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ABSTRACT

In the paper an application of selected agent-based evolu-
tionary computing models, such as flock-based multi agent sys-
tem (FLOCK) and evolutionary multi-agent system (EMAS),
to the problem of continuous optimisation is presented. It turns
out, that hybridizing of agent-based paradigm with evolution-
ary computation brings a new quality to the meta-heuristic
field, easily enhancing static individuals with possibilities of
perception and interaction with other agents. The examination
of selected benchmarks leads to the observation regarding
the overall efficiency of the systems in comparison to the
standard genetic algorithm (as defined by Michalewicz) and
memetic versions of all the systems. The experiments confirm
that the efficiency is dependent on the problem, however,
the observed number of fitness function calls makes EMAS
dominate over its competitors. This feature makes EMAS
a promising solution for the problems with complex fitness
functions, (such as inverse problems).

INTRODUCTION

Recently both software agents and evolutionary computa-
tion have been gaining more and more applications in various
domains. The key concept in multi-agent systems (MAS)
constitute intelligent interactions. Evolutionary computation
can be perceived as a universal technique for solving optimi-
sation problems. This paper concerns a hybrid evolutionary-
agent approach. In contrary to typical approaches reported
in literature (see e.g. [17] or [8] for a review) we assume
that evolutionary processes are incorporated into a multi-
agent system at a population level [10]. The advantages of
agents autonomy in this case appear in the possibility of
enhancing evolutionary processes with agents interactions, e.g.,
making possible undertaking autonomous decisions regarding
the reproduction by choosing the partner agents.

The paper aims to present selected results of the exper-
iments regarding the selected evolutionary agent-based com-
puting systems. The stress is put on evolutionary multi-agent
systems (EMAS), which over the years proved useful in
different optimisation problems (e.g., single-criteria, multi-
criteria, discrete, continuous) [3].

In this paper, one of the most important features of EMAS
is presented—a relatively low computational cost measured
as a number of fitness function calls. This makes the system
appear well-suited for the problems utilising complex fitness
function, requiring e.g., running a simulation to compute the
value of the fitness (see inverse problems [1]). This conclusion
is based on premise of the presented experimental results
concerning popular continuous optimisation benchmarks in
comparison to two selected algorithms, popular simple genetic
algorithm operating in real-value space [13] and flock-based
evolutionary system [11] being another agent-based compu-
tational technique proposed by the authors. All the presented
algorithms are examined in memetic and standard versions (i.e.
with local-search technique enabled or disabled).

In the course of paper, after recalling the basics of evolu-
tionary, memetic and agent-based computation and presenting
the concepts of the examined systems, the experimental results
are given and discussed, and in the end, the conclusions are
drawn.

Agent-based computing paradigm has already been studied,
and supported by a number of scientific projects. One of such
notable examples is ParaPhrase1, focusing on supplying hybrid
CPU/GPU computing infrastructure via dedicated virtualisa-
tion tools. The computing experiments presented in this paper
may be treated as preliminary results, planned to be adapted
and ported to ParaPhrase infrastructure.

EVOLUTIONARY AND MEMETIC ALGORITHMS

In evolutionary algorithms [13] the problem is encoded
in a special way (genotype) and random populations of po-
tential solutions are constructed. Based on the existing fitness
function (evaluating the genotype), selection is performed (so
the mating pool is created) and based on the mating pool,
the subsequent population is created with use of predefined
variation operators (such as crossover and mutation). The
process continues until some stopping condition is reached
(e.g., number of generations, lack of changes in the best
solution found so far).

It may be seen, that the population of potential (encoded)
solutions of a given problem is decomposed into evolutionary
islands (there is also a possibility of migration between them)
[6]. Such algorithms are usually called “parallel evolutionary
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algorithms” (PEA). The most important fact is that the evolu-
tionary algorithm is common to all islands, all operators are
applied one by one, during each of generations, to all parts of
the population. After meeting some kind of stopping condition,
the best solution so far is presented as the optimal one. One of
the main drawbacks of such an approach is global (god-like)
selection algorithm—possibilities of its de-globalisation will
be described later.

Solving optimisation problems with evolutionary algo-
rithms requires that the following must be defined [2]: ap-
propriate encoding of the solutions, crossover and mutation
operators appropriate for the encoding, choosing a selection
mechanism, and possibly other components of specialized
techniques, like configuring topology of islands and migra-
tion strategies for the island model of parallel evolutionary
algorithms.

Memetic algorithms [14], [12], [15] are population-based
techniques that hybridize other meta-heuristics, usually by
integrating local search (LS) within the population-based
search engine. One of the most important feature of memetic
algorithms increased exploitation ability that must be carefully
balanced with exploration power of the population heuristics,
in order to retain diversity.

In the most cases, two types of memetic systems are
defined [15], [12], [16]:

• Baldwinian evolutionary algorithms—in these algo-
rithms the fitness of the individual is evaluated based
not only on genotype, but rather on the genotype of
one of its potential successors (after, e.g., applying
some local-search technique in the course of mutation
of the genotype, being a starting point for this local
search) —the genotype of the invidual remains intact,
in the end).

• Lamarckian evolutionary algorithms—in these algo-
rithms, the fitness of the individual is computed after
applying local search method to mutate the geno-
type of the individual (the genotypes is changed, so
Lamarckian evolution may be perceived as applying a
complex mutation operator).

One of the main advantages of these systems is usually quick
attaining of the target optimum, however applying such com-
plex mutation makes the system focused on the exploitation
and because of that, additional methods for enhancing the
diversity of the population (even such simple, as fitness sharing
or crowding [13]) are desired to retain the balance between
exploration and exploitation.

Hybridizing memetics with agent-based approaches leads
also to the possibility of controlling certain parameters of e.g.,
memetic-based mutation, adaptation of their value depending
on the observation conducted in the environment etc.

INTELLIGENT DECENTRALISATION:
FROM INDIVIDUALS TO AGENTS

A flock-based architecture may be treated as an exten-
sion of the classical island model of evolutionary algorithm
(PEA) providing additional level of organisation of the system
[11]. Subpopulations on the evolutionary islands (distribution

units) are divided into flocks, where independently conducted
processes of evolution are managed by agents (see Fig. 1). It
is possible to distinguish two levels of migration:

• exchange of individuals between flocks on one island,

• migration of flocks between islands.

Also merging of flocks containing similar individuals or divid-
ing of flocks with large diversity allows for dynamic changes
of population structure to possibly well reflect the problem to
be solved.
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Fig. 1. Flock-based evolutionary system

Agents of an evolutionary multi-agent system (EMAS)
represent or generate solutions for a given optimisation prob-
lem. They are located on islands, which constitute their local
environment where direct interactions may take place, and
represent a distributed structure of computation (see Fig. 2).
Obviously, agents are able to change their location, which
allows for diffusion of information and resources all over the
system [10].
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Fig. 2. Evolutionary multi-agent system

Assuming that no global knowledge is available (which
makes it impossible to evaluate all individuals at the same



time) and autonomy of the agents (which causes that repro-
duction is achieved asynchronously), selection is based on the
non-renewable resources [7]. Thus a decisive factor of the
agent’s activity is its fitness, expressed by the amount of non-
renewable resource it possesses. The agent gains resources
as a reward for ‘good’ behaviour, and looses resources as a
consequence of ‘bad’ behaviour. Selection is realised in such
a way that agents with a lot of resources are more likely to
reproduce, while low energy increases the possibility of death.

In the simplest possible model of an evolutionary multi-
agent system there is one type of agents and one resource
defined. Genotypes of agents represent feasible solutions to
the problem.

Energy is exchanged by agents in the process of evaluation.
The agent increases its energy when it finds out that one
(e.g. randomly chosen) of its neighbours, has lower fitness.
In this case, the agent takes part of its neighbour’s energy,
otherwise, it passes part of its own energy to the evaluated
neighbour. The level of life energy triggers actions of death
and reproduction (low energy causes death while high energy
makes reproduction possible).

Summing up, EMAS agents may perform reproduction
action (producing new offspring), death action (in case of
low level of energy), evaluation action (in order to exchange
the energy based on the fitness function value) and migration
action (in order to spread the genetic information among the
evolutinary islands). Each action is attempted randomly with
certain probability, and it is performed only when their basic
preconditions are met (e.g. an agent may attempt to perform
the action of reproduction, but it will reproduce only if its
energy rises above certain level and it meets an appropriate
neighbour).

EXPERIMENTAL RESULTS

In order to examine the features of standard and agent-
based computing systems, they were implemented using AgE
computing platform (http://age.iisg.agh.edu.pl). All parameters
of the the systems under consideration (SGA (Michalewicz
version [13], FLOCK and EMAS both in standard and memetic
versions) were chosen in such way, that the comparison
between them could be possible and the perceived differences
could depend only on the intrinsic features of the algorithms.

Thus, the configurations of SGA, FLOCK and EMAS were
as follows:

ALL real-value encoding, discrete recombination (off-
spring gets parents’ genes one by one, from each
parent with certain probability), normal mutation
with standard deviation 0.3 and probability 0.2,
stopping condition: reaching 1000th step of the
computation.

SGA 100 individuals, tournament selection.
FLOCK 5 flocks 20 individuals each, tournament selection,

the flocks join together when their populations
overlap and divide, when the diversity of the
population is low.

EMAS in the beginning, there are 30 individuals, the pop-
ulation number stabilises at about 100 individuals,
starting energy: 30 units, total energy constant:

900 units, reproduction at 15 units, during evalu-
ation agents exchange 5 units, energy of death: 0
units.

MEM. all memetic versions utilized a Lamarckian mu-
tation based on steepest descent there are three
attempts to mutate the genotype, each time the
next proposed genotype is sampled three times
in the vicinity of the individual, and the best
proposition is chosen.

The considered benchmark problems were popular De
Jong, Ackley, Rastrigin, Griewank and Rosenbrock functions
[9] described in 10 dimensions. All the experiments were
repeated 30 times and the standard deviation was computed
as a measure of repeatability.

In Fig. 3 the progress of optimisation process conducted in
all examined systems was presented. It was displayed as the
best fitness observed in subsequent steps of the computation.
In order to distinguish individual features of each process,
logarithmic scale was used on ordinate axis.

Recalling “no free lunch theorem” [18] the authors were
not aiming at proving that one of the examined systems proves
as the best for all benchmark used. Instead, certain information
about the features of each system may be discovered, when
looking at the graphs in Fig. 3 and the tables later on. E.g.,
quick look at the graphs reveals, that almost independent on
the system used, the Rosenbrock problem, being a well known
deceptive function, remains the most difficult one. On the
other side, De Jong problem, being a simple convex function,
appears of course the easiest one to be solved.

When comparing the effectiveness of certain computing
systems relatively to the problems solved, looking at the graphs
presented in Figs. 3(a), 3(c), 3(e), does not let to favour any
of the systems, maybe apart from EMAS doing much better
in the case of De Jong function 3(e), though it is to note, that
this problem is too straightforward to prove the domination of
one of optimisation methods.

When comparing memetic versions of all the examined
systems (see Figs. 3(a), 3(c), 3(e)) it is easy to see, that
these versions are much better in solving the given problems,
than their standard versions, as they reach much better results,
moreover, the descent in the direction of the optimum is
quicker and the curve depicting it is steeper in the beginning
of the computation.

Additional information regarding the efficiency of certain
systems may be found in Tables I, II. When looking for the
best obtained results throughout the all experiments, it seems,
that it is hard to find one algorithm dominating the others (see,
[18]).

In Tables III, IV the diversity obtained in 1000th step for
the all population was shown. This measure was computed as
minimum standard deviation of all genes averaged over the
whole population. It is easy to see, that memetic versions of
all algorithms tend to process much less diverse populations
than their standard versions (a well known problem of memetic
computation [15]). Diversity is also quite dependent on the
problem, as the problem itself influences the distribution of
the populations, see, e.g., column presenting the data gathered
for Rosenbrock problem: this values are one of the highest in



the table, as Rosenbrock problem, visualized in 2 dimension
as quite flat surface with several bumps, allows the population
to be spread more than, e.g., Rastrigin or Griewank problem,
where the individuals gather in local extrema throughout the
whole computation.

The most interesting results however, are presented in
Table V. There, approximated number of fitness function calls
computed for all conducted experiments is shown. It is easy to
see, that soft selection mechanism (energetic selection) used
in EMAS (both in standard and memetic verions) allowed to
obtain quite similar results (see, Fig. 3 and Tables I, II) at
the same time reducing the number of fitness function calls
(better by two-three orders of magnitude when comparing with
FLOCK or SGA).

CONCLUSIONS

In the course of the paper selected agent-based computing
systems were recalled (FLOCK and EMAS) and the experi-
mental results obtained for optimisation of several benchmark
functions were given. Detailed insight into the features pre-
sented in graphs depicting the best fitness in the examined
population did not allow to state, that one of the tested systems
prevailed. However, classical features of memetic computation
were spotted: the optimum is pursued faster in the beginning,
and the diversity of these systems is lower than in the case of
their standard versions.

The most important conclusion is proving, that regardless
the efficiency of EMAS in comparison to other systems, it
prevails in the means of fitness function calls during the
computation (even by two or three orders of magnitude). This
feature makes EMAS a reliable means for solving problems
with complex fitness functions, such as inverse problems,
evolution of neural network parameters (see, e.g., [5], [4]),
and others.

In the future the authors plan to enhance the testing
conditions by considering continuous and discrete benchmarks
as well as increasing the dimensionality of the problems to be
solved.
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[3] A. Byrski, R. Dreżewski, L. Siwik, and M. Kisiel-Dorohinicki. Evo-
lutionary multi-agent systems. The Knowledge Engineering Review,
Accepted for publiFcation, 2012.

[4] A. Byrski and M. Kisiel-Dorohinicki. Evolving RBF networks in a
multi-agent system. Neural Network World, 12(5):433–440, 2002.

[5] A. Byrski, M. Kisiel-Dorohinicki, and E. Nawarecki. Agent-based
evolution of neural network architecture. In M. Hamza, editor, Proc. of
the IASTED Int. Symp. on Applied Informatics. IASTED/ACTA Press,
2002.
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TABLE I. AVERAGE BEST FITNESS OBTAINED IN 1000TH STEP AND STANDARD DEVIATION (COMPUTED FOR 30 RUNS) FOR MEMETIC AND STANDARD
VERSIONS OF EXAMINED COMPUTING SYSTEMS (ACKLEY, GRIEWANK AND RASTRIGIN PROBLEMS)

System Ackley Griewank Rastrigin
SGA Std 0.057 237 12 ±0.007 241 441 0.085 502 67 ±0.061 758 09 0.340 349 ±0.107 659 7

SGA Mem 2.148 808 × 10−5 ±7.754 295 × 10−6 0.060 106 21 ±0.029 837 69 6.493 436 × 10−8 ±4.583 01 × 10−8

FLOCK Std 0.076 686 35 ±0.014 271 68 0.541 716 8 ±0.456 685 6 1.785 208 ±0.775 546 1

FLOCK Mem 4.631 602 × 10−5 ±1.580 519 × 10−5 0.082 211 74 ±0.058 706 72 4.006 674 × 10−7 ±2.747 038 × 10−7

EMAS Std 0.047 309 22 ±0.148 428 8 27.977 86 ±18.809 17 3.011 314 ±1.498 797

EMAS Mem 0.000 431 029 2 ±0.000 147 903 2 3.008 084 ±4.320 769 3.958 766 × 10−5 ±3.085 049 × 10−5

TABLE II. AVERAGE BEST FITNESS OBTAINED IN 1000TH STEP AND STANDARD DEVIATION (COMPUTED FOR 30 RUNS) FOR MEMETIC AND STANDARD
VERSIONS OF EXAMINED COMPUTING SYSTEMS (ROSENBROCK AND DE JONG PROBLEMS)

System Rosenbrock De Jong
SGA Std 2.706 568 ±1.774 557 0.001 540 284 ±0.000 387 838

SGA Mem 2.210 916 ±1.739 984 4.583 541 × 10−10 ±3.120 165 × 10−10

FLOCK Std 3.884 875 ±2.081 934 0.002 535 208 ±0.000 588 550 1

FLOCK Mem 0.901 195 7 ±1.036 577 1.871 672 × 10−9 ±1.202 404 × 10−9

EMAS Std 25.200 49 ±101.7666 1.748 485 × 10−6 ±9.186 823 × 10−7

EMAS Mem 3.940 108 ±3.054 97 6.333 364 × 10−8 ±3.935 681 × 10−8

TABLE III. AVERAGE DIVERSITY OBTAINED IN 1000TH STEP AND STANDARD DEVIATION (COMPUTED FOR 30 RUNS) FOR MEMETIC AND STANDARD
VERSIONS OF EXAMINED COMPUTING SYSTEMS (ACKLEY, GRIEWANK AND RASTRIGIN PROBLEMS)

System Ackley Griewank Rastrigin
SGA Std 0.073 756 12 ±0.017 941 05 0.073 891 11 ±0.016 700 04 0.078 326 87 ±0.026 888 11

SGA Mem 1.027 91 × 10−22 ±2.331 456 × 10−22 6.458 626 × 10−22 ±1.118 568 × 10−21 2.841 09 × 10−22 ±8.269 988 × 10−22

FLOCK Std 0.068 397 06 ±0.012 846 73 3.282 302 ±3.3432 0.146 949 1 ±0.085 565 59

FLOCK Mem 3.269 656 × 10−6 ±2.644 61 × 10−6 1.244 616 ±2.017 345 2.957 484 × 10−6 ±3.169 475 × 10−6

EMAS Std 0.015 511 87 ±0.006 212 766 0.098 006 43 ±0.076 427 53 0.016 464 35 ±0.009 102 824

EMAS Mem 2.177 581 × 10−21 ±4.648 354 × 10−21 0.047 304 02 ±0.065 510 94 4.842 205 × 10−21 ±1.743 64 × 10−20

TABLE IV. AVERAGE DIVERSITY OBTAINED IN 1000TH STEP AND STANDARD DEVIATION (COMPUTED FOR 30 RUNS) FOR MEMETIC AND STANDARD
VERSIONS OF EXAMINED COMPUTING SYSTEMS (ROSENBROCK AND DE JONG PROBLEMS)

System Rosenbrock De Jong
SGA Std 0.069 791 13 ±0.015 978 85 0.072 843 56 ±0.013 871 39

SGA Mem 7.444 279 × 10−5 ±0.000 127 459 5 2.007 843 × 10−22 ±4.424 505 × 10−22

FLOCK Std 0.126 153 6 ±0.088 960 07 0.071 510 14 ±0.009 508 027

FLOCK Mem 0.014 950 56 ±0.022 712 15 1.288 522 × 10−6 ±2.031 521 × 10−6

EMAS Std 0.016 752 47 ±0.009 061 646 0.013 228 51 ±0.006 898 98

EMAS Mem 8.764 745 × 10−5 ±0.000 389 931 5 1.934 059 × 10−21 ±3.741 526 × 10−21

TABLE V. AVERAGE NUMBER OF FITNESS CALLS DURING 1000 STEPS (COMPUTED FOR 30 RUNS) FOR MEMETIC AND STANDARD VERSIONS OF
EXAMINED COMPUTING SYSTEMS

System Ackley Griewank Rastrigin Rosenbrock De Jong
SGA Std 100 000 100 000 100 000 100 000 100 000
SGA Mem 299 800 299 800 299 800 299 800 299 800
FLOCK Std 85 386.6664 97 800.0024 93 293.3336 87 506.6668 74 133.3328
FLOCK Mem 255 640 287 200 243 640 211 480 238 559.99
EMAS Std 349.466 87 371.899 98 364.866 71 359.433 51 365.633 22
EMAS Mem 963.001 05 996.299 97 966.602 61 925.199 94 965.600 55
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Fig. 3. Fitness for memetic and standard versions of examined computing systems




