

how to manage all types of the aforementioned situations, in

a more elegant manner - a way in which to omit logical

comparisons and the need to possess knowledge of what the

derived class type is. In reality, the only necessity is merely

to create a derived class instance while having only some

parameterization knowledge. Additionally, all the creation

logic will be situated in a single location within the code.

FACTORY

An object factory is the simplest manner of solving the

aforementioned problem. As mentioned in [1]

A Factory pattern is one that returns

an instance of one of several possible

classes depending on the data provided

to it.

A factory constructs objects of well-known types. Using

the factory, the construction logic mentioned in the previous

chapter would be much simpler.

var type = ShapeType.Circle;
var color = Color.Blue;
var shape = Shape.Create(type, color);

Now in the factory construction method, the logical

comparisons are undertaken bearing in mind the need to

know what the derived class types are. The factory method

code would look similar to the following.

public Shape Create(ShapeType type, Color color)
{
 var shape = null;

if (type == ShapeType.Circle)
shape = new Circle(color);

else
; // TODO: Handle other shape types here.

return shape;
}

The factory method may be static, but that is not a given.

It is usually static if placed in a class of which the method

produces instances. If not, the class containing the given

factory method usually implements an interface defining the

factory method. Despite the applied approach, it is better

than in the previous example as the object construction code

is encapsulated in a single method body. However, in reality

this is the solitary advantage of this approach.

It is worth mentioning is that in a factory design pattern,

constructors of types returned by the factory are sometimes

intentionally not made publicly available. In this case, the

factory method acts as a gateway for creating objects of a

certain type. Construction logic is not divided into several

classes and is thus much easier to maintain.

However, when the factory method supports an ever-

increasing number of creational options because of growing

business requirements, factory methods start producing

various, only partially similar object sets, so-called object

families.

For example, when not only the color of the shape is

important, but also its size, dimensionality, and for 3D

shapes the density and friction, there would be a resultant

factory method constituting numerous arguments; of which

some would be useful for all families while others would be

used only for a single family. As a consequence, most

arguments would have null value, and few would have a

value assigned at the same time.

var ct = ShapeType.Circle;
var st = ShapeType.Sphere;
var density = 0,7;
// Variables can be of various types,
var friction = 0,1;
// also floating point numbers.
// Use factory methods to create objects.
var circle = Shape.Create
 (ct, color, null, null);
var sphere = Shape.Create
 (st, color, density, friction);

However, the factory pattern is commonly overused, if not

understood correctly, as described in [2].

I've seen numerous systems in which

the Factory pattern was overused. For

example, if every object in a system is

created by using a Factory, instead of

direct instantiation (e.g., new

StringNode(..)),the system probably

has an overabundance of Factories.

In the given example, the actual goal was to have different

factories produce 2D and 3D objects. It is possible in this

situation to have factory methods with different signatures.

In this example a 3D factory will have the same base

arguments as a 2D factory, but additionally will add its own

arguments.

var f2d = new TwoDimFactory();
var f3d = new ThreeDimFactory();
var ct = ShapeType.Circle;
var st = ShapeType.Sphere;
var density = 0,7; var friction = 0,1;
var circle = f2d.Create(ct, color);
var sphere = f3d.Create(st, color, density,

friction);

Although the proposed code gives us a straightforward

implementation process, 2D and 3D factories’ codes become

separated. Let us observe that factories have the same

arguments in part; with that knowledge in mind, a more

appropriate solution may arise.

ABSTRACT FACTORY

The abstract factory patterns come to the rescue here. The

difference is that there is an abstract class with the factory

method as yet not implemented, but said to produce some

type of objects. Shapes will be the example given in this

case. The abstract factory is said to produce families of

related objects, and the concrete family creation method is

implemented by the concrete factory. In [2] an explanation is

provided.

If the creation logic inside a Factory

becomes too complex, perhaps due to

supporting too many creation options,

it may make sense to evolve it into an

Abstract Factory. Once that's done,

clients can configure a system to use a

particular Concrete Factory (i.e., a

concrete implementation of an

Abstract Factory) or let the system use

a default Concrete Factory.

In [6] the authors describe the abstract factory pattern

using a straightforward example with two distinct factory

methods so as to better understand the difference.

If the abstract factory has two methods

CreateProductA and CreateProductB,

than one subclass of factory (Factory1)

will create ProductA1 and ProductB1,

and the other subclass (Factory2) will

create ProductA2 and ProductB2

because the factory always produces

families of related products.

As the abstract factory defines the factory method

signature, all concrete factories must maintain compatibility.

In this situation, literals such as connection strings in

database development, simple object arrays, key-value

dictionaries or dynamic objects are used. Let us demonstrate

an example using the dynamic objects approach.

var f2d = new TwoDimFactory();
var f3d = new ThreeDimFactory();
var ct = ShapeType.Circle;
// Sample 3D shapes listed in figure 1 below.
var st = ShapeType.Sphere;
var circle = f2d.Create(ct,
 new {Color = color});
var sphere = f3d.Create(st, new {Color = color,

Density = 0.7, Friction = 0.1});

Thus, the given solution has evolved into an abstract

factory. Different concrete factories work in rather different

ways while maintaining the abstract factory method

signature. The natural thing is that the difference lies in the

handling of the arguments. If a concrete factory receives an

argument that it does not understand, it may neglect it or

consider it to be an error, throwing exception, what for user

means interrupting program execution. In given example, a

2D factory wishes to have a flat shape and color passed to

the factory method. The 3D factory, on the other hand,

wants to receive a 3D shape of type, color, density and

friction.

Fig. 1 Sample non-textured 3D shapes

In the example provided, variable information was passed

to the factory method using the last argument. This is not

obligatory in the case of abstract factories. Usually they have

fixed argument vectors and their internal processes are the

only factor that differentiates one concrete factory from

another, much in the same way that Italian vegetable soup

differs from Croatian despite being composed of identical

ingredients.

The example given using shapes is extremely simple and

does not usually cover the real world system requirements.

Therefore one should focus on the 3D factory and assume

that he or she wants to change the simple information like

shape color to more complex one like shape fixture. To

demonstrate the nature of the problem, a fixture will be the

complex structure containing information about the texture

(image) covering the shape and its luminescence. Let us also

assume fixtures are singletons and each fixture points to all

shape instances that use this fixture. Although this task

seems to be nothing more than that which has been

previously mentioned, in the software development industry

this topic is covered by a special variation of factory pattern.

COMPLEX FACTORY

Creating objects with an advanced structure is covered by

the complex factory design pattern. This type of factory may

be abstract, though this is not necessarily the case. Most

importantly it creates complex structures of objects, hiding

the logic that lies behind object graph initialization. In this

section, therefore, the factory function will be described in

detail.

// Simplified notation
// ReturnedType ClassType.MethodName(Parameters)
// {} is used to denote static methods.
public Shape ThreeDimFactory.Create(type,
 density, friction, texture, luminescence)
{
 var fixture = null;
 // Fixture.All holds all Fixture
 // instances. Check if instance with given
 // parameters was already created or not.
 // If not, create one.
 if (Fixture.All.Contains(texture,
 luminescence))
 {
 fixture = Fixture.All.Get
 (texture, luminescence);

}
else

 {
 fixture = new Fixture
 (texture, luminescence);
 Fixture.All.Add(fixture);

}
 var shape = null;
 if (type == ShapeType.Sphere)

 shape = new Sphere();
else

 ; // TODO: Handle other shape types here.
shape.Density = density;
shape.Friction = friction;
shape.Fixture = fixture;
fixture.Shapes.Add(shape);

 return shape;
}

Complicated logic has been enclosed here into a single

method body for the 3D shape factory. All creations,

calculations and object manipulations are done exactly here.

DYNAMIC FACTORY

In this chapter a new design pattern is proposed: The

Dynamic Factory. Key ideas about this pattern are

explained first. Sample implementation is also provided.

Just in Time compilation

As computer programming languages evolved and

virtualized high abstraction environments were created, a

need arose to dynamically compile parts of algorithms just

before execution. This somewhat lazy method of executable

code production was called JIT (Just In-Time) compilation,

and also labelled “code jitting” by developers. Various

technologies implemented it in different forms. Popular

approaches in this area were class and method level

compilation types. Among these, the more granular

compilation proved to be more useful.

In further considerations, using virtualized runtime

environments, so-called virtual machines, will be assumed.

This is the key issue while planning dynamic factory

implementation in one’s algorithms.

Code templates, static code and runtime types

For further analysis, one has to investigate the purposes

for which JIT is utilised. One of many places it has proven

to be useful was in template type and method production.

When template types or methods are defined, they usually

reside in its code base file as parameterized code blocks,

useless until the template parameter vector is applied. This

static template code cannot be executed earlier than the point

at which the type becomes concrete in the virtual machine

memory. In such a situation it is desirable to have the code

base file is as small as possible, but at the same time

containing all important information needed for post

processing by the Just in Time compilation engine. This

way, the static template code is post processed by the Just in

Time engine and becomes concrete runtime code in the

virtual machine memory. In the case of the template type, it

can be instantiated and executed, and is as useful as any

other that was non-template type in a code base file. A

similar set of circumstances can be viewed in the case of

template methods, but on a slightly more granular level.

Dynamic type construction

As Just in Time code compilation proved to be effective,

the world became hungry for new methods of runtime type

production. This way, dynamic types were created and

developers gained the ability to utilize the Just in Time

engine to produce type in a way that was previously

unknown.

The basic idea is to deliver a way of telling runtime

environment to produce a runtime type with given name,

which extends the desired base type, implements certain

interfaces, and has exactly defined constructors, methods

and properties. Although this idea seems rather difficult to

cover logically, it turns out the implementation process is

not as difficult as had been previously expected.

Dynamic languages

In this article, dynamic languages and interpreters that

execute code line by line will not be discussed in any detail,

as they are much too slow to meet real business

requirements and exhibit poor syntax checking, if there is

any at all. These languages are more applicable for dynamic

construction types, although their disadvantages place them

outside the sphere of author’s interest.

Reflection and emission

When a compiler produces a code base file, it sometimes

can prove useful to possess knowledge of how the code

works without having the source code itself. This method of

browsing outputted files is called reflection, and is usually

used for educational purposes.

If a developer does not want anybody to browse his code

base files, he uses an obfuscation mechanism to protect

them. However, let us assume that the developer will reflect

his own files, to learn what assembler instructions and

arguments the compiler produces while outputting the code

base files. These instructions with arguments are called

intermediate code or byte code in environments with a Just

in Time-capable virtual machine.

From now on, further investigations are provided using

.NET technology and C# language, which is one of many

that meet software requirements. Similar implementations

can be done in other languages, such as Managed C++,

VB.NET, Iron Python, Iron Ruby, Delphi Prism, Oxygene,

F-Sharp, J-Sharp or even in other technology such as Java.

Single technology is chosen to provide a strict view of the

most important factors in implementing a dynamic factory.

 It is even suggested that the reader try implementing the

pattern on his own, for example in Java. In such a situation,

Class Reader, Class Visitor, Annotation Visitor, Field

Visitor, Method Visitor, Class Writer, Opcodes and other

surrounding built-in types could all prove useful.

To browse non-obfuscated files prepared in .NET

technology, one can use Telerik Just Decompile (*), IL Spy

(figure 2 below, *), Red Gate Reflector (figure 3 below, *)

or Jet Brains Dot Peek.

Fig. 2 IL Spy

Tools marked with an asterisk (*) in their current versions

have the ability to display intermediate code version of code

base files. This is desirable for further investigations.

Among interesting tools, Telerik Just Decompile and IL Spy

are free decompiling software usable for .NET. Only some

versions of Red Gate Reflector are freely available.

Fig. 3 Red Gate Reflector

An interesting step at this point is to gather knowledge

which intermediate code is used to call base methods, pass

method arguments, and undertake other low level

operations. For sample class with zero-parameter

constructors, the code looks relatively simple.

namespace SomeNamespace
{
 // Derived type extends base type.

public class DerivedType : BaseType
{
 // Derived type constructor calls
 // the base one.

public DerivedType() : base() { }
}

}

Although using any reflection tool generates intermediate

code, it appears to be a bit more complicated than c#.

.class public auto ansi beforefieldinit
DerivedType

 extends SomeNamespace.BaseType
{

.method public hidebysig specialname
rtspecialname

instance void .ctor() cil managed
{
 .maxstack 8

 L_0000: ldarg.0
 L_0001: call instance void

 SomeNamespace.Base::.ctor()
 L_0006: nop

 L_0007: nop
 L_0008: nop

 L_0009: ret
}

}

Code emission is the process of generating intermediate

code instruction by instruction, just as the compiler had done

for the sample code in C# given previously. Code emission

allows for the creation of method bodies, constructors,

indexers, properties getter and setter logic, indeed

everything supported by the given technology.

Implementing Dynamic Factory

Some approaches to building a Dynamic Factory use

built-in dynamic variable type. In .NET the type is called

ExpandoObject. The sample factory provided below shows

how dynamic objects with tracked properties are

constructed.

public class Factory
{
 public static dynamic CreateTrackedObject()
 {
 // Class ExpandoObject represents dynamic
 // objects in .NET. It is also referenced

// using keyword “dynamic”.
 dynamic result = new ExpandoObject();
 // Tell the runtime engine to track
 // property changes.
 ((INotifyPropertyChanged)result)

.PropertyChanged +=
 new PropertyChangedEventHandler

 (Factory.HandlePropertyChanged);
 // Property change will be intercepted.
 result.Name = "John Smith";
 return result; // Return dynamic object.
 }
 // Method to handle property changes,
 private static void HandlePropertyChanged

(object sender, PropertyChangedEventArgs e)
 {
 // Write the name of changed property.
 Console.WriteLine("{0} has changed.",

 e.PropertyName);
 }
}

Somewhat similar possibilities are delivered for Java

Script developers, although in Java Script all objects exhibit

similar behavior. As mentioned in previous chapters, there is

actually an entire group of languages with dynamic syntax

support, or languages that can only interpret code line by

line.

Although this construction pattern is relatively simple, in

that the developer does not have to know or understand

intermediate language, there are nonetheless some major

disadvantages. There are issues with speed; constructed

objects are volatile; and they can be broken at any point in

the process.

dynamic employee = new ExpandoObject();
// Declare and initialize new property.
employee.Name = "John Smith";
// Detach property from its parent object.
((IDictionary<String, Object>)employee)

.Remove("Name");

In the example above, the dynamic object gains a new

property, in that it is assigned a value after creation, and

finally the dynamic object loses the new property and its

value in a single shot. There is no bake method, to say that

dynamic object implementation is final, and the object

should be made unbreakable from this point.

A much better approach is provided by utilizing code

emission, which means producing intermediate code on the

fly. In this kind of factory implementation, the developer

needs to know what kind of intermediate code the compiler

is producing. To gather this knowledge, reflection is used, as

explained previously.

In order to demonstrate dynamic factory strength, new

runtime type that derives the given base type, has exactly the

same public constructors, and appends few desired attributes

to the class definition, will be constructed. It is worth

mentioning that this is merely an example of the power

provided to the developer; pure proof of the concept,

although taken from the real-world application.

First of all, the code emission infrastructure must be

configured.

IEnumerable<CustomAttributeBuilder> cubs = null;
Type baseType = null;
string fullName = null;
// TODO: Fill in custom attribute requirements,
// base type and dynamic type full name from
// factory method arguments.
AssemblyName an = new AssemblyName();
an.Name = "DynamicAssembly";
// Current application domain will load
// new type.
AppDomain ad = Thread.GetDomain();
// Define in-memory dynamic assembly.
AssemblyBuilder ab = ad.DefineDynamicAssembly

(an, AssemblyBuilderAccess.Run);
ModuleBuilder mb = ab.DefineDynamicModule

("DynamicModule");
// Define new type deriving from base one.
TypeBuilder tb = mb.DefineType(fullName,
TypeAttributes.Public, baseType);
ConstructorInfo[] cis = baseType.GetConstructors

(BindingFlags.Public | BindingFlags.Instance);

Afterwards, the constructors’ intermediate code must be

emitted. For simplicity it is assumed that derived classes

only call base constructors and does nothing more.

Knowledge from the chapter on reflection will be utilized

herein.

// Iterate through base type public
// constructors.
foreach (ConstructorInfo ci in cis)
{
 // Gather constructor argument type
 //collection.

 Type[]constructorArgumentTypes=
 ci.GetParameters().Select
 (pi => pi.ParameterType).ToArray();

 // Define public constructor with the same
 // arguments.
 ConstructorBuilder cb = tb.DefineConstructor

 (MethodAttributes.Public,
 CallingConventions.Standard,
 constructorArgumentTypes);

 ILGenerator il = cb.GetILGenerator();
 // Emit intermediate language line by line.
 il.Emit(OpCodes.Ldarg_0);
 int parameters = ci.GetParameters().Count();
 // Load constructor arguments onto the stack.
 if (parameters >= 1) il.Emit(OpCodes.Ldarg_1);
 if (parameters >= 2) il.Emit(OpCodes.Ldarg_2);
 if (parameters >= 3) il.Emit(OpCodes.Ldarg_3);
 for (byte i = 4; i <= parameters; i++)

 il.Emit(OpCodes.Ldarg_S, i);
 // Call the base constructor.
 il.Emit(OpCodes.Call, ci);
 il.Emit(OpCodes.Nop);
 il.Emit(OpCodes.Nop);
 il.Emit(OpCodes.Nop);
 il.Emit(OpCodes.Ret); // Return the derived
// type instance.
}

What remains is to append the desired attributes to

derived class definition and bake the new runtime type. This

type has all the required features, is extremely quick and

non-volatile.

if (cubs != null)
foreach (CustomAttributeBuilder cub in cubs)

tb.SetCustomAttribute(cub);
derivedType = tb.CreateType();

Note that merely compiling the code does not

automatically mean that it will work as expected. Dynamic

factories should be rigorously tested before use in business

environments.

In order to further improve performance, new dynamic

types should be cached using concrete vector of

parameterization arguments. In the given example it would

be the vector <Base Type, Full Name, Type Attributes>.

Although it is important to note that two types with the same

Full Name of the type cannot exist in one application

domain. For reasons of simplicity, the type Full Name will

be used as a key in the cache dictionary. The dynamic

factory will be able to produce instances after the dynamic

type is retrieved from cache or created and baked on the fly.

When creating instances, the desired constructor will be

automatically best fitted investigating constructors argument

types, as if instances of base type were being created.

public static Dictionary<string, Type> Cache =
 new Dictionary<string, Type>();

public static T Create<T>(string fullName,
IEnumerable<CustomAttributeBuilder> cubs,
params object[] constructorArguments)

{
Type baseType = typeof(T);
Type derivedType = null;
// Check if cache dictionary contains desired

type.
if (Cache.ContainsKey(fullName))

derivedType = Cache[fullName];

else
{

// TODO: Use mentioned logic to create new
 // type. New type is baked and therefore
 // non-volatile.
 // Store the new type in cache dictionary.

}
// Create instance using desired constructor.
T result = Activator.CreateInstance

(derivedType, constructorArguments);
return result;

}

This kind of dynamic factory implementation was utilized

in two business scenarios by the author. In both cases,

modified versions were used so as to fit specific business

needs, while maintaining the core principles as discussed.

The most interesting case was the need to create

transactional objects that implemented certain behaviors. A

dynamic factory was used to provide object types with the

desired structure and functionalities, and change

tracking/recording code injected into the implemented

mechanisms of the instances of constructed type. Tracking

functionalities were then utilized to implement transactional

behavior. While recording changes to the state of the

objects, they offered the ability to roll-back all actions up to

a certain point in time – namely the moment when all

previous transactions have been successfully committed. In

both business scenarios mentioned by the author, the

dynamic factory proved to be extremely useful.

Inversion of Control

Last but not least, it is worth mentioning what Inversion

of Control means. Basically, it is a method of constructing

and utilizing objects. In this technique the most important

factor is that object coupling is bound at the time of code

execution. Using object reference analysis in code, it cannot

be predicted which objects will cooperate. In [7] the authors

write:

The function of IoC is transferring the

control from code to external

container. [..] Relationship between

the components is specified by the

container in the runtime.

An Inversion of Control container is a design pattern used

to localize objects that should be used in certain situations. It

may be utilised in conjunction with patterns that construct

instances of new objects if they do not yet exist in the

container.

CONCLUSION

Let us summarize the collected knowledge and think over

the final outcome of conducted reasoning.

Constructor

Constructors should be always used whenever possible,

assuming that no complicated logic lies behind object

construction. Constructors also always return the type they

reside in, with no possibility of producing derived type

instances.

Factory

A factory is commonly used when there is a need to

construct objects according to the environment state. This

state is passed on to the factory as a set of variables.

Depending on the provided argument values, the factory

produces the desired object. Factories can also produce

derived type instances. All the construction logic of a factory

resides in a single location. This design pattern is commonly

known to be overused.

Abstract Factory

This variation of factory proved to be useful when

creating object families when objects are similar in some

aspects, but differ in others. A situation arises when different

factories have factory methods with the same signature, but

which work in a different manner. Additional logic for

creation is passed on using strings, array, dictionaries and

dynamic objects.

Complex Factory

A complex factory is a means of creating object graphs. It

covers all constructors and object connections logic, and is

used in difficult projects to organize structure and make

code easier to maintain and enhance. A complex factory is in

some aspects similar to the facade design pattern, which will

be described in further detail. However, a complex factory

does not have to conceal any disadvantages of code. In [1]

we can read

Facade is a way of hiding a complex

system inside a simpler interface.

[..]This simplification may in some

cases reduce the flexibility of the

underlying classes, but usually

provides all the function needed for all

but the most sophisticated users.

Dynamic Factory

This kind of factory is used when a developer does not

know exactly what the restrictions for object types or

functionalities will be. This knowledge is gathered and

utilized at the time of program execution. It is the most

advanced factory design pattern variation, which creates new

object types with only what is required in a certain situation,

and instantiates them on the fly. It may be implemented in

two ways. The first is when the factory produces fully

dynamic but volatile objects; the second, when the factory

produces brand new first-baked and non-volatile type

instances. The second one is more difficult for the

developer, requiring intermediate language knowledge for

coding, and the source code is less readable for humans.

Although the constructed objects are without the

disadvantages of fully dynamic objects, they have therefore

proved to be adequate in business environment edge-cutting

software constructions.

Summary

Depending on the situation, each factory variation design

pattern is considered useful. The more difficult the situation

which is encountered, the stronger the tools which are used.

Among them is the proposed dynamic factory pattern with

intermediate code emission which gives us the widest range

of possibilities. It is more difficult to implement and

technology prerequisites are high, met only by modern

languages. However, this is the type of technology which

will be used in large solutions in upcoming years, and new

projects can benefit from this design pattern.

Using a factory pattern always includes the requirement to

access factory methods. They are usually implemented as

either static or interface. Sometimes objects containing

factory methods are implemented as singletons. Another

practiced approach is using an Inversion of Control

container with a finder method, used to localize the right

factory in a given situation. In this case, the factory is

implemented inside the Inversion of Control container, as its

creational mechanism. It produces objects in concrete

situations using the implemented set of rules, which will be

described more precisely in an upcoming chapter. Of course,

if chosen, the factory used by Inversion of Control may be

any kind of factory described in the article.

APPENDIX

Please note that there exist numerous misunderstandings

about dynamic factory in literature. For example [3]

describes the Inversion of Control container automatic

initialization mechanism, using type attributes to localize

types that should be instantiated. Although Inversion of

Control container with such a mechanism instantiates new

objects, it should not be mistaken for any of kind factory

pattern. There might be a factory hidden inside an Inversion

of Control container, as mentioned previously. It may have

some creation rules for certain desired situations. But that

does not make such a factory dynamic in any aspect. In [4]

on the other hand, the authors propose a factory that reads

static types to be instantiated from code base files indicated

in XML files or data bases. It is worth mentioning that

simple factory variation proposed by the authors has been

used in business products like Microsoft Visual Studio or

Microsoft Windows Explorer for many years. Of course,

although with a substantially different meaning to that in [3],

[4] also has nothing to do with dynamic creating new types.

Builder and Complex Factory design patterns are also

commonly confused. The builder pattern mentions nothing

about the complexity of objects. The most straightforward

example is the String Builder commonly known from

languages like C-Sharp, C++, Delphi, Java and Java Script.

On the other hand, while hierarchically nesting many

builders into others, one can obtain an organized structure

for creating complex objects. Enclosing this complex

creational structure in one easy-to-handle factory method

means creating a Complex Factory. Although creating a

complex factory does not mean that numerous builders are

required, but rather relates to building a facade for the

creation of a complex structure.

Further investigations are planned for new constructions

and applications of dynamic factory design pattern. Research

will be also conducted in order to support the dynamic

creation of new static types using lambda expressions, and

anonymous types, methods and delegates. This will partially

alleviate the need to code factory methods in pure

intermediate language.

ACKNOWLEDGMENT

Special thanks to my students who directed me to cover

factory design patterns in more detail – as such patterns are

well documented but also rather superficially understood.

Otherwise it may have not been quite so clear that covering

the deficiencies in the literature was a worthwhile exercise.

AUTHOR BIOGRAPHIES

DAWID R. IRENO was born in

Kraków, Poland and attended the

Jagiellonian University, where he

majored in computer science and earned

his master’s degree in 2007. During the

following years, he worked on business

projects for Roche, Microsoft, Comarch

and other large companies in various

cities around Poland, utilizing .NET,

ASP.NET, JavaScript, ASP.NET MVC, Ext.NET,

PowerShell, SharePoint, SQL, LINQ, WCF, WPF and

Silverlight technologies. In 2012 he began his Ph.D. studies

at the Jagiellonian University, where he is researching

stream databases. His webpage can be found at

http://www.powershell.pl/.

REFERENCES

[1] James W Cooper “Java Design Patterns” by Addison-Wesley.

[2] Joshua Kerievsky “Refactoring To Patterns” by Addison-Wesley.

[3] Romi Kovacs “Design Patterns: Creating Dynamic Factories in .NET

Using Reflection” from MSDN Magazine, March 2003.

[4] León Welicki, Joseph W. Yoder, Rebecca Wirfs-Brock “The Dynamic

Factory Pattern”, Proceedings of the 15th Conference on Pattern

Languages of Programs, 2008.

[5] Joshua Kerievsky “Refactoring to Patterns” by Addison-Wesley,

2004.

[6] A. A. Nykonenko “Using design patterns in computer linguistics:

Creational patterns. Part I: Abstract Factory and Builder”, Cybernetics

and Systems Analysis, Vol. 48, No. 1, January, 2012, pages 138-145,

by Springer Science+Business Media, Inc.

[7] Ke Ju and Jiang Bo 'Applying IoC and AOP to the Architecture of

Reflective Middleware', 2007 IFIP International Conference on

Network and Parallel Computing - Workshops, pages 903 to 908.

COPYRIGHTS

Fig. 1. http://www.bbc.co.uk/bitesize/ks3/maths/shape_space/3d_shapes/

revision/2/

