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ABSTRACT 

Software design patterns have been within developers’ 

realm of influence for several years now. They come from 

every possible direction, indicating the best courses of action 

for problem-solving, and are well documented in numerous 

articles, magazines, and books. Some are corner stones, 

constituting the foundation of software development. Others 

are highly evolved complex constructions using other 

patterns as building blocks to bring about higher quality in 

more challenging situations. After years of experience in the 

Information Technology industry, every experienced 

developer has his own way of perceiving certain design 

patterns which he has used, and heard, read or talked about. 

But as the years pass, technology evolves, software design 

pattern knowledge is still not yet finally distilled, and new 

design patterns are created. In this article a new design 

pattern, which the author has called the dynamic factory, is 

explained. The new type of factory enhances the design 

pattern possibilities known so far. It creates new object types 

according to the situation, containing just what is needed, 

and nothing redundant. 

INTRODUCTION 

The factory design pattern in software manufacturing is a 

way to implement the object creation process in a situation 

where a constructor is not preferred. It is the standard 

manner of encapsulating logic that lies behind an object’s 

construction. Although this seems somewhat 

straightforward, it can bring about a great deal of 

misunderstanding. 

SOFTWARE DESIGN PATTERNS 

A design pattern is a well-known and technologically 

independent way to solve a family of problems and is 

carefully documented, proven to be effective and 

recommended for use in developed projects. 

CONSTRUCTORS 

As software trends evolved and procedural languages 

changed to object ones, there becomes a need to construct 

objects. The foremost method in which to do this are 

constructors - factory functions, which reside in a class 

definition and always return objects of the class they are 

placed in. Constructor methods may be parameter-free, but 

may also have various arguments. But one thing is certain; it 

can never return an object of any derived class. Constructors 

can only produce instances of the exact class in which they 

are contained. 

Let us suppose there is a class named Shape. The line 

initializing a new instance and assigning it to a variable 

would look similar to the following in most of today’s 

known languages: 

var shape = new Shape(); // Declare the shape  
// variable, and initialize it with a new Shape 
// class instance. 

This generally means that an instance is created using 

default initialization logic. If a developer wants to pass some 

logic to an initialization block it is still as simple as it seems, 

assuming the class supports it. 

var color = Color.Blue; 
// Built-in enumeration of colors is used 
// to initialize the variable. 
// Then the color is passed to the Shape  
// constructor. 
var shape = new Shape(color); 

If, on the other hand, a developer wants to create a circle, 

knowing that circle is a shape in its nature, meaning in the 

inheritance chain, a special convention is needed. 

// Enumeration of shape types was 
// previously declared in the code. 
if (type == ShapeType.Circle) 

var shape = new Circle(color); 
else 

; // TODO: Handle other shape types here. 
// Developer cannot write 
// var shape = new Shape(type); 
// because it might only return Shape, but not 

Circle. 
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In [5] one can read about still more dangerous creation 

scenarios. 

When the knowledge for creating an 

object is spread out across numerous 

classes, you have creation sprawl: the 

placement of creational 

responsibilities in classes that ought 

not to be playing any role in an 

object's creation. 

Therefore, in the following chapter, it is demonstrated 

how to manage all types of the aforementioned situations, in 

a more elegant manner - a way in which to omit logical 

comparisons and the need to possess knowledge of what the 

derived class type is. In reality, the only necessity is merely 

to create a derived class instance while having only some 

parameterization knowledge. Additionally, all the creation 

logic will be situated in a single location within the code. 

FACTORY 

An object factory is the simplest manner of solving the 

aforementioned problem. As mentioned in [1] 

A Factory pattern is one that returns 

an instance of one of several possible 

classes depending on the data provided 

to it. 

A factory constructs objects of well-known types. Using 

the factory, the construction logic mentioned in the previous 

chapter would be much simpler. 

var type = ShapeType.Circle; 
var color = Color.Blue; 
var shape = Shape.Create(type, color); 

Now in the factory construction method, the logical 

comparisons are undertaken bearing in mind the need to 

know what the derived class types are. The factory method 

code would look similar to the following. 

public Shape Create(ShapeType type, Color color) 
{ 
 var shape = null; 

if (type == ShapeType.Circle) 
shape = new Circle(color); 

else 
; // TODO: Handle other shape types here. 

return shape; 
} 

The factory method may be static, but that is not a given. 

It is usually static if placed in a class of which the method 

produces instances. If not, the class containing the given 

factory method usually implements an interface defining the 

factory method. Despite the applied approach, it is better 

than in the previous example as the object construction code 

is encapsulated in a single method body. However, in reality 

this is the solitary advantage of this approach. 

It is worth mentioning is that in a factory design pattern, 

constructors of types returned by the factory are sometimes 

intentionally not made publicly available. In this case, the 

factory method acts as a gateway for creating objects of a 

certain type. Construction logic is not divided into several 

classes and is thus much easier to maintain. 

However, when the factory method supports an ever-

increasing number of creational options because of growing 

business requirements, factory methods start producing 

various, only partially similar object sets, so-called object 

families. 

For example, when not only the color of the shape is 

important, but also its size, dimensionality, and for 3D 

shapes the density and friction, there would be a resultant 

factory method constituting numerous arguments; of which 

some would be useful for all families while others would be 

used only for a single family. As a consequence, most 

arguments would have null value, and few would have a 

value assigned at the same time. 

var ct = ShapeType.Circle; 
var st = ShapeType.Sphere; 
var density = 0,7; 
// Variables can be of various types, 
var friction = 0,1; 
// also floating point numbers. 
// Use factory methods to create objects. 
var circle = Shape.Create 
  (ct, color, null, null); 
var sphere = Shape.Create 
  (st, color, density, friction); 

However, the factory pattern is commonly overused, if not 

understood correctly, as described in [2]. 

I've seen numerous systems in which 

the Factory pattern was overused. For 

example, if every object in a system is 

created by using a Factory, instead of 

direct instantiation (e.g., new 

StringNode(..)),the system probably 

has an overabundance of Factories. 

In the given example, the actual goal was to have different 

factories produce 2D and 3D objects. It is possible in this 

situation to have factory methods with different signatures. 

In this example a 3D factory will have the same base 

arguments as a 2D factory, but additionally will add its own 

arguments. 

var f2d = new TwoDimFactory(); 
var f3d = new ThreeDimFactory(); 
var ct = ShapeType.Circle; 
var st = ShapeType.Sphere; 
var density = 0,7; var friction = 0,1; 
var circle = f2d.Create(ct, color); 
var sphere = f3d.Create(st, color, density, 

friction); 

Although the proposed code gives us a straightforward 

implementation process, 2D and 3D factories’ codes become 

separated. Let us observe that factories have the same 

arguments in part; with that knowledge in mind, a more 

appropriate solution may arise.  

ABSTRACT FACTORY 

The abstract factory patterns come to the rescue here. The 

difference is that there is an abstract class with the factory 



 

 

 

method as yet not implemented, but said to produce some 

type of objects. Shapes will be the example given in this 

case. The abstract factory is said to produce families of 

related objects, and the concrete family creation method is 

implemented by the concrete factory. In [2] an explanation is 

provided. 

If the creation logic inside a Factory 

becomes too complex, perhaps due to 

supporting too many creation options, 

it may make sense to evolve it into an 

Abstract Factory. Once that's done, 

clients can configure a system to use a 

particular Concrete Factory (i.e., a 

concrete implementation of an 

Abstract Factory) or let the system use 

a default Concrete Factory. 

In [6] the authors describe the abstract factory pattern 

using a straightforward example with two distinct factory 

methods so as to better understand the difference. 

If the abstract factory has two methods 

CreateProductA and CreateProductB, 

than one subclass of factory (Factory1) 

will create ProductA1 and ProductB1, 

and the other subclass (Factory2) will 

create ProductA2 and ProductB2 

because the factory always produces 

families of related products. 

As the abstract factory defines the factory method 

signature, all concrete factories must maintain compatibility. 

In this situation, literals such as connection strings in 

database development, simple object arrays, key-value 

dictionaries or dynamic objects are used. Let us demonstrate 

an example using the dynamic objects approach. 

 
var f2d = new TwoDimFactory(); 
var f3d = new ThreeDimFactory(); 
var ct = ShapeType.Circle; 
// Sample 3D shapes listed in figure 1 below. 
var st = ShapeType.Sphere; 
var circle = f2d.Create(ct, 
  new {Color = color}); 
var sphere = f3d.Create(st, new {Color = color, 

Density = 0.7, Friction = 0.1}); 

Thus, the given solution has evolved into an abstract 

factory. Different concrete factories work in rather different 

ways while maintaining the abstract factory method 

signature. The natural thing is that the difference lies in the 

handling of the arguments. If a concrete factory receives an 

argument that it does not understand, it may neglect it or 

consider it to be an error, throwing exception, what for user 

means interrupting program execution. In given example, a 

2D factory wishes to have a flat shape and color passed to 

the factory method. The 3D factory, on the other hand, 

wants to receive a 3D shape of type, color, density and 

friction. 

 

Fig.  1 Sample non-textured 3D shapes 

In the example provided, variable information was passed 

to the factory method using the last argument. This is not 

obligatory in the case of abstract factories. Usually they have 

fixed argument vectors and their internal processes are the 

only factor that differentiates one concrete factory from 

another, much in the same way that Italian vegetable soup 

differs from Croatian despite being composed of identical 

ingredients. 

The example given using shapes is extremely simple and 

does not usually cover the real world system requirements. 

Therefore one should focus on the 3D factory and assume 

that he or she wants to change the simple information like 

shape color to more complex one like shape fixture. To 

demonstrate the nature of the problem, a fixture will be the 

complex structure containing information about the texture 

(image) covering the shape and its luminescence. Let us also 

assume fixtures are singletons and each fixture points to all 

shape instances that use this fixture. Although this task 

seems to be nothing more than that which has been 

previously mentioned, in the software development industry 

this topic is covered by a special variation of factory pattern. 

COMPLEX FACTORY 

Creating objects with an advanced structure is covered by 

the complex factory design pattern. This type of factory may 

be abstract, though this is not necessarily the case. Most 

importantly it creates complex structures of objects, hiding 

the logic that lies behind object graph initialization. In this 

section, therefore, the factory function will be described in 

detail. 

// Simplified notation 
// ReturnedType ClassType.MethodName(Parameters)  
// {} is used to denote static methods. 
public Shape ThreeDimFactory.Create(type, 
 density, friction, texture, luminescence) 
{ 
 var fixture = null; 
 // Fixture.All holds all Fixture  
 // instances. Check if instance with given  
 // parameters was already created or not. 
  // If not, create one. 
 if (Fixture.All.Contains(texture,  
      luminescence)) 
  { 
  fixture = Fixture.All.Get 
               (texture, luminescence); 

} 
else 



 

 

 

 { 
  fixture = new Fixture 
                   (texture, luminescence); 
  Fixture.All.Add(fixture); 

} 
 var shape = null; 
 if (type == ShapeType.Sphere) 

 shape = new Sphere(); 
else 

  ; // TODO: Handle other shape types here. 
shape.Density = density; 
shape.Friction = friction; 
shape.Fixture = fixture; 
fixture.Shapes.Add(shape); 

 return shape; 
} 

Complicated logic has been enclosed here into a single 

method body for the 3D shape factory. All creations, 

calculations and object manipulations are done exactly here. 

DYNAMIC FACTORY 

In this chapter a new design pattern is proposed: The 

Dynamic Factory. Key ideas about this pattern are 

explained first. Sample implementation is also provided. 

Just in Time compilation 

As computer programming languages evolved and 

virtualized high abstraction environments were created, a 

need arose to dynamically compile parts of algorithms just 

before execution. This somewhat lazy method of executable 

code production was called JIT (Just In-Time) compilation, 

and also labelled “code jitting” by developers. Various 

technologies implemented it in different forms. Popular 

approaches in this area were class and method level 

compilation types. Among these, the more granular 

compilation proved to be more useful. 

In further considerations, using virtualized runtime 

environments, so-called virtual machines, will be assumed. 

This is the key issue while planning dynamic factory 

implementation in one’s algorithms. 

Code templates, static code and runtime types 

For further analysis, one has to investigate the purposes 

for which JIT is utilised. One of many places it has proven 

to be useful was in template type and method production. 

When template types or methods are defined, they usually 

reside in its code base file as parameterized code blocks, 

useless until the template parameter vector is applied. This 

static template code cannot be executed earlier than the point 

at which the type becomes concrete in the virtual machine 

memory. In such a situation it is desirable to have the code 

base file is as small as possible, but at the same time 

containing all important information needed for post 

processing by the Just in Time compilation engine. This 

way, the static template code is post processed by the Just in 

Time engine and becomes concrete runtime code in the 

virtual machine memory. In the case of the template type, it 

can be instantiated and executed, and is as useful as any 

other that was non-template type in a code base file. A 

similar set of circumstances can be viewed in the case of 

template methods, but on a slightly more granular level.  

Dynamic type construction 

As Just in Time code compilation proved to be effective, 

the world became hungry for new methods of runtime type 

production. This way, dynamic types were created and 

developers gained the ability to utilize the Just in Time 

engine to produce type in a way that was previously 

unknown. 

The basic idea is to deliver a way of telling runtime 

environment to produce a runtime type with given name, 

which extends the desired base type, implements certain 

interfaces, and has exactly defined constructors, methods 

and properties. Although this idea seems rather difficult to 

cover logically, it turns out the implementation process is 

not as difficult as had been previously expected. 

Dynamic languages 

In this article, dynamic languages and interpreters that 

execute code line by line will not be discussed in any detail, 

as they are much too slow to meet real business 

requirements and exhibit poor syntax checking, if there is 

any at all. These languages are more applicable for dynamic 

construction types, although their disadvantages place them 

outside the sphere of author’s interest. 

Reflection and emission 

When a compiler produces a code base file, it sometimes 

can prove useful to possess knowledge of how the code 

works without having the source code itself. This method of 

browsing outputted files is called reflection, and is usually 

used for educational purposes. 

If a developer does not want anybody to browse his code 

base files, he uses an obfuscation mechanism to protect 

them. However, let us assume that the developer will reflect 

his own files, to learn what assembler instructions and 

arguments the compiler produces while outputting the code 

base files. These instructions with arguments are called 

intermediate code or byte code in environments with a Just 

in Time-capable virtual machine. 

From now on, further investigations are provided using 

.NET technology and C# language, which is one of many 

that meet software requirements. Similar implementations 

can be done in other languages, such as Managed C++, 

VB.NET, Iron Python, Iron Ruby, Delphi Prism, Oxygene, 

F-Sharp, J-Sharp or even in other technology such as Java. 

Single technology is chosen to provide a strict view of the 

most important factors in implementing a dynamic factory. 

 It is even suggested that the reader try implementing the 

pattern on his own, for example in Java. In such a situation, 

Class Reader, Class Visitor, Annotation Visitor, Field 

Visitor, Method Visitor, Class Writer, Opcodes and other 

surrounding built-in types could all prove useful. 

To browse non-obfuscated files prepared in .NET 

technology, one can use Telerik Just Decompile (*), IL Spy 

(figure 2 below, *), Red Gate Reflector (figure 3 below, *) 

or Jet Brains Dot Peek. 



 

 

 

 

Fig.  2 IL Spy 

Tools marked with an asterisk (*) in their current versions 

have the ability to display intermediate code version of code 

base files. This is desirable for further investigations. 

Among interesting tools, Telerik Just Decompile and IL Spy 

are free decompiling software usable for .NET. Only some 

versions of Red Gate Reflector are freely available. 

 

Fig.  3 Red Gate Reflector 

An interesting step at this point is to gather knowledge 

which intermediate code is used to call base methods, pass 

method arguments, and undertake other low level 

operations. For sample class with zero-parameter 

constructors, the code looks relatively simple. 

namespace SomeNamespace 
{  
 // Derived type extends base type. 

public class DerivedType : BaseType 
{ 
 // Derived type constructor calls 
  // the base one. 

public DerivedType() : base() { } 
} 

} 

Although using any reflection tool generates intermediate 

code, it appears to be a bit more complicated than c#. 

.class public auto ansi beforefieldinit 
DerivedType 

    extends SomeNamespace.BaseType 
{ 

.method public hidebysig specialname 
rtspecialname  

instance void .ctor() cil managed 
{ 
  .maxstack 8 

     L_0000: ldarg.0  
  L_0001: call instance void  

     SomeNamespace.Base::.ctor() 
  L_0006: nop  

     L_0007: nop  
  L_0008: nop  

     L_0009: ret  
} 

} 

Code emission is the process of generating intermediate 

code instruction by instruction, just as the compiler had done 

for the sample code in C# given previously. Code emission 

allows for the creation of method bodies, constructors, 

indexers, properties getter and setter logic, indeed 

everything supported by the given technology. 

Implementing Dynamic Factory 

Some approaches to building a Dynamic Factory use 

built-in dynamic variable type. In .NET the type is called 

ExpandoObject. The sample factory provided below shows 

how dynamic objects with tracked properties are 

constructed. 

public class Factory 
{ 
  public static dynamic CreateTrackedObject() 
  { 
  // Class ExpandoObject represents dynamic 
  // objects in .NET. It is also referenced 

// using keyword “dynamic”. 
    dynamic result = new ExpandoObject(); 
  // Tell the runtime engine to track 
    // property changes. 
    ((INotifyPropertyChanged)result) 

.PropertyChanged += 
        new PropertyChangedEventHandler 

   (Factory.HandlePropertyChanged); 
  // Property change will be intercepted. 
    result.Name = "John Smith"; 
  return result; // Return dynamic object. 
  } 
 // Method to handle property changes, 
  private static void HandlePropertyChanged 

(object sender, PropertyChangedEventArgs e) 
  { 
  // Write the name of changed property. 
    Console.WriteLine("{0} has changed.", 

 e.PropertyName); 
  } 
} 

Somewhat similar possibilities are delivered for Java 

Script developers, although in Java Script all objects exhibit 

similar behavior. As mentioned in previous chapters, there is 

actually an entire group of languages with dynamic syntax 

support, or languages that can only interpret code line by 

line. 

Although this construction pattern is relatively simple, in 

that the developer does not have to know or understand 

intermediate language, there are nonetheless some major 

disadvantages. There are issues with speed; constructed 



 

 

 

objects are volatile; and they can be broken at any point in 

the process. 

dynamic employee = new ExpandoObject(); 
// Declare and initialize new property. 
employee.Name = "John Smith"; 
// Detach property from its parent object. 
((IDictionary<String, Object>)employee) 

.Remove("Name"); 

In the example above, the dynamic object gains a new 

property, in that it is assigned a value after creation, and 

finally the dynamic object loses the new property and its 

value in a single shot. There is no bake method, to say that 

dynamic object implementation is final, and the object 

should be made unbreakable from this point. 

A much better approach is provided by utilizing code 

emission, which means producing intermediate code on the 

fly. In this kind of factory implementation, the developer 

needs to know what kind of intermediate code the compiler 

is producing. To gather this knowledge, reflection is used, as 

explained previously. 

In order to demonstrate dynamic factory strength, new 

runtime type that derives the given base type, has exactly the 

same public constructors, and appends few desired attributes 

to the class definition, will be constructed. It is worth 

mentioning that this is merely an example of the power 

provided to the developer; pure proof of the concept, 

although taken from the real-world application. 

First of all, the code emission infrastructure must be 

configured. 

IEnumerable<CustomAttributeBuilder> cubs = null; 
Type baseType = null; 
string fullName = null; 
// TODO: Fill in custom attribute requirements,  
// base type and dynamic type full name from  
// factory method arguments. 
AssemblyName an = new AssemblyName(); 
an.Name = "DynamicAssembly"; 
// Current application domain will load 
// new type. 
AppDomain ad = Thread.GetDomain(); 
// Define in-memory dynamic assembly. 
AssemblyBuilder ab = ad.DefineDynamicAssembly 

(an, AssemblyBuilderAccess.Run); 
ModuleBuilder mb = ab.DefineDynamicModule 

("DynamicModule"); 
// Define new type deriving from base one.  
TypeBuilder tb = mb.DefineType(fullName,  
TypeAttributes.Public, baseType); 
ConstructorInfo[] cis = baseType.GetConstructors 

(BindingFlags.Public | BindingFlags.Instance); 

Afterwards, the constructors’ intermediate code must be 

emitted. For simplicity it is assumed that derived classes 

only call base constructors and does nothing more. 

Knowledge from the chapter on reflection will be utilized 

herein. 

// Iterate through base type public  
// constructors. 
foreach (ConstructorInfo ci in cis) 
{ 
  // Gather constructor argument type  
  //collection. 

  Type[]constructorArgumentTypes=  
  ci.GetParameters().Select 
 (pi => pi.ParameterType).ToArray(); 

  // Define public constructor with the same  
  // arguments. 
  ConstructorBuilder cb = tb.DefineConstructor 

 (MethodAttributes.Public,  
  CallingConventions.Standard,  
  constructorArgumentTypes); 

  ILGenerator il  = cb.GetILGenerator(); 
  // Emit intermediate language line by line. 
  il.Emit(OpCodes.Ldarg_0); 
  int parameters = ci.GetParameters().Count(); 
  // Load constructor arguments onto the stack. 
  if (parameters >= 1) il.Emit(OpCodes.Ldarg_1); 
  if (parameters >= 2) il.Emit(OpCodes.Ldarg_2); 
  if (parameters >= 3) il.Emit(OpCodes.Ldarg_3); 
  for (byte i = 4; i <= parameters; i++) 

  il.Emit(OpCodes.Ldarg_S, i); 
  // Call the base constructor. 
  il.Emit(OpCodes.Call, ci); 
  il.Emit(OpCodes.Nop); 
  il.Emit(OpCodes.Nop); 
  il.Emit(OpCodes.Nop); 
  il.Emit(OpCodes.Ret); // Return the derived 
// type instance. 
} 

What remains is to append the desired attributes to 

derived class definition and bake the new runtime type. This 

type has all the required features, is extremely quick and 

non-volatile. 

if (cubs != null) 
foreach (CustomAttributeBuilder cub in cubs) 

tb.SetCustomAttribute(cub); 
derivedType = tb.CreateType(); 

Note that merely compiling the code does not 

automatically mean that it will work as expected. Dynamic 

factories should be rigorously tested before use in business 

environments. 

In order to further improve performance, new dynamic 

types should be cached using concrete vector of 

parameterization arguments. In the given example it would 

be the vector <Base Type, Full Name, Type Attributes>. 

Although it is important to note that two types with the same 

Full Name of the type cannot exist in one application 

domain. For reasons of simplicity, the type Full Name will 

be used as a key in the cache dictionary. The dynamic 

factory will be able to produce instances after the dynamic 

type is retrieved from cache or created and baked on the fly. 

When creating instances, the desired constructor will be 

automatically best fitted investigating constructors argument 

types, as if instances of base type were being created. 

public static Dictionary<string, Type> Cache = 
 new Dictionary<string, Type>(); 

public static T Create<T>( string fullName, 
IEnumerable<CustomAttributeBuilder> cubs, 
params object[] constructorArguments) 

{ 
Type baseType = typeof(T); 
Type derivedType = null; 
// Check if cache dictionary contains desired 

type. 
if (Cache.ContainsKey(fullName)) 

derivedType = Cache[fullName]; 



 

 

 

else 
{ 

// TODO: Use mentioned logic to create new  
  // type. New type is baked and therefore  
  // non-volatile. 
    // Store the new type in cache dictionary. 

} 
// Create instance using desired constructor. 
T result = Activator.CreateInstance 

(derivedType, constructorArguments); 
return result; 

} 

This kind of dynamic factory implementation was utilized 

in two business scenarios by the author. In both cases, 

modified versions were used so as to fit specific business 

needs, while maintaining the core principles as discussed. 

The most interesting case was the need to create 

transactional objects that implemented certain behaviors. A 

dynamic factory was used to provide object types with the 

desired structure and functionalities, and change 

tracking/recording code injected into the implemented 

mechanisms of the instances of constructed type. Tracking 

functionalities were then utilized to implement transactional 

behavior. While recording changes to the state of the 

objects, they offered the ability to roll-back all actions up to 

a certain point in time – namely the moment when all 

previous transactions have been successfully committed. In 

both business scenarios mentioned by the author, the 

dynamic factory proved to be extremely useful. 

Inversion of Control 

Last but not least, it is worth mentioning what Inversion 

of Control means. Basically, it is a method of constructing 

and utilizing objects. In this technique the most important 

factor is that object coupling is bound at the time of code 

execution. Using object reference analysis in code, it cannot 

be predicted which objects will cooperate. In [7] the authors 

write: 

The function of IoC is transferring the 

control from code to external 

container. [..] Relationship between 

the components is specified by the 

container in the runtime. 

An Inversion of Control container is a design pattern used 

to localize objects that should be used in certain situations. It 

may be utilised in conjunction with patterns that construct 

instances of new objects if they do not yet exist in the 

container. 

CONCLUSION 

Let us summarize the collected knowledge and think over 

the final outcome of conducted reasoning. 

Constructor 

Constructors should be always used whenever possible, 

assuming that no complicated logic lies behind object 

construction. Constructors also always return the type they 

reside in, with no possibility of producing derived type 

instances. 

Factory 

A factory is commonly used when there is a need to 

construct objects according to the environment state. This 

state is passed on to the factory as a set of variables. 

Depending on the provided argument values, the factory 

produces the desired object. Factories can also produce 

derived type instances. All the construction logic of a factory 

resides in a single location. This design pattern is commonly 

known to be overused. 

Abstract Factory 

This variation of factory proved to be useful when 

creating object families when objects are similar in some 

aspects, but differ in others. A situation arises when different 

factories have factory methods with the same signature, but 

which work in a different manner. Additional logic for 

creation is passed on using strings, array, dictionaries and 

dynamic objects. 

Complex Factory 

A complex factory is a means of creating object graphs. It 

covers all constructors and object connections logic, and is 

used in difficult projects to organize structure and make 

code easier to maintain and enhance. A complex factory is in 

some aspects similar to the facade design pattern, which will 

be described in further detail. However, a complex factory 

does not have to conceal any disadvantages of code. In [1] 

we can read 

Facade is a way of hiding a complex 

system inside a simpler interface. 

[..]This simplification may in some 

cases reduce the flexibility of the 

underlying classes, but usually 

provides all the function needed for all 

but the most sophisticated users. 

Dynamic Factory 

This kind of factory is used when a developer does not 

know exactly what the restrictions for object types or 

functionalities will be. This knowledge is gathered and 

utilized at the time of program execution. It is the most 

advanced factory design pattern variation, which creates new 

object types with only what is required in a certain situation, 

and instantiates them on the fly. It may be implemented in 

two ways. The first is when the factory produces fully 

dynamic but volatile objects; the second, when the factory 

produces brand new first-baked and non-volatile type 

instances. The second one is more difficult for the 

developer, requiring intermediate language knowledge for 

coding, and the source code is less readable for humans. 

Although the constructed objects are without the 

disadvantages of fully dynamic objects, they have therefore 

proved to be adequate in business environment edge-cutting 

software constructions. 

Summary 

Depending on the situation, each factory variation design 

pattern is considered useful. The more difficult the situation 



 

 

 

which is encountered, the stronger the tools which are used. 

Among them is the proposed dynamic factory pattern with 

intermediate code emission which gives us the widest range 

of possibilities. It is more difficult to implement and 

technology prerequisites are high, met only by modern 

languages. However, this is the type of technology which 

will be used in large solutions in upcoming years, and new 

projects can benefit from this design pattern. 

Using a factory pattern always includes the requirement to 

access factory methods. They are usually implemented as 

either static or interface. Sometimes objects containing 

factory methods are implemented as singletons. Another 

practiced approach is using an Inversion of Control 

container with a finder method, used to localize the right 

factory in a given situation. In this case, the factory is 

implemented inside the Inversion of Control container, as its 

creational mechanism. It produces objects in concrete 

situations using the implemented set of rules, which will be 

described more precisely in an upcoming chapter. Of course, 

if chosen, the factory used by Inversion of Control may be 

any kind of factory described in the article. 

APPENDIX 

Please note that there exist numerous misunderstandings 

about dynamic factory in literature. For example [3] 

describes the Inversion of Control container automatic 

initialization mechanism, using type attributes to localize 

types that should be instantiated. Although Inversion of 

Control container with such a mechanism instantiates new 

objects, it should not be mistaken for any of kind factory 

pattern. There might be a factory hidden inside an Inversion 

of Control container, as mentioned previously. It may have 

some creation rules for certain desired situations. But that 

does not make such a factory dynamic in any aspect. In [4] 

on the other hand, the authors propose a factory that reads 

static types to be instantiated from code base files indicated 

in XML files or data bases. It is worth mentioning that 

simple factory variation proposed by the authors has been 

used in business products like Microsoft Visual Studio or 

Microsoft Windows Explorer for many years. Of course, 

although with a substantially different meaning to that in [3], 

[4] also has nothing to do with dynamic creating new types. 

Builder and Complex Factory design patterns are also 

commonly confused. The builder pattern mentions nothing 

about the complexity of objects. The most straightforward 

example is the String Builder commonly known from 

languages like C-Sharp, C++, Delphi, Java and Java Script. 

On the other hand, while hierarchically nesting many 

builders into others, one can obtain an organized structure 

for creating complex objects. Enclosing this complex 

creational structure in one easy-to-handle factory method 

means creating a Complex Factory. Although creating a 

complex factory does not mean that numerous builders are 

required, but rather relates to building a facade for the 

creation of a complex structure.  

Further investigations are planned for new constructions 

and applications of dynamic factory design pattern. Research 

will be also conducted in order to support the dynamic 

creation of new static types using lambda expressions, and 

anonymous types, methods and delegates. This will partially 

alleviate the need to code factory methods in pure 

intermediate language. 
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