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ABSTRACT 

This paper studies simulations of a possible appliance of 

an explicit form of the model predictive control method. 

Targeted system is a heat exchanger burdened with a 

time-delay. An approach is formulated within the 

MATLAB/SIMULINK development environment as 

well as the resulting simulation. The conclusion evalu-

ates resulting system behaviour with focus on condi-

tions in areas of practice benefiting from its use. 

INTRODUCTION 

Efforts to maximize the control precision of the indus-

trial processes lead to an increased use of advanced 

control methods. The ability to optimize the control 

under the given circumstances and work with prediction 

of system behaviour has brought a significant attention 

towards the Model Predictive Control (MPC) methods. 

With efforts to implement control algorithms into a 

maximum number of systems appeared a requirement to 

decrease high computing demands necessarily connect-

ed with optimization procedures (Qin & Badgwell, 

2003), (Xi et al., 2013). In order to allow an expansion 

to fast processes a number of modifications was pre-

sented. A radical course was set with an explicit form of 

the MPC (EMPC) presented by (Bemporad et al., 2000). 

The essential principle was to solve the optimization 

task outside of the control process. 

This was extended in (Bemporad et al., 2002) for case 

of linear systems with constraints leading to multipara-

metric linear programming where were also discussed 

some issues connected with certain optimization meth-

ods. The explicit approach has been applied to control 

electrical drives (Linder & Kennel, 2005) experimental-

ly proving applicability of this method. (Mariéthoz & 

Morari, 2008) proposed and experimentally tested a 

control strategy for a PWM inverter with attention to a 

switched behaviour of a converter. Results provided a 

good dynamic performance. Furthermore (Bolognani et 

al., 2011) tested controlling a synchronous motor drive 

with attention to possible modifications improving the 

performance. 

In the effort to enable a faster control (Johansen & Gra-

nacharova, 2003) developed a search tree based real-

time computation algorithm decreasing the computa-

tional complexity with a guarantee of stability and 

achievement of constraints. As with many functional 

simplifications, even in the case of EMPC a loss of 

certain functions occurred. The main reason lies in the 

fact that the extern optimization can compute with a 

limited amount of parameters. This prevents the in-

volvement of a change in a desired trajectory, a measur-

able disturbance and so on. To overcome limitations of 

each individual approach (Zeilinger et al., 2008) pro-

posed a combination of implicit and explicit methods 

aiming to satisfy needs of performance and computation 

time. As a result a hybrid control method was developed 

claiming suitability for most of general cases of sys-

tems. Despite getting increased attention due to its suit-

ability to control fast processes, the necessary simplifi-

cations caused losing of several important aspect of on-

line computed predictive control. Considering a poten-

tial loss of quality by using the explicit form due to its 

missing attributes a question arises whether its benefits 

still outnumber attached disadvantages. 

This paper demonstrates differences between the implic-

it and the explicit form of the MPC control in case of a 

time-delayed system. Additionally a comparison of 

aspects aims to discuss preferable types of systems to 

control in the explicit way. The first section describes an 

example of both implicit and explicit control approaches 

intended to control a system with time-delay. The next 

segment contains simulated outcomes of a control pro-

cess. The last part studies conditions determining a 

preferable version of the predictive control. 

MODEL PREDICTIVE CONTROL 

The principle of the model based predictive control lies 

in using an internal model which estimates a controlled 

system future development based on a current control 

input. The control approach is computed by an optimi-

zation task nearing a system output to a desired value. 

With the predicted outputs involved in the computations 

this technique is a suitable way of controlling systems 

with time-delay as the predicted output replaces the 

control feedback. Therefore the controller is able to 

compute with outputs before they have even happened. 

The resulting quality of the control process highly de-
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pends on the precision of the internal model. Another 

benefit of this approach is a possibility to include a 

future development of the desired trajectory and there-

fore optimize a transition of the output value (Normey-

Rico & Camacho, 2007). 

 
Figure 1: Structure of the Model Predictive Control 

The optimization task itself is realized by minimizing an 

objective function containing the essential parameters of 

the control process. These parameters are so mathemati-

cally formulated that minimization of the objective 

function results in the best possible outcome. The gen-

eral form of the objective function includes a difference 

between the estimated output values and the future de-

sired trajectory on one hand, on the other differences in 

the future control input. The balance between these 

parts is determined by weighting values and their ratio. 

The general expression of the objective function is  
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where δ(i) and λ(i) are weighting values. 

The number of estimated steps and naturally the com-

plexity of calculation are determined by horizons N1 and 

N2 called minimal and maximal horizon while Nu as a 

control horizon limits the calculation of control input 

changes (Camacho & Bordons, 2004). 

The optimization task produces a series of control input 

values from which only the first one is applied into the 

control process. In the next sampling step the whole 

procedure is repeated based on new updated information 

about the system states. Due to involvement of the fu-

ture desired trajectory development the system is able to 

optimize the control for changes that are about to hap-

pen; therefore the process does not have to wait for the 

time of change in the desired value and it can start ad-

justing several sampling steps ahead. This enables a 

fluent transition during sudden changes in the desired 

trajectory. The concept of applying the first control 

value and repeating the optimization at each sampling 

step is called a receding horizon strategy which is illus-

trated in Figure 2. 

 

Figure 2: Receding Horizon Strategy 

The estimation of the future output values is based on a 

combination of free and forced response with the super-

position principle. The free response f is given by a 

prediction with a constant input. The forced response 

calculated from a series of control input values and 

system parameters. 

 fGuy ˆ . (2) 

The optimal series of control inputs is then gained from 

searching for the minimal value of the objective func-

tion (1) while the output estimation is received from (2). 

The following section describes a predictive control 

approach based on state-space internal model (Haber et 

al., 2011). 

State-space model based predictive control 

The implementation of the state-space internal model 

into the predictive control requires a state observer 

which increases the computation demands. Nonetheless, 

benefits of this approach are an easier application to 

multi-input multi-output (MIMO) systems and a possi-

bility to include conditions regarding system states into 

the optimization. 

In order to apply this internal model it needs to be trans-

formed from the traditional structure into an incremental 

form, which enables using the aforementioned objective 

function (1). 

While the generic discrete state-space system is given as 
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then with the definition of the control input increment 
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is the new version written as 
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while the effect of matrix D is neglected. 

By extending the vector of states by a previous control 

input an incremental structure is received 



 

  















































 

)1(

)(
0)(

)(
)1(

)(

0)(

)1(

ku

kx
ky

ku
ku

kx

ku

kx

C

I

B

I

BA

 (6) 

This can be rewritten into a shorter version 
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The future outputs estimation is derived from new ver-

sions of the system matrices while the equation (2) is 

computed using matrices 

 













































NN
AC

AC

AC

F

BCBAC

BCBAC

BC

G

~~

~~

~~

,

~~~~~

~~~~~
00

~~

2











 (8) 

when the free response is received from  

 )(~ kxFf   (9) 

resulting in series of output values for case of constant 

control input. Here should be noted that in case of time-

delayed system the content of the matrix F is shifted by 

a number of delayed sampling steps d ahead. 

The series of control inputs is then calculated by finding 

the minimum of the objective function (1). The search 

for the extreme could be simplified to a derivation of the 

task by the control input while neglecting constrains in 

the following equation 

 )()( 1 wfQGRQGGu   TT   

Where matrices Q and R represent weighting parame-

ters (Shields et al., 2006). 

Explicit form of predictive control 

In order to decrease the significant computation de-

mands that are present in the above described implicit 

version of predictive control, a transformation of the 

computing process has been made. The struggle aims to 

transfer the complex computations from each sampling 

step of the control process out into the preparatory 

phase. Mainly the optimization task as the most de-

manding area needs to be solved before the start of the 

control process. As state of the process can obviously 

vary during the control phase, the optimization needs to 

be performed for as much cases as possible. The result 

is a function depending on the current state of the pro-

cess giving the key element for the control input compu-

tation (Bemporad et al., 2002). 

In order to keep the number of computations in the 

preparatory phase reasonably small and the complexity 

of control phase low, an amount of simplifying varia-

tions was presented. As a reasonable approximation 

designated areas restricted to intervals of state values 

were created. Determining the proper region can have 

fixed rules or be based on a specialized algorithm. In 

each of these areas the control input computation is 

based on constant coefficients, therefore the final com-

putation of the input requires only basic relation be-

tween the state and the corresponding constant. 

Before the start of the control process the optimization 

task of the objective function (1) is performed for de-

termined range of values of system states creating a 

function dependant on states as coordinates. With suffi-

cient amount of calculations an estimation of the func-

tion can be made. The whole function shape is split into 

regions determined either by an approximating algo-

rithm further increasing computation demands, or fixed 

borders often unable to capture essential shapes of the 

function. The control phase in ideal case needs only 

current values of process states emphasizing the need of 

state identifier. Received values represent coordinates 

determining region of approximation where the control-

ler is currently located. Based on the parameters gained 

in the starting phase from the optimization task the 

control input value for the current step is calculated. 

In order to regulate the output value not towards zero, 

but in the direction of the desired trajectory, there needs 

to be involved a difference between the estimated and 

the desired output. The control law is therefore directed 

to minimize the control deviation instead of the pure 

value of the state. A procedure of including the time-

delay compensation into the control law requires a cal-

culation of a system free response for a sufficient num-

ber of steps into the future. This method applies an F 

matrix from equations (8) and (9), where similarly to the 

implicit control approach the focus is towards the value 

in position d + 1 estimating the output after the delay. 

Furthermore, with the knowledge of the desired trajecto-

ry and by including its future value instead of the cur-

rent one, the negative effect of the delay can be partially 

eliminated. Due to the computation with only a single 

value of output deviation given by the principle of 

EMPC, the controller is unable to prepare for a future 

change in the desired trajectory without still remaining 

near to its present value. 

EXPERIMENTAL LABORATORY HEAT 

EQUIPMENT 

A scheme of the laboratory heat equipment (Pekař et al., 

2009) is described in Figure 3. The heat transferring 

fluid (e. g. water) is transported using a continuously 

controllable DC pump (F) into a flow heater (A) with 

max. power of 750 W. The temperature of a fluid at the 

heater output T1 is measured by a platinum thermome-

ter. Warmed liquid then goes through a 15 meters long 

insulated coiled pipeline (B) which causes the signifi-

cant delay (20 – 200 s) in the system. The air-water heat 

exchanger (C) with two cooling fans (D, E) represents a 

heat-consuming appliance. The speed of the first fan can 

be continuously adjusted, whereas the second one is of 

on/off type. Input and output temperatures of the cooler 

are measured again by platinum thermometers as T2, 

respective T3. The platinum thermometer T4 is dedicated 

for measurement of the outdoor-air temperature.  The 

laboratory heat equipment is connected to a standard PC 

via technological multifunction I/O card MF 624. This 



card is designed for the need of connecting PC compati-

ble computers to real world signals. The card is de-

signed for standard data acquisition, control applications 

and optimized for use with Real Time Toolbox for 

SIMULINK. The MATLAB/SIMULINK environment 

was used for all monitoring and control functions. 

 

 
Figure 3: Scheme of Laboratory Heat Equipment 

CONTROL PROCESS SIMULATION 

In the following section will be described simulations of 

applying the control algorithms to a simple stable non-

oscillatory system first and then the above mentioned 

heat exchanger. 

Values of horizons specifying the predictive control 

computations were set based on the system step re-

sponse to hold most of the function. Values of the max-

imal and control horizons were in both cases established 

to 50 sampling steps and for the heat system the mini-

mal horizon was moved to 2 due to the time-delay ef-

fect. Weighting values were both set to 1 to equally 

distribute optimization calculations. 

System states were periodically estimated by a state 

observer as a part of the control process. 

A shape of the desired trajectory was designed to 

demonstrate various difficulties of a regulation. The first 

stage has a shape of step change up followed by a step 

change down. The next part has similar form but with 

ramp shaped changes providing a constant increase of 

the desired trajectory. The trajectory ends with a stage 

of constant value to stabilize the output. 

Testing system 

System parameters were selected to provide a simple 

stable process with a significant time-delay of 5 sam-

pling steps in order to demonstrate variations in use of 

implicit and explicit approaches. 

The system transfer function is 
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Regulation results gained by using implicit and explicit 

control methods can be seen on following figures. 

 
Figure 4: Implicit MPC Process with Time-Delay 

 
Figure 5: Explicit MPC Process with Time-Delay 

Figures 4 and 5 reveal some small differences in the 

control procedure. The most obvious one is the response 

to the desired trajectory where in case of the explicit 

control the reaction is delayed up to the time of the 

current change in the desired value. This is caused by its 

inability to compute with the further future changes of 

the desired trajectory as it would immensely increase 

computation demands. Therefore the controller is una-

ble to perform a smooth preparation for the step change 

unlike the implicit control method. Furthermore, in the 

stage of ramp shaped desired trajectory is a noticeable 

gap creating an extended control error. The cause of this 

pattern originates in the estimation of the constant de-

sired value as the controller can operate only with one. 

Nevertheless, this particular effect could be negated by 

providing the algorithm a desired trajectory shifted 

more towards the future, specifically in the area of 

ramps. 

Heat exchanger 

The laboratory heat model was identified with the recur-

sive least square method giving the discrete result as a 

stable second order non-oscillatory system described by 

the following transfer function 
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with a sampling period of 60 seconds. 

In state-space expression 
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The duration of the time-delay with the current setting 

was measured to be approximately 120 seconds which is 

fitting to two sampling intervals. 

 
Figure 6: Implicit MPC Process of the Heat System 

 
Figure 7: Explicit MPC Process of the Heat System 

Results of simulated control process are illustrated in 

Figure 6 for an implicit MPC and on Figure 7 for an 

explicit method. The effect of the time-delay is de-

creased by computing with future values of the desired 

trajectory, consequently the controller reacts in the actu-

al moment of the required change. 

Aside from the differences mentioned in the evaluation 

of the previous simulation the explicit version displays 

overshoots after step changes of the desired trajectory. 

Unlike the implicit optimizing approach, the explicit 

form is unable to compute with the whole past and fu-

ture system dynamic. This would require too high com-

puting power which would be in conflict with the origi-

nal purpose of the explicit strategy. As an easier solu-

tion, the end of a transition between distant desired 

levels can be smoothed by modifying weighting param-

eters of the optimization task to prioritize the control 

precision. 

In order to numerically evaluate the quality of both 

control method ISE criterion was selected 
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This criterion was applied on simulations of the heat 

model visualized in Figures 6 and 7. 

Table 1: ISE Criterion Comparison 

Method ISE criterion value 

Implicit 3,35·10
4
 

Explicit 5,52·10
4
 

As can be seen in Table 1 the implicit version provides 

a better quality due to above mentioned properties. 

Considering the computation complexity of both meth-

ods it is safe to assume the significantly easier on-line 

computation of the explicit version as it replaces the 

optimization task with a few multiplication operations. 

To verify this times of computations occurring in simu-

lations were measured. 

Table 2: Times of Computations 

Method Preparatory Control - 467 steps 1 step 

Implicit - 136,07s 0,2914s 

Explicit 60,20s 1,77s 0,0038s 

Table 2 describes how much time was required to per-

form computations for each method. The implicit ap-

proach calculates optimal constrained control series 

directly during the control phase consisting of 467 sam-

pling steps. The explicit one is divided to the preparato-

ry phase creating necessary optimizations and the con-

trol phase. Demands of the preparatory computations 

creating variations of regions dependent on system 

states highly rely on the applied optimization and map-

ping algorithms therefore offering a vast range of possi-

bilities to decrease this particular time. 

CONCLUSION 

The paper compares an application of two strategies of a 

predictive control method to a laboratory heat system 

burdened with time-delay. Outcomes of simulations 

prove both methods to be feasible solutions for a time-

delayed system. 

However differences in control processes suggest signif-

icantly contrasting areas of application. 

A much lower computing complexity of the explicit 

method during the control process offer an approach to 

control fast processes with lower needs of computing 

hardware. 

The presence of time-delay is successfully compensated 

in both strategies and brings an equal vulnerability to 

unexpected effects for each of them. The case of large 

number of delay steps tends to be more disadvantageous 

for the explicit form as can increase computing demands 

above expected amounts. 

Without the knowledge of the future desired value de-

velopment the process loses a significant amount of 

precision which is especially disadvantageous in a time-

delayed system control. The use of implicit optimizing 

strategy would then lose a great benefit of optimizing 

the process with attention to the future development and 

consequently degrade the overall quality to computation 

demand ratio. 

The explicit approach, however, does not enable expan-

sion of the control process with an adaptation function 



as it would require repeating the whole initial computa-

tions. This repetition would dramatically increase com-

putational complexity during the regulation making the 

explicit principle contra productive and ultimately 

pointless. Therefore the use of the explicit form is lim-

ited to cases estimated during the algorithm design. 

The future research work will focus on expanding the 

precision of the explicit form and its flexibility under 

external conditions. 
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