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ABSTRACT 

This paper deals with the problem of constructing the 

schedule for the operations of a group of quay cranes 

devoted to discharge/load a set of groups of containers 

from a vessel at a maritime container terminal. The 

schedule is constructed starting from the assignment of 

each individual group of containers to a quay crane un-

der the goal of minimizing the overall vessel comple-

tion time, aka the makespan. The assignment is provid-

ed, e.g., by the search process of an optimization algo-

rithm designed for solving the so called quay crane 

scheduling problem. In this paper, a novel Timed Petri 

Net model is proposed to construct the schedule from a 

given assignment. As a novelty, the proposed model 

considers the initial and final location of the quay 

cranes to ensure that some necessary physical con-

straints are satisfied during the idle periods. It also de-

fines an easy-to-implement set of rules to construct the 

schedule such that the makespan is minimum.  

 
INTRODUCTION 

A maritime container terminal (MCT) is a facility 
located into a port where containers are stored and 
transshipped between land and ship transports for sub-
sequent transportation. A large number of logistical 
processes arise in a MCT. In a holistic approach, these 
processes can be simulated all together by resorting to 
a high level simulation framework (Legato et al. 
2008b), which clearly omits some details from the ter-
minal activities to keep the computational tractability 
of the model. In fact, currently a detailed representation 
of all the features of the logistical processes can be ob-
tained by developing a specialized simulation model 
focused on a single logistical process.  

Since the core container transport mode is via ship, 
the operations focused on the vessels are of  primary 
interest for the terminal managers focused on minimiz-
ing the lead time (Steenken et al. 2004). In fact, in lit-
erature one of the most studied logistical problems is 
related to the discharge/loading (D/L) operations of a 
vessel (Stahlbock and Voß 2008). Vessel D/L opera-
tions are performed by resorting to a pool of quay 

cranes (QCs) that travel on rails. Each vessel is divided 
into bays and each bay can be partitioned in two areas 
located below and above the deck, respectively. Each 
container is located within a bay and must be dis-
charged or loaded at the port of call according to a pre-
defined stowage plan. The problem of indentifying the 
optimal sequence of the container D/L operations under 
the objective that the overall vessel operations (i.e. the 
makespan) is minimized; it is known in literature as the 
quay crane scheduling problem (QCSP) (Daganzo 
1989; Kim and Park 2004).  

When an optimization algorithm is constructed to 
solve a specific QCSP formulation, a method to evalu-
ate the schedule is required. A schedule is a sequence 
of activities and events (Pinedo 2002), thus an event-
based simulation model can accomplish the task of 
evaluating the makespan of a schedule for the QCSP. 
For instance, this approach has been pursued in (Legato 
et al. 2012; Legato and Trunfio 2013; Trunfio 2014).  

Timed Petri Net (TPN) models are an effective and 
powerful modeling tool to be used in this context 
(Zurawski 1994; Mejía and Montoya, 2010).  In fact, 
TPN has no modeling limitation that would make the 
results from the simulation model deviate from the 
necessary model features. Moreover, in one of the lat-
est formulation of the QCSP proposed by Legato et al. 
(2012), a TPN has been proposed to calculate the 
schedule makespan as well as the individual comple-
tion time of the specific D/L operations, which has 
been a plus with respect to all the known methodolo-
gies.  

Recently, Chen et al. (2014) considered the QCSP 
by taking into account for additional, but necessary fea-
tures. Therefore, a novel TPN model that can be used 
to capture these new features is presented in this paper. 
Moreover, the proposed model: (i) provides an easy-to-
understand set of rules to ensure that the computed 
makespan is minimum with respect to the given as-
signment; and (ii) defines an easy-to-read description 
of the QC operations. The proposed TPN model has 
been validated by comparing the event-list obtained 
from other simulation methods from the literature on a 
set of instances from the literature.   

The paper is organized as follows. The next section 
briefly introduces the necessary background on the 
QCSP. The subsequent section describes the proposed 
TPN. The second-last section provides a complete 
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modeling example. The last section concludes the pa-
per.  

THE QUAY CRANE SCHEDULING PROBLEM 

The QCSP is a scheduling problem that, according 
to the modern worldview, is tackled by considering (i) 
the containers from a bay as a unique indivisible group 
or (ii) the containers from a bay to be partitioned in 
groups. The first is known as QCSP for complete bays 
and the latter QCSP for container groups. In this paper 
we dealt with the QCSP for container groups, since it is 
clearly more challenging and realistic. Furthermore, the 
former is a special case of the latter. 

The modern formulation of the QCSP for container 
groups (or for simplicity only QCSP from now on) has 
been proposed by Kim and Park (2004) by enriching a 
multiple travelling salesman problem formulation. 

Therefore, the Kim and Park formulation is NP-hard. 
Several refinements have been proposed in the subse-
quent years; the major refinements are due to Bierwirth 
and Meisel (2009), who corrected the representation of 
some features related to the movement and locations of 
the QCs during the D/L operations. Moreover, (Chen et 
al. 2014) has pointed out the attention on the final an 
initial location of the QCs; the proposed formulation 
defines the optimal schedule under the assumption that 
the QC movements are unidirectional (Liu et al. 2006), 
but removes some modeling features useful for con-
structing the schedule, e.g. the completion time of the 
specific tasks.  

In the QCSP, a group of containers identifies a task. 
The set of all the tasks is � and |�| = �. Each task i 
has a processing time �� . A task is located in a bay and 
the corresponding location is ��. A task must be as-
signed to exactly one QC from the set �, such that |�| = 	. The containers related to a bay are divided 
into groups according to the location of the containers 
in a bay (below or above the deck), the requested oper-
ation (discharge or loading) and the stowage plan (e.g. 
containers from the same bay area that must be dis-
charged first to speed-up the loading operations of an-
other vessel). Clearly, these facts generate precedence 
relations for the processing of the tasks: from the same 
bay, discharge tasks must precede loading tasks; dis-
charge (loading) tasks located above the deck must 
precede (follow) discharge (loading) tasks located be-
low the deck; other precedence relations may be de-
fined if needed (e.g. due to the stowage plan), but only 
by ensuring that the previous rules hold true. For a giv-
en couple (i, j) of tasks i and j, the set of all the prece-
dence relations is 
. Figure 1 illustrates an example of 
a vessel to be handled by using two-QCs.  

 

Figure 1: An example of feeder-vessel to D/L with 11 

bays, two QCs and 23 tasks. 

 
As shown in Figure 1, the quay side is discretized 

according to the length of a bay and, consequently, also 
the travel times of the QCs are calculated according to 
this space unit. To this extent, let �̂ be the travel time 

required to cover the distance of a bay and �
�
�  the 

travel time required to move from location �� to ��, i.e. �
�
� = |��−��| ∙ �̂ . 

The QCs serve along the time multiple vessels from 
the same berth according to what is defined by the 
quay crane assignment and deployment problem (Le-
gato et al. 2008a; Bierwirth and Meisel 2010). There-
fore, with respect to the vessel to be handled, each QC 
q must perform the assigned tasks within a time win-
dow defined by a ready time ��  and a due date ��. 

Thus, a QC q has an initial location ��� 	and a final loca-

tion ���, which are assumed by q at the ready time and 

when the D/L operations are completed, respectively. 
Observe that, while the initial location is generally giv-
en, the final location is calculated by the QCSP formu-
lation according to the assignment of the tasks to the 
QCs. For convenience, the start time (i.e the zero time) 
of the QCSP schedule corresponds to the least ready 
time of the QCs. 

Since the QCs travel on the same rails, then non-
crossing constraints must be taken into account. More-
over, to avoid the collision of the QC booms, a safety 
distance δ must always be guaranteed between adjacent 
QCs. Clearly, assuming that the m QCs are numbered 
from 1 to m starting from left-to-right, then two QCs v 
and w (v < w) cannot work simultaneously on two 
tasks i and j, respectively, if holds true that �� > �� −���, where ��� = (� + 1) ∙ |! − "| (observe that the 
case for v>w can be easily deduced). From this obser-
vation, Bierwirth and Meisel (2009) defined ∆���� as the 

time span to be elapsed between the completion of one 
between task i and task j and the remaining, under the 
assumption that i and j are assigned respectively to 
QCs v and w. Bierwirth and Meisel (2009) shown that 

only the 4-tuples (i, j, v, w) such that ∆����> 0 have to 

be considered to define non-crossing and safety dis-
tance constraints. Clearly, these constraints must be 
accounted for in order to guarantee that the schedule is 
correctly constructed. For convenience, the set of the 
aforementioned 4-tuples is defined as % ={(�, (, !, ") ∈ �* × �*|� < ( ∧ ∆����> 0}. 
THE TPN MODEL FOR THE QCSP 

Petri Nets (PNs) are a powerful and formal model-
ing language introduced by Petri (1962) which can be 
represented as a bipartite graph, where nodes are tran-
sitions or places and a transition is connected to a place 
by an arc (and vice versa). In simulation, generally a 
transition represents an event, while a place represents 
a state. Model changes through the time occurs by us-
ing a token, a special entity that  is put into a place to 
enable the transitions. A good lecture on modeling with 
PNs can be read here (Girault and Valk 2003).  

There are several interesting extensions of the orig-
inal language formulated by Petri and TPNs are one of 



 

 

them. In the literature for the QCSP, a TPN has been 
proposed in (Legato et al. 2008c) by focusing on the 
D/L of each single container from a bay and modeling 
as a plus the operations performed by shuttle vehicles 
in the quay side; there, however, some important fea-
tures were not considered (e.g. QC safety distance). 
Later, another TPN has been used by Legato et al. 
(2012) to construct the schedule of a given set of task-
to-QC assignments. In that TPN model, the determinis-
tic times are associated to transitions and the rules for 
computing the least cost makespan are  regulated by 
“complicated” equations. We remedy these issues by 
resorting to a different approach to time modeling. As a 
matter of fact, another way to introduce time into a PN 
model is to associate the time with the arcs. Hence, this 
is the modeling approach pursued in the novel TPN 
proposed here for the QCSP.  

 

Figure 2: An example of a simple Petri Net: the large 

circles are places, the vertical black bar is a transition, 

arcs connect places and transitions and, finally, the 

small black circle is a token. 
 
We represent the whole process of handling the 

containers from a vessel as a single-source single-sink 
TPN. A single token must be put into the source place 
in order to start the D/L operations. The basic schema 
of the TPN model is depicted in Figure 3. As shown in 
the figure, once the schedule evaluation/construction 
starts (from the “start” transition on), a TPN must be 
defined for each QC to model a sequence of operations. 
The QCs have to interact at specific interaction points, 
hidden from Figure 3, due to the constraints described 
in the previous section. 

 

Figure 3: The skeleton of the model. 
 
As suggested by van der Aalst (1996), we represent 

an operation performed by a QC as depicted in Figure 
4. As shown in this figure, once that a token leaves the 
begin place, exactly t unit of times must be elapsed to 
fire the “finish” transition.  

 

Figure 4: An operation of a QC. 
 

Since the QCs perform the operations in sequence, 
when two operations are put one before the other in a 
QC sequence, the “complete” place of the first opera-
tion is merged with the “waiting begin” place of the 
second operation.  

We identify four types of operations conducted by a 
QC during its life cycle: setup, task execution, travel 
and completion. Clearly, for a QC / ∈ � there is only 
one “setup operation” and one “completion operation”, 
which are put, respectively, at the beginning and at the 
end of the sequence of operations of /; in the middle 
there is the sequence of “task execution operations”, 
which is defined according to the ordered list 0� 	of 

tasks assigned to /. A “travel operation” is put between 
two “task execution operations”, or a “setup operation” 
and a “task execution operation”, or a “task execution 
operation” and a “completion operation”, when needed 
(i.e. when the travel time is greater than zero). The de-
terministic time t depicted on the arc that connects the 
place “begin” with the transition “finish” assumes the 
value of the ready time, task processing time and travel 
time for the “setup operation”, a “task execution opera-
tion” and a “travel operation”, respectively. The “com-
pletion operation” has t=0 (therefore it is omitted from 
the arc). A remark is required for the travel time. When 
the “setup operation” of QC q and the “task processing 
operation” for task i are one before the other, then � = ��
1
�; if the “task processing operations” for two 

tasks i and j are one after the other, then � = �
�
�; final-

ly, if the “task processing operation” of task i precedes 
the “complete operation” of QC q, then � = �
�2
1.   

Given this premise, we have to model the following 
features: (i) precedence relations between tasks; (ii) QC 
non-crossing and safety distance for ready QC; (iii) QC 
location before the ready period; (iv) QC location after 
the completion of the last task; (v) QC due date. 

Φ∈),( ji

 
Figure 5: Representation of a precedence relation be-

tween two tasks. 
 

Precedence relations between tasks 

A precedence relation	(�, () ∈ 
, as proposed in 
(van der Aalst 1996), is modeled as shown in Figure 5. 
So, to model a precedence relation it is required an ad-



 

 

ditional place to be connected between the “finish” 
transition of the “task execution operation” of task i 
and the “start” transition of the “task execution opera-
tion” of task j, as illustrated in Figure 5. Clearly, if both 
tasks i and j are assigned to the same QC and i pre-
cedes j in the list 0� , then the precedence relations is 

implicitly accounted for and therefore should not be 
depicted; otherwise, since j precedes i, the schedule is 
unfeasible. 

QC non-crossing and safety distance 

QC non-crossing and safety distance, as explained 
in the previous section, must be accounted for any 4-
tuple (�, (, !, ") ∈ %. Therefore, given two “task execu-
tion operations” related to the couple of tasks i and j 
(i<j), which are assigned respectively to QCs v and w 

and ∆����> 0, the aforementioned constraints can be 

modeled as provided in Figure 6.  

vw

ij∆

vw

ij∆
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Figure 6: Representation of non-crossing and safety 

distance constraints. 
 

QC location before the ready period  

Since there is no guarantee that the initial location 
of a QC (i.e. the location assumed from time zero to the 
ready time) is the same of the location of the first task, 
then the QC location before the ready period must be 
accounted in order to avoid QC crossing and to guaran-
tee the safety distance. To model this new feature, we 
define the set 34 of 3-tuples (�, !, ") such that task i is 
assigned to QC v and v must wait the ready time of QC 
w to start working on i. Formally, the new set is de-
fined as 34 = {(�, !, ") ∈ � × �*|� ∈ 0� ∧ (�� > ��� −��� ∨ �� < ��� + ���)}. To ensure that after the ready 
time of QC w there is no violation of non-crossing and 
safety distance requirements, the following time span is 
introduced: 

∆�4��= 6(�� − ��� + ���)�̂ if	! < "	and	�� > ��� − ���;(��� − �� + ���)�̂ else	if	! > /	and	�� < ��� + ���0 otherwise. F; 
This stated, Figure 7 illustrates how to model this case 
for any 3-tuple in set 34. 

Iwvi Ψ∈),,(
vw

iI∆

 
Figure 7: Representation of non-crossing and safety 

distance constraints for a QC not yet ready. 
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Figure 8: Representation of non-crossing and safety 

distance constraints for a QC that completed its sched-

ule. 

 

QC location after the completion of the last task 

In a similar fashion, also the final location of a QC 
must be considered to guarantee the non-crossing and 
safety distance requirements. To this extent, it is intro-
duced a new set, say 3G, that, similarly to the defini-
tion of 	34, we define 3G = {(�, !, ") ∈ � × �*|� ∈0� ∧ (�� > ��� − ��� ∨ �� < ��� + ���)}. In this case 
the time span is defined as follows: 

∆�G��= 6(�� − ��� + ���)�̂ if	! < "	and	�� > ��� − ���;(��� − �� + ���)�̂ else	if	! > /	and	�� < ��� + ���0 otherwise. F ; 
We assume that once a QC w completes its operations 
it becomes definitely idle and cannot be moved along 
the rails until the completion of the vessel D/L opera-
tions. Thus, any assignment of a task i to a QC v such 
that (�, !, ") ∈ 3G must be completed before that w 
repositions to its final location ���; otherwise, the 
schedule is unfeasible. This new feature disables any 
“task operation” of a task i assigned to a QC v once 
that QC w repositions to its final location if and only if 



 

 

(�, !, ") ∈ 3G. As shown in Figure 8, this new feature 
is modeled by resorting to an inhibitor arc.  

QC due date 

For a given QC / ∈ �, it must be guaranteed that / 

repositions to the final location ��� before the due date ��. So, whenever  �� < ∞, we model this requirement 

as shown in Figure 9. As shown in the figure, after �� − ��  time units from the ready time of QC /, an in-

hibitor arc is used to avoid that the schedule is com-
pleted. Clearly, from the time �� the inhibitor arc starts 

to inhibit the completion of QC / and thus the sink is 
never reached. As a result, the given schedule is unfea-
sible. 

qq rd −

 
Figure 9: Representation of the due date for a QC. 

 
As one may observe, the previous relation can be 

established between the “setup operation” and all the 
following operations: for simplicity, here we depict this 
requirement only between the “setup operation” and 
the “completion operation” of each QC. 

Time handling and rules for firing 

Since the problem at hand requires constructing the 
schedule such that the makespan is minimum, we in-
troduce some assumptions to define the mechanisms 
used to handle and to update the simulated time. In par-
ticular, we assume that each token in the TPN brings 
through the graph some necessary information: (i) a 
variable to memorize the time, say I�JIK; and (ii) a 
variable to save the index of the QC associated to the 
latest visited QC operation, say I�L�M. At time zero, 
for each token in the TPN is set I�JIK = 0 and I�L�M = �N��. A remark for the I�JIK variable is due. 
Every time a token traverses an arc with a weight �, 
then for this token it is set I�JIK = I�JIK + �. Thus, 
we can observe that each token has its own I�JIK val-
ue. Whenever a transition fires, a new token is returned 
for each outgoing arc. For each of these generated to-
kens, if the traversed transition is from an operation of 
a QC / ∈ �, then it is set I�L�M = /; otherwise, it is 
set I�L�M = �N��. Moreover, the I�JIK value is set 
equal to the largest time calculated overall the incom-
ing arcs, where the time is obtained for each arc as the 
sum of the I�JIK values of the token consumed from 

the incoming place plus the time from the incoming 
arc.  

An example of this approach is provided in Figure 
10. For illustrative purposes only, all the tokens are 
named (e.g. tok1, tok2, etc). Figure 10 is divided into 
two parts: the former (Figure 10(a)) and the latter (Fig-
ure 10(b)) show the net before and after the firing of 
the sole transition, respectively. The transition from the 
figure has three incoming tokens, say tok1, tok2 and 
tok3,  from three different places. Since the transition is 
enabled, it may fire, but has to wait until 20 unit of 
times are elapsed due to the weight of the incoming arc 
in the middle. Once that the transition fires, two gener-
ated tokens, say tok (clearly, they are identical) are put 
in the outgoing places. The I�JIK of each token tok is 
set such that I�JIK = 	LO{10, 5 + 20, 15} = 25. The I�L�M variable is set to q, since the transition belongs 
from an operation of QC q. 

Thus stated, the general rule to be applied when 
multiple transitions are enabled to fire is the “least de-
lay rule”, which implies that, given two transitions, the I�JIK value for an outgoing token is temporarily com-
puted, but only the QC with the smaller value of I�JIK 
is selected for firing. If the two I�JIK values are equals 
and there is only one incoming arc for both the transi-
tions, then both the transitions are enabled to fire; oth-
erwise, the transition enabled to fire is selected at ran-
dom (see for instance the case that models the “QC 
non-crossing and safety distance”, which implies non-
simultaneity between two “task operations” and so, that 
only one-out-of-two enabled transitions can fire). 

Finally, the last firing rule follows here. Given a 
QC / ∈ � such that �� < ∞, if at time �� there is a 

token in the “waiting begin” place of the “completion 
operation”, then the “start” transition of the same oper-
ation is enabled to fire; otherwise, the “start” transition 
becomes inhibited and therefore the schedule becomes 
unfeasible. 
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A detail from an operation from QC q
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Figure 10: Example of time update. Figure 10(a) and 

Figure 10(b) show, respectively, the clock of the tokens 

before and after that the transition fires.
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Figure 11: An example of a TPN model for the evaluation of a schedule in the QCSP. 

 

AN EXAMPLE OF THE TPN FOR THE QCSP 

An example of a TPN is provided here by starting 
from the instance illustrated in Figure 8 from Section 
3.4 from (Legato et al. 2012). The QCSP instance is 
defined by the set of tasks � ={1, 2, 3, 4 , 5, 6}, the set 
of QCs �={1, 2}. The pair of tasks (4, 5) and (5, 6) are, 
respectively, from the same bay. Furthermore we de-
fine the set of precedence relations 
 ={(4, 5), (5, 6)}. 
Moreover, we assume that task locations and the safety 
margin are given such that % = {(1, 2, 1, 2), (2, 3, 1, 
2), (3, 5, 1, 2), (3, 6, 1, 2), (4, 5, 1, 2), (4, 6, 1, 2)}. In 
addition, we assume that the lists of tasks assigned to 
the QCs are as follows: S1={1, 3, 4} and  S2={2, 5, 6}. 
The initial location of the QC 1 is in front of the bay of 
task 1 (which from the 4-tuple	(1, 2, 1, 2)	∈ % implies 
that (2, 2, 1)∈ 34, while the initial location of QC 2 is 
in front of the bay of task 6. For what concerns the fi-
nal location, we assume that both the QCs comes back 
to the initial location (i.e. initial and final location co-
incides): therefore, from {(3, 6, 1, 2), (4, 6, 1, 2)}	∈ % 
(or alternatively from {(3, 5, 1, 2), (4, 5, 1, 2)}	∈ %) we 
have that {(3, 1, 2), (4, 1, 2)}∈ 3G. Finally, no due 
date is set for both the QCs.  

Thus, in Figure 11 we report the model that de-
scribes this instance. Clearly, processing times as well 
as travel times are provided as generic values. In the 

proposed example, no due date is considered, so the 
relative modeling features are not reported. Moreover, 
from S2 comes that the precedence relation (5, 6) is im-
plicitly accounted and thus the relative constraint is not 
modeled. Finally, the two 3-tuples in 3G are not con-
sidered as well, since, according to the precedence rela-
tion (4, 5), both tasks 3 and 4 must be completed by 
QC 1 before that QC 2 can reposition to its final loca-
tion.  

Observations 

Some observations on the proposed TPN model are 
listed in the following. First, the travel time could be 
considered in a more concise way, but this would re-
move some interesting features of the model related to 
representation of the QC movements along the quay. 
Moreover, without a doubt, the size of the proposed 
model can be further reduced, e.g. by removing a lot of 
couples place-transition that are merely represented to 
model the start-finish events of each operation and are 
not involved in any kind of constraints (i.e., precedence 
relations, non-crossing, safety distance). Finally, ob-
serve that if the given task lists per QC or the ini-
tial/final location of the QCs are not compliant to a 
well-formed mathematical formulation, then the sink 
cannot be reached and therefore the corresponding 
schedule is assumed to be unfeasible. A mathematical 



formulation that tackles all these features will be pr
vided in a companion paper. 

CONCLUSIONS 

We have proposed a methodology for the constru

tion of the schedule for the vessel discharge and loa

ing operations of groups of containers 

pool of quay cranes in a maritime container terminal. 

The methodology is aimed to be used as 

evaluation method for the well known

Scheduling Problem. The methodology consists of a 

Timed Petri Net model. The proposed model provides a 

clear representation of the events that occur

vessel discharge/loading operations. Moreover, it pr

vides a simple set of rules to be used to construct the 

schedule under the objective of makespan m

tion. The proposed TPN model can be 

and analyzed through any of the several available tools, 

like GreatSPN (Ajmone Marsan 1995; Baarir et al. 

2009). Finally, a black-box Java implementation of the 

simulation model is freely available upon request

author or at the author’s website. 

 

ACKNOWLEDGEMENTS 

The author thanks Prof. Pasquale Legato

Università della Calabria, Italy) for his teaching and 

mentoring effort that have been a springboard for the 

writing of this paper. Moreover, the author would like 

to thank the four anonymous reviewers

able comments and suggestions to improve the

 

REFERENCES 

S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli, 

G. Franceschinis, “The GreatSPN tool: recent enhanc

ments”.  Performance Evaluation Review,

4–9, 2009.  

C. Bierwirth, F. Meisel, “A fast heuristic for quay crane 

scheduling with interference constraints”. 

Scheduling, vol. 12, pp. 345–360, 2009. 

C. Bierwirth, F. Meisel, “A survey of berth 

quay crane scheduling problems in container 

 European Journal of Operational Research

615–627, 2010. 

J. H. Chen, D. H. Lee, M. Goh, “An effective mathematical 

formulation for the unidirectional cluster

crane scheduling problem”. European Journal of Oper

tional Research, vol. 232(1), pp. 198–208, 2014.

C. Girault, R. Valk, “Petri Nets for systems engineering: a 

guide to modeling, verification, and applications”. 

Springer, 2003.  

C. Daganzo, “The crane scheduling problem

Research Part B, vol. 23(3), pp.159–175

K. Kim, Y. Park, “A crane scheduling met

tainer terminals”. European Journal of Operations R

search, vol. 156, pp. 752–768, 2004. 

P. Legato, D. Gullì, R. Trunfio, “The quay 

problem at a maritime container t

the 22th European Conference on Modelling and Simul

tion (ECMS 2008), pp 53–59. Nicosia (Cyprus), June 3

2008a. DOI: 10.7148/2008-0053. 

P. Legato, D. Gullì, R. Trunfio, R. Simino, 

maritime container terminal: models and 

frameworks”. Proc. of the 22th European Conference on 

 

formulation that tackles all these features will be pro-

methodology for the construc-

the vessel discharge and load-

rations of groups of containers by means of a 

pool of quay cranes in a maritime container terminal. 

The methodology is aimed to be used as the makespan 

evaluation method for the well known Quay Crane 

The methodology consists of a 

The proposed model provides a 

tation of the events that occur during the 

Moreover, it pro-

vides a simple set of rules to be used to construct the 

schedule under the objective of makespan minimiza-

be implemented 

and analyzed through any of the several available tools, 

(Ajmone Marsan 1995; Baarir et al. 

Java implementation of the 

upon request to the 

Pasquale Legato (DIMES, 

for his teaching and 

been a springboard for the 

he author would like 

to thank the four anonymous reviewers for their valu-

able comments and suggestions to improve the paper. 

S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli, 

tool: recent enhance-

iew, vol. 36 (4), pp. 

C. Bierwirth, F. Meisel, “A fast heuristic for quay crane 

scheduling with interference constraints”. Journal of 

 

erth allocation and 

ontainer terminals”. 

European Journal of Operational Research, vol. 202, pp. 

J. H. Chen, D. H. Lee, M. Goh, “An effective mathematical 

rectional cluster-based quay 

European Journal of Opera-

208, 2014. 

, “Petri Nets for systems engineering: a 

guide to modeling, verification, and applications”. 

The crane scheduling problem”. Transportation 

175, 1989. 

K. Kim, Y. Park, “A crane scheduling method for port con-

European Journal of Operations Re-

crane deployment 

terminal”. Proc. of 

22th European Conference on Modelling and Simula-

59. Nicosia (Cyprus), June 3-6, 

Simino, “Simulation at a 

odels and computational 

22th European Conference on 

Modelling and Simulation 

Nicosia (Cyprus), June 3-6, 2008

0261. 

P. Legato, D. Gullì, R. Trunfio, “Modelling, 

optimization of logistic systems”.

pean Modeling and Simulation Symposium (Simulation in 

Industry) (EMSS 2008), ISBN: 978

569–578. Amantea (Italy), September 17

P. Legato, R. Trunfio, F. Meisel

quay crane scheduling problems

tions Research, vol. 39(9), pp. 2063

DOI: 10.1016/j.cor.2011.09.025

P. Legato, R. Trunfio, “A local branching

for the quay crane scheduling problem under unidire

tional schedules”. 4OR - A Quarterly Journal of Oper

tions Research, 2013. DOI: 

J. Liu, Y.W. Wan, L. Wang, “Quay crane scheduling at co

tainer terminals to minimize the maximum

ness of vessel departures”. Naval Research Logistics

53(1), pp. 60–74, 2006. 

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. 

Franceschinis. Modelling with Generalized Stochastic P

tri Nets. J. Wiley, 1995. 

G. Mejía, C. Montoya, “Applications of resource assignment 

and scheduling with Petri Nets and heuristic search”. 

nals of Operations Research

2010. 

C. A. Petri, “Kommunikation mit 

University of Bonn, 1962. 

M. Pinedo, “Scheduling theory, 

Prentice Hall, 2002. 

D. Steenken, S. Voß, R. Stahlbock, “Container terminal ope

ation and operations research 

ture review”, in OR Spectrum, vol. 26, pp. 3

R. Stahlbock, S. Voß, “Operations research at container te

minals - a literature update”, OR Spectrum, vol. 30, pp. 

1–52, 2008. 

R. Trunfio, “A note on: A modified generalized extremal o

timization algorithm for the quay crane scheduling pro

lem with interference constraint

zation, in press, 2014. 

W. M. P. van der Aalst, “Petri net based scheduling”. 

Spektrum, vol. 18(4), pp. 219

10.1007/BF01540160. 

R. Zurawski, “Petri nets and industrial applications: A tutor

al”. IEEE Transactions on 

41(6), pp.567–583, 1994. DOI: 

 

 

AUTHOR BIOGRAPHY 

ROBERTO TRUNFIO 

in Operations Research at the 

Department of Electronics, Informatics 

and Systems (DEIS), University of 

Calabria, Italy, in 2009. He has been 

senior engineer at NEC where he has 

worked on optimization and simulation 

techniques applied to logistics. He currently holds a 

PostDoc at LabDoc (University of Calabria). His  

research interests include decision support systems, 

discrete-event simulation models, simulation

optimisation, optimization algorithms

ontologies, text mining, natural language processing

His home page is at www.roberto.trunfio.it

 

 

 (ECMS 2008), pp 261–269. 

6, 2008b. DOI: 10.7148/2008-

R. Trunfio, “Modelling, simulation and 

ystems”. Proc. of the 20th Euro-

pean Modeling and Simulation Symposium (Simulation in 

), ISBN: 978-88-903724-0-7, pp. 

578. Amantea (Italy), September 17-19, 2008c. 

F. Meisel, “Modeling and solving rich 

roblems”. Computers and Opera-

, vol. 39(9), pp. 2063–2078, 2012. 

10.1016/j.cor.2011.09.025. 

A local branching-based algorithm 

for the quay crane scheduling problem under unidirec-

A Quarterly Journal of Opera-

DOI: 10.1007/s10288-013-0235-2. 

J. Liu, Y.W. Wan, L. Wang, “Quay crane scheduling at con-

tainer terminals to minimize the maximum relative tardi-

Naval Research Logistics, vol. 

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. 

Modelling with Generalized Stochastic Pe-

, “Applications of resource assignment 

Petri Nets and heuristic search”. An-

nals of Operations Research, vol. 181(1), pp. 795–812, 

“Kommunikation mit automaten”. PhD thesis. 

heory, algorithms, and systems”. 

D. Steenken, S. Voß, R. Stahlbock, “Container terminal oper-

ation and operations research - a classification and litera-

ture review”, in OR Spectrum, vol. 26, pp. 3-49, 2004. 

R. Stahlbock, S. Voß, “Operations research at container ter-

a literature update”, OR Spectrum, vol. 30, pp. 

A note on: A modified generalized extremal op-

timization algorithm for the quay crane scheduling prob-

lem with interference constraints”, Engineering Optimi-

P. van der Aalst, “Petri net based scheduling”. OR 

, vol. 18(4), pp. 219–229, 1996. DOI: 

and industrial applications: A tutori-

IEEE Transactions on Industrial Electronics, vol. 

583, 1994. DOI: 10.1109/41.334574. 

ROBERTO TRUNFIO gained a Ph.D. 

in Operations Research at the 

Department of Electronics, Informatics 

and Systems (DEIS), University of 

Calabria, Italy, in 2009. He has been 

senior engineer at NEC where he has 

worked on optimization and simulation 

stics. He currently holds a 

(University of Calabria). His  

research interests include decision support systems, 

event simulation models, simulation-based 

optimization algorithms, semantic web, 

g, natural language processing.

www.roberto.trunfio.it. 




