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ABSTRACT

The basic problem for developers of monitoring systems
for technological processes is to exclude the false alarms.
False alarms generate the interruption of technological
process and lead to the manual analysis of the reasons
of the wrong system behavior.

In the paper it is offered to use the statistical tech-
niques with probabilities of false alarms equal to zero.
This class of statistical decisions is based on concept of
bans of probability measures in a finite space. Condi-
tions under which powers of statistical criteria accept
value 1 on a finite step are found. These conditions are
formulated in terms of supports of probability measures.

INTRODUCTION

The paper deals with the mathematical model of mon-
itoring of a technological system behavior with finite
set of states. Suppose that such monitoring systems
solve the task with the help of statistical techniques. In
the mathematical models the trajectories of functioning
of such system are represented by infinite sequences in
which each coordinate accepts value in the finite fixed
alphabet.

Application of statistical techniques on a set of infinite
sequences demands a probability measure P which de-
scribes the correct behavior of analyzable system. The
wrong system behavior is described by a probability dis-
tribution Q. Different wrong behaviors of the technolog-
ical system can be described by different distributions of
probabilities on space of the infinite sequences. However
in the elementary case it is possible to assume that dis-
tribution of the wrong behavior of technological system
is unique and known.

In practice the monitoring system of technological
process observes initial sections of trajectories and for
each step n it tests the hypothesis H0, n that the distri-
bution of the observed section of trajectory is defined
by probablity distribution measure Pn which is the pro-
jection of measure P on the first n coordinates. The
alternative hypothesis H1, n in the elementary case is
defined by measure Qn which is projection of measure

Q on the first n coordinates. Criteria of testing of hy-
potheses H0, n against alternatives H1, n allow to make
the decision about the wrong behavior of technological
system.

The basic problem for developers of such monitoring
systems is the false alarms appearance when the correct
behavior of technological process is perceived as wrong
(Axelson, 1999). False alarms generate interruption of
technological process, and that the worst, they lead to
necessity of the manual analysis of the reasons of the
wrong system behavior.

For this purpose in the paper it is offered to use the
statistical techniques for monitoring with probabilities
of false alarms equal to zero. This class of statistical
decisions is based on concept of the ban (Grusho and
Timonina, 2011; Grusho et al., 2013). The ban of a
probability measure in the considered scheme is a vector
for which probability of its appearance is equal to 0 in
a finite projection of measure.

Any statistical criterion for testing H0, n against H1, n

is defined by a critical set Sn of vectors of length n.
When the observed vector is in Sn then it leads to the
acceptance of alternative H1, n. If all vectors in Sn are
bans of a measure Pn, say that the criterion is defined
by bans of a measure P .

Existence and properties of the criteria determined by
bans were researched in papers (Grusho and Timonina,
2011; Grusho et al., 2013, 2014). In particular, the be-
havior of power function of criteria was researched in
case of n → ∞. Conditions of consistency of sequence
of the statistical criteria determined by bans, i.e. condi-
tions when powers of criteria tend to 1 in case of n→∞
are found.

Specialists believed that all properties of power func-
tions for finite n were defined by numerical values of
probability distributions P and Q. However in this pa-
per conditions under which power functions of criteria
accept value 1 on a finite step are found. These condi-
tions are formulated in terms of supports of probability
measures for the main measure P on space of the infinite
sequences and for alternatives.

Information about supports of measures is known not
always. Therefore in the paper we built the construc-
tive check of conditions for existence of criteria with the
power function equals to 1 on a finite step N .

The article is structured as follows. Section 2 intro-
duces definitions and previous results. In Section 3 the
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main results are proved. In Conclusion we shortly ana-
lyze applications of constructed sequences of tests.

MATHEMATICAL MODEL. BASIC DEFINI-
TIONS AND PREVIOUS RESULTS

Let’s consider mathematical model of some technolog-
ical process. Let X = {x1, ..., xm} be a finite set, Xn

be a Cartesian product of X, X∞ be a set of all se-
quences when i-th element belongs to X. Define A be
a σ-algebra on X∞, generated by cylindrical sets. A is
also Borel σ-algebra in Tychonoff product X∞, where
X has a discrete topology (Bourbaki, 1968; Prokhorov
and Rozanov, 1993).

On (X∞, A) a probability measure P is defined. For
any n = 1, 2, ..., assume that probability distribution Pn
is a projection of measure P on the first n coordinates
of random sequences from X∞. It is clear that for every
Bn ⊆ Xn

Pn(Bn) = P (Bn ×X∞). (1)

LetDn(P ) be the support of a measure Pn (Prokhorov
and Rozanov, 1993):

Dn(P ) = {xn ∈ Xn, Pn(xn) > 0}.

Define cylindrical set ∆n(P ) as follows:

∆n(P ) = Dn(P )×X∞.

The sequence of cylindrical sets ∆n(P ), n=1,2,..., is not
increasing and

∆(P ) = lim
n→∞

∆n(P ) =

∞⋂
n=1

∆n(P ). (2)

Assertion 1. The set ∆(P ) is closed and it is a
support of probability measure P .
Proof. For every n = 1, 2, ..., the set ∆n(P ) is si-

multaneously an open and a closed set. Then ∆(P ) is a
closed set. Due to continuity of probability measure P
it follows from (2) that P (∆(P )) = 1. Denote ∆ be the
support of measure P . By the definition of a support
of a probability measure ∆ ⊆ ∆(P ). Let’s suppose that
there is sequence ω ∈ ∆(P ) which doesn’t belong to the
set ∆. From the separation property of Tychonoff prod-
uct it follows that there exists an open set O such that
ω ∈ O and O ∩ ∆ = ∅. From the fact that Tychonoff
product is a space with countable basis (Bourbaki, 1968)
it follows that O =

⋃∞
n=1 I(n), where I(n) is an elemen-

tary cylindrical set. There is n such that the sequence
ω ∈ I(n). It means that I(n) = I(ωN ) for some N ,
where the set I(ωN ) is the elementary cylindrical set
which is defined by vector ωN and this vector coincides
with the first N coordinates of the sequence ω. Due to
definition of ∆n(P ):

ωN ∈ DN (P ), I(ωN ) ⊆ ∆N (P ),

and

PN (ωN ) > 0.

Then for initial n for which I(n) = I(ωN ) we get the
inequality P (I(n)) > 0 and

1 = P (∆N (P )) ≥ P (∆
⋃
I(n)) = P (∆) + P (I(n)) > 1.

That means that supposition is wrong and ∆ = ∆(P ),
and assertion 1 is proved.

Let ωk ∈ Xk and ω̃k−1 is obtained from ωk by drop-
ping the last coordinate.

Definition 1. Ban of measure Pn (Grusho et al., 2013)
is a vector ωk ∈ Xk, k ≤ n, such that

Pn(ωk ×Xn−k) = 0.

Definition 2. Ban ωk of measure Pn is the smallest
ban of measure P (Grusho et al., 2013) if

Pk−1(ω̃k−1) > 0.

If ωk is a ban of measure Pn then for every k ≤ s ≤ n
and for every sequence ωs starting with ωk we have

Ps(ωs) = 0.

In fact, if

Pk(ωk) = 0,

then it follows from (1) that

P (ωk ×X∞) = 0,

and

P (ωk ×Xs−k ×X∞) = 0.

It follows that

Ps(ωs) = P (ωs ×X∞) ≤

≤ P (ωk ×Xs−k ×X∞) = 0.

If there exists a vector ωn ∈ Xn such that Pn(ωn) = 0,
then there exists a smallest ban which is defined by the
values of the first coordinates of vector ωn.

Further under Λn we will understand a set of the
smallest bans of measure Pn, which have lengths equal
to n.

We also consider a probability measure Q on (X∞,
A) for which Qn, Dn(Q), ∆n(Q), ∆(Q) are defined.

Consider the sequence of criteria for testing of hy-
potheses H0, n : Pn against alternatives H1, n : Qn,
n = 1, 2, ....

The statistical criterion for testing H0, n against H1, n

is defined by a critical set Sn of vectors of length n.
When the observed vector is in Sn then it leads to the
acceptance of alternative H1, n. If all vectors from Sn
are bans of measure Pn, say that the criterion is defined
by bans of measure P . Note that for every n we have
Pn(Sn) = 0, if Sn is defined by bans.

Let Wn be the power function of criterion for testing
H0, n against H1, n. It is known that Wn = Qn(Sn).

The basic problem considered in the paper is to find
conditions when there exists such N that for all n > N
the power function Wn = 1.



MATHEMATICAL RESULTS

Let P and Q are probability measures defined in Section
2. The solution for the basic problem is described in the
next theorem.
Theorem 1. There exists a sequence of criteria for

testing H0, n against H1, n with critical sets Sn, n =
1, 2, ..., defined by bans, for which exists such N , that
for every n ≥ N power function Wn = 1 if and only if

∆(P ) ∩∆(Q) = ∅.

The proof of the theorem 1 is based on several lemmas.
Let xk be the smallest ban of measure P . Then define

I(xk) be the elementary cylindrical set in X∞, which is
generated by the vector xk.
Lemma 1. For every sequence ω ∈ I(xk) it follows

that ω 6∈ ∆(P ).
Proof. Suppose that there exists ω ∈ I(xk) that

belongs to ∆(P ). From formula (2) it follows that ω ∈
∆n(P ) for every n = 1, 2, .... By the definition of ∆k(P )
the vector ωk defined by the first k coordinates of ω
belongs to the set Dk(P ). Then

Pk(ωk) > 0.

Besides
ωk = xk,

that contradicts to supposition. The lemma 1 is proved.
Let’s define the open set S:

S =

∞⋃
k=1

⋃
xk∈Λk

I(xk). (3)

From lemma 1 it follows that

S ∩∆(P ) = ∅.

Lemma 2. The set S can be represented in the next
form

S = X∞\∆(P ).

Proof. From S ∩∆(P ) = ∅ it follows that

S ⊆ X∞\∆(P ).

Let’s assume that

ω ∈ X∞\∆(P ).

If ω ∈ X∞\∆(P ) then

ω 6∈ ∆(P ) =

∞⋂
n=1

∆n(P ).

The sequence of sets {∆n(P )} is not increasing. Then
there exists n such that for every t ≥ n we have ω 6∈
∆t(P ). That means that Pt(xt) = 0. Thus there exists
the smallest ban xk such that ω ∈ I(xk), so ω ∈ S.
Lemma is proved.
Lemma 3. ∆(Q) ∩∆(P ) = ∅ if and only if

∆(Q) ⊆ S.

Proof. From the condition of lemma 3 it follows that

∆(Q) ⊆ X∞\∆(P ).

Then from lemma 2 ∆(Q) ⊆ S.
On the other hand if ∆(Q) ⊆ S, then

∆(Q) ⊆ X∞\∆(P ),

and it follows that

∆(Q) ∩∆(P ) = ∅.

Lemma is proved.
Lemma 4. If ∆(Q) ∩∆(P ) = ∅ then ∃N such that

∆(Q) ⊆
N⋃
k=1

⋃
xk∈Λk

I(xk).

Proof. Tychonoff product X∞ is a compact space
(Bourbaki, 1968) and therefore from an every infinite
cover of a compact by open sets it is possible to select
a finite cover. The closed set ∆(Q) is a compact and
∆(Q) ⊆ S. That’s why due to definition (3) there exists
N such that

∆(Q) ⊆
N⋃
k=1

⋃
xk∈Λk

I(xk) = σN . (4)

Lemma 4 is proved.
The set σN is a cylindrical set. Therefore it can be

represented in the next form

σN = CN ×X∞,

where

CN ⊆ XN .

Lemma 5. The support of measure QN satisfies to
the following condition

DN (Q) ⊆ CN .

Proof. Let’s denote by xNx the concatenation of
vector xN ∈ XN and an element x of alphabet X. If
xN ∈ DN (Q), then there exists x ∈ X for which

xNx ∈ DN+1(Q).

Otherwise

QN+1(xN ×X) = 0.

Due to the consistency of sequence of probability mea-
sures {Qn} it follows that QN (xN ) = 0. Then for every
natural number t there exists xt ∈ Xt, such that

xNxt ∈ DN+t(Q),

where the vector xNxt is the concatenation of vectors
xN and xt.

Then there exists ω ∈ ∆(Q), such that ωN = xN . It
was proved in lemma 4 that ∆(Q) ⊆ σN . That’s why
xN ∈ CN . The lemma 5 is proved.



To prove the sufficient condition of the theorem 1 it
is enough to denote SN = CN . According to lemma 5

QN (SN ) = 1.

Let’s prove the necessary condition of the theorem 1.
Let SN be such a critical set for which QN (SN ) = 1 and
SN is defined by bans of measure P . Using the definition
of σ in (4) we conclude that every set SN defined by bans
satisfies to

SN ×X∞ ⊆ σ.

Then DN (Q) ⊆ SN . Therefor for cylindrical sets we
have

∆N (Q) ⊆ σ.

Thus

∆(Q) ⊆ σ.

As

σ = X∞\∆(P ),

then it follows that

∆(P ) ∩∆(Q) = ∅.

The theorem 1 is proved.
Let’s consider a set of probability mea-

sures {Qθ, θ ∈ Θ} on (X∞, A), for which
Qθ, n, Dn(Qθ), ∆n(Qθ), ∆(Qθ) are defined as in
Section 2.

Consider a problem of testing a sequence of hypothe-
ses H0, n : Pn against complex alternatives H1, n :
{Qθ, n, θ ∈ Θ}. Let Wn(θ) be a power function.
Theorem 2. There exists a sequence of criteria

for testing H0, n against H1, n with critical sets Sn, n =
1, 2..., defined by bans, for which exists such N that for
every n ≥ N the power function Wn(θ) = 1 if and only
if there exists a closed set ∆ such that for every θ, θ ∈ Θ

∆(Qθ) ⊆ ∆,

and

∆(P ) ∩∆ = ∅.

Proof. By the same way as in the theorem 1 for the
set ∆ there exists a finite cover

σN =

N⋃
k=1

⋃
xk∈Λk

I(xk),

where I(xk) be the elementary cylindrical set in X∞,
which is generated by the smallest ban xk.

The set σN is a cylindrical set and σN = CN ×X∞.
From the conditions of the theorem 2 it follows that
Qθ,N (CN ) = 1, θ ∈ Θ. If critical set SN of criterion
for testing H0, N : PN against the complex alternatives
H1, N : {Qθ,N , θ ∈ Θ} is chosen as SN = CN , then
Wn(θ) = 1 for all θ. The sufficiency is proved.

Let’ prove the necessity. Let SN be such a critical set
for which Qθ,N (SN ) = 1 for all θ, θ ∈ Θ, and SN is
defined by bans of measure P . Then for all θ, θ ∈ Θ,
the set DN (Qθ) ⊆ SN , and using the definition of σN

in (4) we conclude that every set SN defined by bans
satisfies to

SN ×X∞ ⊆ σN .

For cylindrical sets we have

∆N (Qθ) ⊆ σN , θ ∈ Θ.

Thus
∆(Qθ) ⊆ σN , θ ∈ Θ.

By the definition

SN ∩DN (P ) = ∅.

As
∆(P ) ⊆ ∆N (P ).

then it follows that

σN ∩∆(P ) = ∅.

σN is a cylindrical set and in discrete topology on X it
is a closed set. So we can define ∆ = σN . The theorem
2 is proved.

Corollary. Let’s consider a set of probability mea-
sures {Qθ, n, θ ∈ Θ, |Θ| <∞}. There exists a sequence
of criteria for testing H0, n against H1, n with critical sets
Sn, n = 1, 2, ..., defined by bans, for which exists such
N , that for every n ≥ N power function Wn(θ) = 1 if
and only if that for every θ, θ ∈ Θ,

∆(P ) ∩∆(Qθ) = ∅.

Proof. In any topological space a finite union of
closed sets is a closed set (Bourbaki, 1968; Prokhorov
and Rozanov, 1993). The union of all supports of prob-
ability measures Qθ, θ ∈ Θ, satisfies to conditions of the
theorem 2. That proves the corollary.

Not always the exact description of supports of mea-
sures can be received in an explicit form. At the same
time, application of the theory explained above can be
made more constructive.

In the further theorem 3 there are more constructive
conditions for usage of theorems 1 and 2. These condi-
tions are not completely constructive and only declare
that there is a finite step N for which it is possible to
check feasibility of sufficient conditions for the supports
formulated in theorems 1 and 2. The number of this
steps isn’t defined, but membership functions for cer-
tain necessary sets are can be carried out with the help
of constructive calculation.

The next theorem is formulated for the elementary
case when the given measures are P and Q.

Theorem 3. For the given probability measures P
and Q on (X∞, A)

∆(P ) ∩∆(Q) = ∅

if and only if there exists N such that

∆N (P ) ∩∆N (Q) = ∅.

Proof. If there exists N such that ∆N (P )∩∆N (Q) =
∅, then due to definitions of sets ∆(P ) and ∆(Q) it



follows that ∆(P ) ⊆ ∆N (P ) and ∆(Q) ⊆ ∆N (Q). It
proves the sufficiency. Let

∆(P ) ∩∆(Q) = ∅.

It means that

∞⋂
n=1

(∆n(P ) ∩∆n(Q)) = ∅.

In the considered case the topological Tychonoff prod-
uct X∞ is a compact space (Bourbaki, 1968). From the
fact that if an infinite intersection of closed sets is the
empty set then there exists N such that

N⋂
n=1

(∆n(P ) ∩∆n(Q)) = ∅.

That is

(

N⋂
n=1

(∆n(P )) ∩ (

N⋂
n=1

(∆n(Q)) = ∅.

Due to not increasing of the sequences of sets ∆N (P )
and ∆N (Q) it follows that

∆N (P ) ∩∆N (Q) = ∅.

The theorem 3 is proved.

CONCLUSION

Let’s formulate the requirements for a monitoring sys-
tem of some technological process which separates nor-
mal and abnormal behavior of the process. It’s nec-
essary to prevent false alarms and for sure to find the
process deviations from the normal behavior. Usage of
bans helps to exclude false alarms by definition.

The paper introduces the conditions to estimate the
trust for statistical methods defined by bans.

In the next works we’ll try to define algorithms for
the constructive procedures defined by bans which can
be implemented in a monitoring system.
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