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ABSTRACT 

The paper presents simulation results of the cascade 
control of a continuous stirred tank reactor. The control 
is performed in primary and secondary control-loops 
where the primary controlled output of the reactor is the 
concentration of a desired reaction product, and, the 
secondary output is the reactant temperature. A common 
control input is the coolant flow rate. The controller in 
the primary control-loop is a P-controller with the gain 
calculated using simulated or measured steady-state 
characteristics of the reactor. The controller in the 
secondary control-loop is an adaptive controller. The 
proposed method is verified by control simulations  
 
INTRODUCTION 

The cascade control method allows the control of 
processes with a main and secondary controlled variable 
and with a single control input. The method is especially 
useful when a main controlled output can be measured 
only in longer time intervals and with an additional 
output measurable in shorter time periods.  Principles of 
the cascade control are described e.g. in (Bequette 2006; 
Mahoney et al. 2006; Seborg et al. 1989; Smuts 2011). 
Chemical reactors are typical processes suitable for a 
use of the cascade control. In cases of non-isothermal 
reactions, concentrations of the reaction products mostly 
depend on a temperature of the reactant. Further, it is 
known that while the reactant temperature can be 
measured almost continuously, concentrations are 
usually measured in longer time intervals. Then, the 
application of the cascade control method can lead to 
good results. In this paper, the cascade control 
description of a continuous stirred tank reactor (CSTR) 
with results of control simulations is presented.  
CSTRS are apparatus widely used in chemical industry, 
biotechnologies, polymer manufacturing, and many 
others. From the system theory point of view, CSTRs 
belong to a class of nonlinear systems with 
mathematical models described by sets of nonlinear 
differential equations as it can be seen e.g. in (Smith 
2005; Corriou 2004).  
Here, in the cascade control-loop, the concentration of a 
desired product of reactions is considered as the primary 

controlled variable, and, the reactant temperature as the 
secondary controlled variable. The coolant flow rate 
represents a common control input.  
The primary control variable is measured in discrete 
time intervals. The primary controller determining the 
set point for the secondary (inner) control-loop is a 
discrete nonlinear proportional controller derived on the 
basis of steady-state characteristics of the reactor. Since 
the controlled process is nonlinear, a continuous-time 
adaptive controller is used as the secondary controller. 
The procedure for the adaptive control design in the 
inner control-loop is based on approximation of the 
nonlinear model of the CSTR by a continuous-time 
external linear model (CT ELM) with recursively 
estimated parameters. In the process of parameter 
estimation, the direct method by (Rao and Unbehauen 
2006); Garnier and Wang 2008) is used. The control 
loop with two feedback adaptive controllers is used, see, 
e.g. (Dostál et al. 2007). The resulting controllers are 
derived by the pole placement method, see, e.g. 
(Grimble 1993; Kučera 1993; Brogan 1991; Franklin et 
al. 2006). 
The cascade control is verified by simulations on the 
nonlinear model of the CSTR.    
 
NONLINEAR MODEL OF THE CSTR 

Consider a CSTR with exothermic reactions according 

to the scheme
1k

A B→ , 
2

2
k

B C→  and with a perfectly 
mixed cooling jacket. The desired product is the 
component B. Using usual simplifications, the model of 
the CSTR is described by four nonlinear differential 
equations 
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derivatives take forms  
3 27.1282 0.6968 2.6767 0.8718s

Bc ξ ξ ξ= − + + +  (10) 

 221.3846 1.3936 2.6767
s
Bd c

d
ξ ξ

ξ
= − + +  (11) 

in the first operating interval, and,  

 3 23.3209 7.8785 4.5473 0.847s
Bc ξ ξ ξ= − + +   (12) 

 29.9627 15.757 4.5473
s
Bd c

d
ξ ξ

ξ
= − +   (13) 

in the second operating interval. 
Steady-state characteristics in both intervals together 
with their approximations are in Figs. 4 and 5. 
 

 
Figure 4: Steady-state characteristics in the interval 1. 

 

 
Figure 5:  Steady-state characteristics in the interval 2. 

 
Now, a difference of the desired value of the reactant 
temperature in the output of the PC can be computed for 
each cB as 

 ( )
B

U L
r w w r r B w

B c

dT G T T c
d c
ξ⎛ ⎞

Δ = − Δ⎜ ⎟
⎝ ⎠

 (14) 

where Gw is a selectable gain coefficient. 
The derivative in (14) is calculated from inversion of 
(11) and (13). 
 
ADAPTIVE CONTROLLER DESIGN 

The steady-state dependence of the reactant temperature 
on the coolant flow rate can be seen in Fig. 6. Its 
nonlinearity is evident.  

It should be noted that the desired temperature value 
shall not be from the interval  333.5 < Tr < 335.5. This 
requirement can be fulfilled by programming means. 
 
External Linear Model of the CSTR 

For the control purposes, the controlled output and 
the control input are defined as  

 
Figure 6: Steady-state dependence of reactant 

temperature on the coolant flow rate. 
 

 ( ) ( ) ( ) , ( ) ( )s s
r r r c cy t T t T t T u t q t q=Δ = − = − . (15) 

The CT ELM is proposed in the time domain on the 
basis of preliminarily simulated step responses in the 
form of the second order differential equation 
 1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (16) 

and, in the complex domain as the transfer function 

 0
2

1 0

( )
b

G s
s a s a

=
+ +

. (17) 

CT ELM Parameter Estimation 

The method of the CT ELM parameter estimation can 
be briefly carried out as follows. 
Since the derivatives of both input and output cannot be 
directly measured, filtered variables uf and yf are 
established as outputs of filters  
 )()()( tutuc f =σ  (18) 

 )()()( tytyc f =σ  (19) 

where d dtσ =  is the derivative operator, c(σ) is a 
stable polynomial in σ that fulfills the condition 
deg ( ) deg ( )c aσ σ≥ .  
Note that the filter time constants must be smaller than 
the time constants of the process. Since the latter are 
unknown at the beginning of the estimation procedure, 
it is necessary to make the filter time constants, selected 
a priori, sufficiently small. 
With regard to (17), the polynomial a takes the concrete 
form 2

1 0( )a a aσ σ σ= + +  , and, the polynomial c can 

be chosen as 2
1 0( )c c cσ σ σ= + +  . Subsequently, the 

values of the filtered variables can be computed during 
the control by a solution of (18) and (19) using some 
standard integration method. 
It can be easily proved that the transfer behavior among 
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In this paper, the polynomial d with roots determining 
the closed-loop poles is chosen as 

 2( ) ( ) ( )d s n s s α= +  (38) 

where n is a stable polynomial obtained by spectral 
factorization 

 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (39) 

and α is the selectable parameter. 
The coefficients of n then are expressed as  

 2
0 0n a= ,  2

1 1 0 02 2n a n a= + −  (40) 

and, the controller parameters p0 and t can be obtained 
from solution of the matrix equation 
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where 

 
2

3 1 2 1 0
2 2

1 0 1 0 0

2 , 2

2 ,

d n d n n

d n n d n

α α α

α α α

= + = + +

= + =
. (42) 

Now, it follows from the above introduced procedure 
that tuning of controllers can be performed by a suitable 
choice of selectable parameters β and α. 
The controller parameters r and q can then be obtained 
from (37). 
  
SIMULATION RESULTS 

The goal of simulations is to show the effect of 
selectable parameters on the control courses. In this 
paper, the control simulations were performed only in 
the first operating interval. 
The simulations started at the starting point  
cA

s = 1.6677 kmol/m3, cB
s = 1.1311 kmol/m3, 

Tr
s = 323.4 K, Tc

s = 300.5 K and qc
s = 0.18 m3/min. In 

all simulations, the desired value cBw = 1.6 kmol/m3
 has 

been chosen. For the start (the adaptation phase), the P 
controller with a small gain was used in all simulations. 
An effect of the parameter Gw on the control is evident 
from Figs. 8 – 10.  An increasing Gw accelerates all 
signals in the control loop. However, its value is not 
unrestricted and its convenient value should be found 
experimentally. 
An effect of the period ts in the same operating interval 
can be seen in Figs. 11 – 13. Although shortening ts 
leads to faster control responses, its length is determined 
by measurement possibilities. The tendency to 
overshoots at small measurement periods can be 
suppressed by selecting a lower gain Gw. 
An influence of the closed- loop pole α on the control 
responses can be seen in Figs. 14 – 16. Choosing a 
higher α values can lead to oscillations. 
The last group of simulations in Figs. 17 - 19  shows an 
influence of the parameter β2 on the control courses. 
Here were chosen only by his extreme values. It can be 
seen that in an favorable choice of other parameters, the 

control quality can be improved just by a suitable option 
of parameters β. 

 
Figure 8: Effect of Gw: Reference Signal Courses  

(ts = 10, α = 0.1, β1 = β2 = 1). 
 

 
Figure 9: Effect of Gw: Reactant Temperature 

Responses (ts = 10, α = 0.1, β1 = β2 = 1). 
 

 
Figure 10: Effect of Gw: Concentration Responses 

 (ts = 10, α = 0.1, β1 = β2 = 1). 

 
Figure 11: Effect of ts: Reference Signal Courses 

 (Gw = 0.1, α = 0.1, β1 = β2 = 1). 
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Figure 12: Effect of ts: Reactant Temperature 

Responses (Gw = 0.1, α = 0.1, β1 = β2 = 1). 
 

 
Figure 13: Effect of ts: Concentration Responses 

(Gw = 0.1, α = 0.1, β1 = β2 = 1). 
 

 
Figure 14: Effect of α: Reference Signal Courses 

(Gw = 0.15, ts = 10 , β1 = β2 = 1). 
 

 
Figure 15: Effect of α: Reactant Temperature 

Responses (Gw = 0.1, ts = 10, β1 = β2 = 1). 

 
Figure 16: Effect of α: Concentration Responses 

(Gw = 0.1, ts = 10, β1 = β2 = 1). 
 

 
Figure 17: Effect of β: Reference Signal Courses 

(Gw = 0.15, ts = 10 , α = 0.15). 
 

 
Figure 18: Effect of β: Reactant Temperature 

Responses  (Gw = 0.15, ts = 10 , α = 0.15). 
 

 
Figure 19: Effect of β: Concentration Responses 

 (Gw = 0.15, ts = 10 , α = 0.15). 
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CONCLUSIONS 

The paper deals with the cascade control of a 
continuous stirred tank reactor. A necessary condition 
for a use of the presented method is measurement of a 
main product of the reaction taking place in the reactor. 
The control is performed in the external and inner 
closed-loop where the concentration of a main product 
is the primary and the reactant temperature the 
secondary controlled variable. A common control input 
is the coolant flow rate. 
The controller in the external control-loop is a discrete 
nonlinear P-controller derived on the basis of steady-
state characteristics of the reactor. The inner control-
loop consists of two adaptive feedback controllers. For 
their derivation, the recursive parameter estimation, the 
polynomial approach and the pole placement method 
are applied. 
The paper contains numerous simulations documenting 
the influence of each selectable controller parameters on 
the control. 
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