
CONCEPT HIERARCHIES FOR SENSOR
DATA FUSION IN THE COGNITIVE IoT

Franco Cicirelli and Giandomenico Spezzano
Institute for High Performance Computing and Networking (ICAR)

CNR - National Research Council of Italy
87036 Rende(CS) - Italy

Email: cicirelli@icar.cnr.it, spezzano@icar.cnr.it

KEYWORDS

Sensor data fusion; Internet of Things; Multi-agent sys-
tems; Statecharts; MAB museum.

ABSTRACT

Sensor data fusion refers to technological solutions aiming
at collecting, classifying and complementing data coming from
multiple sensors. It has the potential of enabling context
awareness which, on the other hand, represents a huge potential
to be exploited in the field of IoT applications. Sensor fusion
and IoT have to deal with multi-faced issues like heterogeneity,
sensor/actuator management, data accuracy and reliability. This
paper proposes a multi-tier approach dealing with sensor fusion
and IoT aspects in a modular way. The approach relies on the
use of the agent metaphor, statecharts and on the Rainbow
multi-agent platform. Agents can be dynamically added and
removed from an application thus promoting system openness
and scalability. Heterogeneity and distribution issues are trans-
parently managed by Rainbow which hides the physical layer
on top of which the applications are built. As a significant
case study, the approach was exploited for the implementation
of a working prototype devoted to improve security of some
artworks (statues) of the MAB museum located in the city of
Cosenza, Italy.

INTRODUCTION

Nowadays, sensors are exploited in a huge variety of
applications ranging from healthcare, transportation and lo-
gistic, surveillance, environmental monitoring, smart city and
so forth. The sensing capabilities of the infrastructures and
devices surrounding our daily lives are constantly improving
and becoming more affordable. The widespread diffusion of
sensors was also favored by the ever-increasing attention which
is given to the field of the so called “Internet of Things” (IoT)
(Miorandi et al., 2012). The basic idea of the IoT is a pervasive
presence around us of a variety of things or objects such
as RFID tags, sensors, actuators, mobile phones, etc. which,
through unique addressing schemes, are able to interact with
each other and cooperate with their neighbors to reach common
goals (Atzori et al., 2010).

Important issues which are related to the development of
significant sensor-based applications are data collection, clas-
sification and complementation. Sensor data fusion, or simply
sensor fusion (SF) (Karimi, 2013), refers to technological
solutions having the aim of addressing the above issues. The

goal is to increase both the accuracy and reliability of sensed
data as well as to enable context awareness (Bicocchi et al.,
2014; Karimi, 2013; Schilit et al., 1994). Context awareness
refers to the capability of disclosing information about the
context (or situation) in which the data get acquired/generated.
This allows to validate an event or an assumption made on
sensed data, or to compensate the lack of complete information
about the sensed environment thus permitting to take decisions
and/or properly react to complex environmental stimuli. As an
example, a person may not see flames under the hood of a car,
but the smell of burning rubber and the heat coming from the
dash would suggest that it is prudent to leave the car because
the engine is on fire.

This paper proposes an approach for the development of
distributed SF applications based on the IoT paradigm. The
approach promotes separation of concerns through the use of
a multi-tier architecture which allows to deal with SF and IoT
issues in a modular and orthogonal way. The agent metaphor
(Woolridge and Wooldridge, 2001) is used to structure the
application logic, whereas agents’ behavior is modeled by
using statecharts (Booch et al., 2000; Cicirelli et al., 2011;
Harel, 1987; Kielar et al., 2014). Statecharts are a state-
based formalism which allows to specify complex and time-
dependent behaviors by using a graphical notation. Complexity
of a model is dealt with the use of hierarchical constructs.

Proposed approach permits the exploitation of concept hi-
erarchies which allow the classification of high-level situation
as well as the definition of reaction-driven policy which work
on a multiplicity of low-level events. Concept hierarchies are
useful to represent a system as a set of abstractions normally
used by humans when reasoning about complex systems. The
concepts which are introduced in different tiers, or within the
same tier, can be related together (i.e., orchestrated) in order
to specify complex reaction patterns to the stimuli coming
from the external environment. The overall goal is to move
from the IoT towards the Cognitive IoT (Tsai et al., 2014; Wu
et al., 2014) where objects interact and operate by acquiring
knowledge from the surrounding environment and by following
a context-aware perception-action operational cycle.

Each tier, in the proposed architecture, groups agents on
the basis of some predefined agent roles. For instance, the
role awareness was defined, and the corresponding tier will
contain agents devoted to managing the knowledge acquired
on the whole system and to properly act on the system itself. A
low-level tier, instead, contains objects (not necessarily agents)

Proceedings 30th European Conference on Modelling and
Simulation ©ECMS Thorsten Claus, Frank Herrmann,
Michael Manitz, Oliver Rose (Editors)
ISBN: 978-0-9932440-2-5 / ISBN: 978-0-9932440-3-2 (CD)

used to deal with the hardware/driver system entities.

The agent metaphor was chosen for its capability to nat-
urally meet some needs of distributed SF applications like
the autonomy in reacting to stimuli coming from the external
environment, and its suitability to operate in a open and dy-
namic environment. Heterogeneity and distribution issues are
transparently managed by the Rainbow (Giordano, Spezzano
and Vinci, 2014) agent platform which has the capability of
abstracting the physical layer on top of which the applications
are built.

The proposed approach is novel because it is compre-
hensive, and explicitly considers aspects tied to sensors and
actuators. Comprehensive means that it takes into account
all the issues relevant to the development of SF applications
starting from the awareness of the context down to the issues
related to the management of physical layer. Flexibility and
modularity is provided by the tiered-based architecture and by
the use of the agent metaphor paired with statecharts.

As a significant case study, the approach was exploited
for the implementation of a working prototype devoted to
improve security of some artworks (statues) of the open-air
MAB museum located in the city of Cosenza, Italy.

The paper is structured as follows. First, the proposed
approach is described along with a characterization of the
proposed multi-tier architecture. Then, an overview of the
Rainbow agent-based platform is provided. After that, the
case study is shown. Conclusions and indications about future
research avenues are provided in the last section.

A MULTI-TIERS APPROACH FOR SF

The proposed multi-tiers approach allows the development
of SF applications by promoting both separation of concerns
and modularity. In each tier it is possible to focus on specific
concerns having a different level of abstraction. The low-level
tier, for instance, copes with software drivers managing phys-
ical devices. The high-level one deals with context/situation
awareness. The terms low and high refer to the abstraction
level exploited for developing an application or a working
system. The use of tiers fosters both a top-down and bottom-
up software development schema. A top-down approach can
be used when an application is developed from scratch. A
bottom-up approach, instead, is suggested to be used when an
application is built on top of some preexisting components. The
introduced tiers are reported in Figure 1. All the tiers except
the lower one, are populated by means of agents. The low-
level tier instead contains objects which are referred as Virtual
Objects (VOs). Such name mirrors the fact that VOs are used
to virtualize, i.e., to abstract, the physical devices used for
realizing an application. A description of the introduced tiers
follows.

• Low-level: it hosts the VOs that directly interact with
physical devices. In the case of simple devices, such
virtual objects directly manage information like dis-
tances, level of noise or temperature (both for sensing
and actuation purposes). In other more complex cases,
instead, virtual objects interact with the drivers of the
physical devices and can abstract complex operations
(e.g., those related to the management of a webcam).

The goal of this tier is to decouple, from a sens-
ing/actuation point of view, the functionalities from
the equipment offering them. A change in the physical
devices affects virtual objects but it should not affect
the entities belonging the the other (upper) tiers. The
challenge, here, is to decouple functionalities from im-
plementation. A one-to-many mapping exists between
VOs and the hardware equipments.

• Sensing/Actuator: the agents defined in this tier are
boundary entities whose goal is turning the func-
tionalities offered by virtual objects into location-
independent services offered by agents. As a general
guideline, it is suggested to develop a dedicated agent
for all the functionalities offered by a single device
abstracted through a VO. These dedicated agents must
be co-located on the computational node hosting the
virtual objects they have to interact. From a functional
point of view, the Sensing/Actuator agents do not
introduce new functionalities nor modify the existing
ones. They can instead mediate the use of the wrapped
functionalities by enforcing, for instance, negotiation
procedures and/or access policies useful for guaran-
teeing an exclusive use, or a time-based use, of such
functionalities.

• CSensing/CActuator: here the goal is to compose, or
modify, functionalities offered by the agents belonging
to the Sensing/Actuator tier. Composition of function-
alities aims at obtaining aggregate operations starting
from simpler ones, and at orchestrating independent
functionalities in order to pursue a common task.
Modify a functionality means to extend/improve it,
e.g., for increasing the reliability of sensed data, or
for allowing the transparent management of a group of
redundant actuator devices viewed as a single device.
As an example, if it is required to average the data
coming from multiple temperature sensors, it is pos-
sible to consider an averaging agent which interacts
with the agents related to the temperature sensors in
order to get data and average it. In another case, the
functionality offered by a temperature agent which
provides only data in real-time, can be extended by an
agent providing information about the maximum and
minimum value of read data. Modify a functionality
can mean also to hide it in order to meet specific
application constraints. A many-to-many relationship
can exist between agents in this tier and the lower one.

• Concept: this tier introduces a significant increase
in the exploitable abstraction level. In fact, in the
tiers previously described we have been dealing only
with issues directly related to sensing and controlling
the environment, e.g., reading a temperature value or
closing a light. In this tier, instead, an actuation to
be performed, and/or some environmental stimuli, are
mapped onto more abstract concepts. Each concept
is then modeled/implemented through an agent. The
goal, here, is to allow reasoning by using abstract
concepts directly related to the specific domain of
the application being developed. For instance, in this
tier, it is possible to introduce the concept of climatic
health which depends on the value of the temperature

and humidity actually existing in a given room. In
the same way, the concept of office security can
be introduced in order to control a door office and
makes it alarmed after a certain hour. A many-to-many
relationship can exist between agents in this tier and
the lower one.

• CConcept: this tier is equivalent to the CSens-
ing/Cactuator one. In this case, though, composition
and modification refer to concepts.

• Awareness: this is the tier permitting to operate, and
to reason, at the highest level of abstraction. Agents
introduced in this tier have a holistic vision of all the
concepts which are related to the developed applica-
tion and which govern the implemented system. Intro-
duced concepts (or a subset of them) are orchestrated
in order to pursue application goals. Information and
data can be complemented in order to augment the
knowledge about the context in which the application
runs. For instance, if an application for managing
safety at home is considered, information indicating
that a person is found lying in the bathroom can be
complemented in order to infer that the person could
be afflicted by a malaise.

Figure 2 reports an example in which a certain number
of agents and VOs populate the various tiers and interact
among them. In the figure it is highlighted that communication
among the introduced entities can be both unidirectional and
bidirectional. Even if in the reported example all the tiers
contain some entities, on the bases of application needs, a tier
could also be empty. It is not allowed to consider intra-tier
communication among the entities located in the tiers from
T#3 to T#0 whereas it can occur, instead, in tiers T#4 and
T#5. All of this favors to deal with the true application logic
(e.g., the goal-oriented logic) only in the tiers with a higher
level of abstraction.

Once the tiers are populated, and having established the
communication patterns among the introduced entities, the next
step is to define the behavior of each agent. In the approach
here proposed, modeling the behavior of agents relies on the
use of statecharts (Booch et al., 2000; Cicirelli et al., 2011;
Harel, 1987; Kielar et al., 2014). As a consequence, the whole
system can be seen as a network of interacting statecharts.
Statecharts are well suited to model entities having a complex
and time-dependent behavior. They enable both a hierarchical
and modular modeling approach. All of this permits to face
with the well-known state-explosion phenomenon which arises
with large and complex models. The basic mechanism upon
which statecharts rely, consists in the possibility of nesting a
subautomaton within a (macro) state thus encouraging step-
wise refinement of a complex behavior.

THE RAINBOW PLATFORM

Rainbow (Giordano, Spezzano and Vinci, 2014; Giordano,
Spezzano, Vinci, Garofalo and Piro, 2014) is a distributed
agent-based IoT platform composed of single-board computer
nodes, such as the Raspberry PI 2, which is well suited to
connect massive-scale networks of sensors and actuators to
the Cloud. It was chosen as the reference platform exploitable
for supporting the approach so far described.

Sensing Actuator

Low-level

CSensing CActuator

Concept

CConcept

Awareness

d
a

ta
 f
lo

w[
[

A
g

e
n

ts
O

b
je

c
ts

[R
a

in
b

o
w

in
c
re

a
s
in

g
 a

b
s
tra

c
tio

n

Fig. 1. The proposed multi-tier architecture

Sensing Actuator

Low-level

CSensing CActuator

Concept

CConcept

Awareness

T#0

T#1

T#2

T#3

T#4

T#5

unidirectional interactions

bidirectional interactions

VO Virtual Object
A

Agent

Intra-tier communication allowed

Intra-tier communication denied

A

A

A

AA

AA

A

A
A

VO
VO

VO
VO

Fig. 2. The multi-tier architecture: an example of communication details

The physical part of the Rainbow architecture is constituted
of sensors and actuators, together with their relative computa-
tional capabilities, which are directly immersed in a physical
environment. Physical entities are usually spread across a large
(even geographic) area. All of this implies that the controlling
part of an application must be intrinsically distributed. Sensors
and actuators are partitioned into groups, each of which is
managed by a single computing node. A goal of Rainbow is
to bring the computation (e.g., the controlling part) as close as
possible to the physical part. Each computing node hosts multi-
agent applications designed to monitor multiple conditions,
or to operate activities within a specific environment. For
this purpose, each node contains an agent server that permits
agents to be executed properly. Agents can be intelligently
assisted by cloud services, that support complex analytics,
modeling, optimization and visualization tools, to make better
operational decisions.

Fig. 3. The Rainbow architecture

The architecture of Rainbow (see Figure 3) is composed of
the Cloud layer, the Intermediate layer and the Physical layer.

In the Intermediate layer, sensors and actuators of the
Physical layer are represented as virtual objects (VOs). VOs
offer to the agents a transparent and uniform access to the
physical part through the use of a well-established interface.
A VO allows agents to connect directly to devices without care
about proprietary drivers and without addressing some kind of
fine-grained technological issues. Each VO comprises func-
tionalities directly provided by the physical part. Essentially, a
VO exposes an abstract representation (i.e., a machine-readable
description) of the features and capabilities of the abstracted
physical objects spread in the environment. Functionalities
exposed by different types of VOs can be combined in a more
sophisticated way on the basis of event-driven rules which
affect high-level applications and end-users. More in particular,
all the devices are properly wrapped in VOs which, in turn, are
enclosed in distributed gateway containers. The computational
nodes that host the gateways and the agent server represent the
middle layer of the Rainbow architecture.

Gateways and agent servers are co-located in the same
computing nodes in order to guarantee that agents directly
exploit the physical part through VO abstraction. Instead of
transferring data to a central processing unit, we actually
transfer the process (i.e., the fine-grain agent’s execution)
toward the data sources. As a consequence, less data needs to
be transferred over a long distance (i.e., toward remote hosts)
and local access and computation will be fostered in order to
achieve good performance and scalability.

The upper layer of Rainbow architecture concerns the
cloud part. This layer addresses all the activities that cannot
be properly executed in the middle layer like, for instance,
algorithms needing a complete knowledge of the whole system,
tasks that require high computational resources, or when a
historical data storage is mandatory.

SENTIENT STATUES IN THE MAB MUSEUM

The MAB is a particular open-air museum located on the
main artery of the new part of the city of Cosenza (Calabria,
southern Italy). The MAB was born thanks to the donation
of the wealthy collector Carlo Bilotti, native to Cosenza
but immigrant to America, who decided to donate his art

collection to his city of birth after his death in 2006. The MAB
houses some prestigious sculptures by artists like Salvator Dalı́,
Giorgio De Chirico and by some other artists of Calabria.
Since its establishment, the museum has been the subject of
some vandalisms and of some accidents that damaged some
artworks.

The goal of the case study which is here described, is to
use sensor fusion concepts in order to furnish to the statues
of the MAB some virtual senses able to make them aware
of what happens around them. The aim is therefore to make
the statues sentients, i.e, able to discover and recognize a
dangerous situation and to react to it with the aim of preventing
damages and averting a possible hazard. The basic idea is to
equip a sculpture with some suitable sensors and actuators
enabling to sensing the environment and operate deterrence
actions, e.g, asking for help. Obviously, in order to avoid
causing damage to the artworks, both sensors and actuators
should not be worn by the sculpture but deployed in their
vicinity in some safe places.

A prototyped system was developed by using the approach
described in this paper. The system was developed from scratch
and, for this reason, a top-down development schema was
exploited. More in particular, in a first phase, the layers of
the multi-tiers architecture were populated starting from the
awareness layer. Then, the behavior of each agent was modeled
through statecharts and the code for the modeled agents and
virtual objects was developed. Finally, the system was im-
plemented. System implementation consisted in preparing the
hardware equipment (i.e., the chosen sensors and actuators),
connecting it to a Rainbow server and deploying the developed
code of both agents and virtual objects over that server. The
simplest devices were connected to the Rainbow server trough
some Arduino devices.

In the following, a description of the developed prototype
is reported. A description of the basic features of statecharts
is provided too.

Populating the layers of the multi-tiers architecture

This is the most important phase because it defines the
roles and the functionalities of all the entities which constitute
the system. In Figure 4 are reported the agents and the VOs
defined for the application.

In the tier of awareness we defined the agent which models
the mood of a sculpture. On the base of the stimuli received
from the environment, a statue can found itself in a status
like quiet, worried or terrified. A detailed description of these
status is provided in the next subsection. A statue perceives its
surrounding environment through its senses. Three different
senses were considered, namely the touch, the sight and the
hearing. For each of the considered senses, a specific agent
was defined in the concept layer.

On the base of the current status, some safeguard actions
can be executed. For this purpose, a suitable agent is defined
in the cconcept tier. This safeguard agent models a composite
concept which is tied to the concepts of both speaking and
making deterrent actions (see the Speech and Deter agents in
the concept layer of Figure 4).

Sensing Actuator

Low-level

CSensing CActuator

Concept

CConcept

Awareness

T#0

T#1

T#2

T#3

T#4

T#5

unidirectional interactions

bidirectional interactions

VO Virtual Object
A

Agent

Intra-tier communication allowed

Intra-tier communication denied

WebcamA

ProximityA

ShockA

NoiseA

Light
A

LightA

SpeakerA

ProximityA

ProximityAProximityA

SafeguardA

MoodA

DeterASpeechATouchA
SightA

CPrxmtyA

HearingA

VO PPP
VO SN

VO W VO SLL

Fig. 4. Realizing sentient statues: agents’ hierarchy and virtual objects

From the sensing tier it emerges that (i) the sense of touch
is implemented by using both some proximity sensors and
a shock sensor, (ii) the hearing is implemented by a noise
sensor and (iii) the sight is realized by using a webcam.
Proximity sensors are grouped in a single composite sensor
(see the CPrxmty agent in the csensing layer of Figure 4). The
latter composite entity was considered to highlight that, in this
application, all the proximity sensors are indistinguishable and
equivalents.

From the actuator point of view, the safeguard activities
were implemented by considering some speech abilities real-
ized through a speaker, and by some deterrent actions which
are based on the flashing of warning lights.

Four VOs were considered: one for the management of
proximity sensors, one for the shock and noise sensor, and
another two respectively for the webcam and the warning
lights.

Basic features of statecharts

A state of a statechart can recursively be decomposed
into a set of substates, in which case such a state is said
to be a macro state. A state that is not decomposed is said
to be a leaf state. The root state of the decomposition tree
is the only one having no parent and it is referred to as the
top state. At a given point in time, a statechart finds itself
simultaneously in a set of states that constitutes a path leading
from one of the leaf states to the top state. Such a set of
states is called a configuration (Harel, 1987). A configuration
is uniquely characterized by the only leaf state which it
contains. Each macro state specifies which of its substates
must be considered its initial state. This substate is indicated
by means of a curve originating from a small solid circle
and ending on its border. This curve, although technically

Fig. 5. Statechart of a Mood agent for a sentient statue

is not a transition, is referred to as the default transition.
State transitions are represented by edges with arrows. Each
transition is labelled by ev[guard]/action where ev is the
trigger (event or message causing the transition), guard a
logical condition which enables the transition when it evaluates
to true, and action the action “á la Mealy” associated with
the transition. When omitted, the guard is implicitly assumed
to be true. Both source and destination of a transition can be
states at any level of the hierarchy. Firing a transition leads the
statechart to switch from one configuration to another. When
a configuration is left, each of its macro states keeps memory
of its direct substate that is also part of the configuration. This
substate is referred to as the history of the macro state.

A transition always originates from the border of a state,
but it can reach its destination state either on its border or
ending on a particular element called history connector or
H-connector. Such a connector is depicted as a small circle
containing an H (shallow history) or an H* (deep history),
and it is always inside the boundary of a compound state.
Both shallow and deep history connectors allow to re-enter in
a macro state by exploiting history information.

Modeling agents through statecharts

The behavior of each agent identified in Figure 4 was
modeled through statecharts. For simplicity, here, only the
statechart of the mood agent is described. The statechart is
reported in Figure 5.

The mood agent can find itself in the Active or Error state.
The above two status are contained in the Top macro-state
having the responsibility or responding to check messages
asking for the current status of the statue. Each time one
of such a message is received, the statue replies with its
actual state and then returns in the leaf-state owned just before
receiving the check message. All of this is mirrored in the
model by the use of the deep-history connector H∗ which is
attached to the state-transition edge departing from the Top
state.

The Active state is also a macro-state. It contains the leaf-
states related to the actual “morale” of a statue, namely Quiet,
Worried, Anguished and Terrified. A mood agent moves from
a status to another one by receiving upMSG and downMSG
messages. These messages are generated by the senses of
the statue. For instance, in the case the touch identifies the
presence of someone in the nearness of the statue, an upMSG

[12/11/2015 12:15:13] Mood#24: received UpMsg, current state QUIET,
next state WORRIED. Send WORRIED to: Safeguard#12, Sigth#5
[12/11/2015 12:20:21] Mood#24: received DownMsg, current state WORRIED,
next state QUIET. Send QUIET to: Safeguard#12, Sigth#5
[12/11/2015 12:21:42] Mood#24: received UpMsg, current state QUIET,
next state WORRIED. Send WORRIED to: Safeguard#12, Sigth#5
[12/11/2015 12:22:12] Mood#24: received UpMsg, current state WORRIED,
next state ANGUISHED. Send ANGUISHED to: Safeguard#12, Sigth#5
[12/11/2015 12:23:19] Mood#24: received UpMsg, current state ANGUISHED,
next state TERRIFIED. Send TERRIFIED to: Safeguard#12, Sigth#5
[12/11/2015 12:26:29] Mood#24: received CheckMsg, current state
TERRIFIED. Send TERRIFIED to: OtherAgent#7
[12/11/2015 12:26:45] Mood#24: received DownMsg, current state TERRIFIED,
next state ANGUISHED. Send ANGUISHED to: Safeguard#12, Sigth#5
[12/11/2015 12:27:45] Mood#24: received UpMsg, current state ANGUISHED,
next state TERRIFIED. Send TERRIFIED to: Safeguard#12, Sigth#5
[12/11/2015 12:28:02] Mood#24: received DownMsg, current state TERRIFIED,
next state ANGUISHED. Send ANGUISHED to: Safeguard#12, Sigth#5
[12/11/2015 12:28:45] Mood#24: received DownMsg, current state ANGUISHED,
next state WORRIED. Send WORRIED to: Safeguard#12, Sigth#5
[12/11/2015 12:29:10] Mood#24: received CheckMsg, current state
WORRIED. Send WORRIED to: OtherAgent#7
[12/11/2015 12:29:25] Mood#24: received DownMsg, current state WORRIED,
next state QUIET. Send QUIET to: Safeguard#12, Sigth#5

Listing 1: An example of generated log

TABLE I. DESCRIPTION OF THE STATUE STATUS

Status Description

Quiet

The data coming from the sensors gets elaborated.
The webcam is turned on with a fixed shot
on the statue. The lights and the speakers are
switched off.

Worried

The data coming from the sensors get elaborated.
The webcam is turned on with a movable
frame around the statue. The lights and the
speakers are switched off.

Anguished

The data coming from the sensors gets elaborated.
The webcam is turned on with a movable
frame around the statue. The lights are flashing
and the speakers are switched off.

Terrified

The data coming from the sensors gets elaborated.
The webcam is turned on with a movable
frame around the statue. The lights are flashing
and the speakers invited to move away from the
statue

Error
The data coming from the sensors is discarded.
The webcam, the lights and the speakers
are switched off.

message is issued. On the contrary, when a previously sensed
entity is no longer sensed, a downMSG message is sent to
the mood agent. In such a way, a statue stays in the Quiet
state when no senses reveal the presence of anyone in the
nearness of the statue. On the contrary, when the senses get
stimulated all together, the statue moves to the Terrified status.
When a statue changes its status, a newState message is sent
to the acquaintances of the statue. These messages carry out
information about the new reached state. All the leaf-states of
a statue, along with their description, are reported in Table I.

Description of the realized prototype

Figure 6 portrays the realized prototype. It consists in a
thin wooden support upon which we arranged the lights, the
speakers and a plastic case hosting: the Rainbow server running
over a Raspberry device, the Arduino used to manage both
the sensors and the actuators, the noise sensor and the shock
sensor. The proximity sensors were instead fixed under the
wooden support. A placeholder of the statue was placed over
a transparent container hosting the lights. The webcam was
instead attached to a metal support placed in the nearness of
the equipment so far described.

The arrangement of the whole equipment takes into account
how the system can be really placed in the museum. The
statues, in fact, are placed over a large plexiglass base. The
prototyped system was conceived to be embedded in such base

with the lights, when flashing, visible from the outside of the
base. The webcam was instead expected to be installed on the
nearest building with respect to a statue.

In Listing 1 is reported an excerpt of the log file produced
by a Mood agent during system execution. From the log it is
possible to see how the agent reacts to the event coming from
its senses and how it change its status accordingly.

CONCLUSIONS

This paper has presented a multi-tier approach for devel-
oping SF applications in the domain of the IoT. The approach
is based on the use of the agent metaphor, statecharts and
on the Rainbow multi-agent platform. Agents naturally allow
the development of distributed applications in a open and
dynamic environment. Statecharts are well suited to model
entities having a complex and time-dependent behavior. Model
complexity is dealt with modular and hierarchical constructs.
The Rainbow platform has the capability of hiding the physical
layer on top of which the applications are built.

Different levels of abstractions can be exploited whilst
designing an application. All of this fosters modularity and
separation of concerns. Both a top-down and a bottom-up
development schema can be adopted. The paper furnishes some
guidelines for using the provided abstract levels. The goal is to
replace the management of the low-level environmental stimuli
and actuations to be performed with some high-level concepts
which are close to the considered application domain.

As a significant case study, the approach was exploited
for implementing a prototype aiming at improving security of
some artworks (statues) which are in the MAB museum located
in the city of Cosenza, Italy.

Prosecution of the work is devoted to:

• making the realized prototype really working in the
museum

• allowing the statues to cooperate with each other in
order to discover and prevent dangerous situations

• extending the functionalities of the provided prototype
by offering services for increasing usability of the mu-
seum (e.g., for making virtual tour in the museum or
accessing to a virtual bulletin board) and by allowing
the use of the senses of the statue on behalf of tourist
needs (e.g., by using the sight for taking a selfie)

• making available a tool for the automatic generation
of agent-code starting from the modeled statecharts

• enhancing the approach so as to exploit not only
modeling capabilities but also making possible the
analysis of the realized models (e.g., through dis-
tributed simulation (Cicirelli and Nigro, 2013)) before
their final implementation.

ACKNOWLEDGMENT

This work has been partially supported by RES-NOVAE
- ”Buildings, roads, networks, new virtuous targets for the
Environment and Energy” project, funded by the Italian Gov-
ernment (PON 04a2 E).

A

B
B

C C

D

E

F

SpeakersA LightsB Proximity sensorsC Raspberry, Arduino, Noise sensor, Shock sensor D WebcamE Representative of a statueF

Fig. 6. Picture of the realized prototype

The authors wish to thank Christian Nigro, Alessandro
Mercuri, Elisa Coscarella and Emilio Greco for their valuable
collaboration in the development of the work here proposed.

REFERENCES
Atzori, L., Iera, A. and Morabito, G. (2010), The internet of things:

A survey, Computer networks 54(15), 2787–2805.
Bicocchi, N., Fontana, D. and Zambonelli, F. (2014), A self-

aware, reconfigurable architecture for context awareness, IEEE
Symposium on Computers and Communications, ISCC 2014,
Funchal, Madeira, Portugal, June 23-26, 2014, pp. 1–7.
http://dx.doi.org/10.1109/ISCC.2014.6912485

Booch, G., Rumbaugh, J. and Jacobson, I. (2000), The Unified Mod-
eling Language User Guide, Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA.

Cicirelli, F., Furfaro, A. and Nigro, L. (2011), Modelling and sim-
ulation of complex manufacturing systems using statechart-based
actors, Simulation Modelling Practice and Theory 19(2), 685–703.
http://dx.doi.org/10.1016/j.simpat.2010.10.010

Cicirelli, F. and Nigro, L. (2013), Communications in Computer
and Information Science, Springer Berlin Heidelberg, Berlin, Hei-
delberg, chapter An Agent Framework for High Performance
Simulations over Multi-core Clusters, pp. 49–60.

Giordano, A., Spezzano, G. and Vinci, A. (2014), Rainbow: an intel-
ligent platform for large-scale networked cyber-physical systems,
Proceedings of the 5th International Workshop on Networks of
Cooperating Objects for Smart Cities (UBICITEC 2014) co-located
with CPSWeek 2014, Berlin, Germany, Apr 14, 2014., pp. 70–85.

Giordano, A., Spezzano, G., Vinci, A., Garofalo, G. and Piro, P.
(2014), A cyber-physical system for distributed real-time control
of urban drainage networks in smart cities, Internet and Distributed
Computing Systems, Springer, pp. 87–98.

Harel, D. (1987), Statecharts: A visual formalism for complex sys-
tems, Sci. Comput. Program. 8(3), 231–274.

Karimi, K. (2013), The role of sensor fusion and remote emotive
computing (rec) in the internet of things, Freescale Semiconductor.
http://cache.freescale.com/files/32bit/doc/white paper/senfeiotlfwp.pdf

Kielar, P. M., Handel, O., Biedermann, D. H. and
Borrmann, A. (2014), Concurrent hierarchical finite
state machines for modeling pedestrian behavioral
tendencies, Transportation Research Procedia 2, 576 – 584.
http://www.sciencedirect.com/science/article/pii/S2352146514001343

Miorandi, D., Sicari, S., De Pellegrini, F. and Chlamtac, I.
(2012), Internet of Things, Ad Hoc Netw. 10(7), 1497–1516.
http://dx.doi.org/10.1016/j.adhoc.2012.02.016

Schilit, B. N., Adams, N. and Want, R. (1994), Context-aware
computing applications, Workshop on Mobile Computing System
and Applications, IEEE Computer Society, pp. 85–90.

Tsai, C.-W., Lai, C.-F. and Vasilakos, A. V. (2014), Future internet of
things: Open issues and challenges, Wirel. Netw. 20(8), 2201–2217.

Woolridge, M. and Wooldridge, M. J. (2001), Introduction to Multi-
agent Systems, John Wiley & Sons, Inc., New York, NY, USA.

Wu, Q., Ding, G., Xu, Y., Feng, S., Du, Z., Wang, J. and Long,
K. (2014), Cognitive internet of things: A new paradigm beyond
connection., IEEE Internet of Things Journal 1(2), 129–143.

