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ABSTRACT 

The paper deals with trajectory tracking of the 

differential drive robot with a mathematical model 

governing dynamics and kinematics. Motor dynamics 

and chassis dynamics are considered for deriving a linear 

state-space dynamic model. Basic nonlinear kinematic 

equations are linearized into a successively linearized 

state-space model. The dynamic and kinematic models 

are augmented to derive a single state-space linear model. 

The deviation variables are reference variables which are 

variables of an ideal robot following a reference 

trajectory which can be pre-calculated. Reference 

tracking is achieved by model predictive control of 

supply voltage of both the drive motors by considering 

constraints on controlled variables and manipulated 

variables. Simulation results are provided to demonstrate 

the performance of proposed control strategy in the 

MATLAB simulation environment. 

 
INTRODUCTION 

Trajectory tracking of mobile robots refers to mobile 

robot tracking in a predefined time-varying reference 

trajectory, which is one of the fundamental problems in 

motion control of mobile robots. In the case of 

differential drive robots, trajectory tracking has been well 

studied in the past. The most popular way of trajectory 

tracking is by considering a linearized dynamic error 

tracking model with feed forward inputs or a successively 

linearized model. 

 

Model Predictive Control (MPC) is one of the most 

popular optimization control strategies in the process 

industries. It is designed to handle complex, constrained, 

multivariable control problems. It is an online 

optimization tool, which will generate optimal control 

actions required at every time instance minimizing an 

objective function based on predictions (Camacho and 

Alba 2004).  With the increase in computational power, 

the MPC is not only limited to slow dynamics processes, 

where dynamical optimization is easily possible, but also 

there are new applications for faster systems. For 

example, MPC control techniques for trajectory tracking 

of mobile robots as can be seen in (Gu, D. and Hu 2006), 

(Kuhne et al. 2004) and (Lages et al. 2006). A review of 

motion control of Wheeled Mobile Robots (WMRs) 

using MPC can be found in (Kanjanawanishkul 2012). A 

mobile robot trajectory tracking problem with linear and 

nonlinear state-space MPC is presented in (Kuhne et al. 

2005). An experimental overview of WMR is published 

in (De Luca et al 2001). Dynamic behavior of a 

differentially steered robot model, where the reference 

point can be chosen independently and gives us more 

general formulation, is published in (Dušek et al. 2011). 

In our previous work (Sharma et al. 2015), we proposed 

predictive control of the mobile robot, where the linear 

and angular velocities are optimally controlled by 

voltages to the drive motors with constraints on 

controlled variables, manipulated variable and states 

(current and wheel speed of the motors).  

 
The most common way (for e.g. Maurovic et al. 2011) of 

trajectory tracking of mobile robots  is by controlling the 

linear and angular velocities by some advanced 

controllers and then control the mobile robot’s wheel 

speeds by low level controllers like a PID controller. In 

this paper, we firstly modelled dynamics of the 

differential drive robot considering motor dynamics and 

chassis dynamics. The nonlinear kinematics equations 

are linearized into a linear time-varying error based 

model by successive linearization, where state variables 

are deviations from reference variables. Reference 

variables are variables of the ideal robot which follows a 

time-varying reference trajectory. The dynamic and 

kinematic models are augmented into a discrete time-

varying state-space model, whose control inputs are 

motor control variables and outputs are positions in x and 

y direction and orientation. Model predictive control is 

used for trajectory tracking simulation in the MATLAB 

environment by optimizing a quadratic cost function 

using quadratic programming. 

 

The main advantage of our approach is that (in contrast 

to the commonly used WMRs models) we consider 

dynamics of motors as well, so the controller outputs are 

motor voltages and the robot can be tracked into a 

reference trajectory, respecting the physical constraints 

like currents. Since, in trajectory tracking problem, the 

future set-points are known, MPC is preferred when 
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compared with other control methods and also because of 

the ability to handle soft and hard constraints. 

  

MATHEMATICAL MODELLING 

The differential drive mobile robot is assumed to have 

two wheels connected with DC series motors and firmly 

supported by a castor wheel (See figure 1 and 2). 

 
Figure 1: DC Motor Wiring 

 The mathematical model of the robot, consists of three 

relatively independent parts. The dynamics of the DC 

series motor, chassis dynamics (dependency between 

translational and rotational velocities of the chassis 

reference point on moments acting to driving wheels), 

and kinematics (influence of motor speed to translational 

and rotational velocities). 

 Dynamics of the mobile robot 

The following derivation of the model representing 

dynamics of the differential drive mobile robot, closely 

follow the derivations in (Dušek et al. 2011), with some 

minor notation changes. The Dynamics of the series DC 

motor can be derived from balancing of voltages 

(Kirchhoff’s law) and balancing of moments. From 

Kirchhoff’s voltage law, we can derive,  

   LL
L

RLzL KUu
dt

di
LiiRRi  0  (1) 

   RR
R
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where, K is the back EMF constant, R and L are the 

right and left motor speeds. uR and uL are the control 

voltages of the right and left motors respectively. All the 

other parameters are shown in figure 1. 

By considering the balance of moments we can derive, 
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where J is the moment of inertia of the robot, kr is the 

coefficient of rotational resistance. ML and MR are the 

load moments on left and right wheels respectively. 

 

Chassis dynamics is defined with a vector of linear 

velocity vB acting on a chassis reference point and with 

rotation of this vector of angular velocity B (constant for 

all chassis points). The chassis reference point B is the 

point of the intersection of the axis joining the wheels and 

centre of gravity normal projection – see figure 2. Point 

T is the general centre of gravity – usually it is placed at 

the centre of the axis joining the wheels. 

 
Figure 2: Chassis Scheme and Forces 

 

The chassis dynamics can be expressed by balance of the 

forces and balance of the moment. Equation (5) is the 

result of applying balance of forces and Equation (6) 

from balance of moments. 
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where, pG is the gear box transmission ratio, k is the 

resistance coefficient against rotational motion. The rest 

of the parameters are shown in figure 2.The parameters 

rG and JB are described as,  
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From the theorems of similar triangles, depicted in figure 

3, we can recalculate the peripheral velocities of the 

wheels vL, vR to the linear velocity vB and angular velocity 

B  at point B as, 
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Figure 3: Linear and Angular Velocity Recalculation 
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These six differential Equations (1)-(6),  and two 

algebraic Equations (7)-(8) containing eight state 

variables represent a mathematical description of the 

dynamic behaviour of ideal differentially steered mobile 

robots with losses linearly dependent on the revolutions 

or speed. Control signals, uL and uR, that control the 

supply voltages of the motors are input variables. 

 

Calculation of steady-state values for constant engine 

power voltages are given below. A calculation of steady-

state is useful both for the checking of derived equations 

and for the experimental determination of the values of 

the unknown parameters. Steady-state in matrix 

representation is, 

(9) 
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The Equation (1-8) can be reduced to a state-space model 

with four states by introducing the following parameters, 
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where, 
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with matrices AD, BD and CD as, 
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Kinematics of the mobile robot 

The following derivations closely follow (Kuhne et al. 

2004), despite some notation changes which have been 

used. Let the global coordinates of the robot be (xB, yB), 

the orientation of the robot be α, and vB , ωB are the linear 

and angular velocities. The kinematic equations of the 

differential drive mobile robot is given by (Campion et 

al. 1996), 
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This can be represented as a simple model, 

 )( BBB uxx ,f  (12) 

where state variables xB=[xB yB α]T and control inputs 

uB=[vB ωB] T. 

Reference 

Robot

x

y

Real

 Robot

 
Figure 4: Coordinate System of Real Robot and 

Reference Robot 

A linear model can be derived from the non-linear model, 

Equations (11), from an error model with respect to the 

reference robot (see figure 4). A reference robot can be 

considered as a robot with reference (desired) parameters 

of the robot to follow a trajectory which can be 

represented as, 

 )( rrr ,f uxx   (13) 

The reference parameters are [𝑥𝑟  𝑦𝑟  𝛼𝑟 𝑣𝑟 𝜔𝑟]. The linear 

velocity, orientation angle and angular velocity of the 

reference robot can be derived from Equation (11) as, 
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Applying the Taylor series approximation to Equation 

(12), around the reference points (xr, ur), we can derive, 
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Subtracting Equation (17) from Equation (13) gives, 

 uxx
rr ux ff ,   (18) 

 

x  is the error vector of state variables and u is the error 

vector of control variables with respect to the reference 

robot. The approximation of x  in Equation (18), by the 

forward differences gives the following discrete-time 

linear time-variant (LTV) state-space model: 
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where T is the sampling period and Kx  is deviation state 

vector which represents the error with respect to the 

reference robot, and Ku is associated with the control 

input. The reference values, 𝑣𝑟 , 𝛼𝑟 , 𝜔𝑟  are the reference 

linear velocity, orientation angle and angular velocity 

respectively which can be calculated from Equations (14-

16). 

 

Combined model – LTV 

The kinematic model is linearized into a discrete error 

model. The dynamic model also has to be converted to a 

discrete error based model for augmenting with a 

kinematic model. Since the dynamic model is linear time 

invariant, the error model will be the same as that of 

Equation (10) but has to be discretized. Let the following 

be the discrete time state-space dynamic model. 
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The matrices DA , DB  and DC  are discretized matrices of 

the dynamic model (Equation (10)). The state variables 

and control inputs are deviation variables from the 

reference points, xD_r and uD_r, as, 
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This dynamics model and linearized kinematic time-

variant model, Equation (19), can be augmented into a 

single state-space time-variant model with 9 states 

(currents, wheel speeds, linear and angular velocities and 

coordinates), two control variables (motor voltage 

control input) and three outputs (position in x and y 

direction and orientation measured from x direction). 
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MODEL PREDICTIVE CONTROL 

At each sampling time, the model predictive controller 

generates an optimal control sequence by optimizing a 

quadratic cost function. The first control action of this 

sequence is applied to the system. The optimization 

problem is solved again at the next sampling time using 

the updated process measurements and a shifted horizon. 

The cost function formulation depends on the control 

requirements. The most common cost function is in the 

form of, 
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Where )( jkŷi   is an optimum j-step ahead prediction 

of the system i-th output, N2 is the control error horizon, 



 

 

N3 is the control horizon and )( jkwi   is the future set-

point or reference for the i-th controlled variable. The 

parameters, ri and qi are the weighting coefficient for 

control errors and control increments respectively. 

1)(  jkui is the control increment of the  i-th input. 

nu and ny are the number of inputs and number of outputs 

(manipulated and controlled variables). 

 

The cost function consists of two parts, mainly costs due 

to control error during the control error horizon N2 and 

costs to penalize the control signal increments during the 

control horizon N3. For simplicity in the following text 

we consider, N2=N3= N. 

 

A general discrete-time state-space model is given as, 
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An incremental state-space model can also be used, if the 

model input is the control increment ∆u(k) instead of 

u(k). ∆u(k)=u(k)-u(k-1)  
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The predicted output representation of state-space model, 

in matrix form, is 
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Which can be represented as sum of forced and free 

responses, 

 

  
response freeresponse forced

  fGUY   (24) 

Cost function 

The cost function in Equation (21) can be represented in 

matrix format as, 

  (25) 

where, R and Q are diagonal matrices with diagonal 

elements ri and qi respectively and W is a column vector 

of N future set points.   

Constraints 

In a long range predictive control, the controller has to 

anticipate constraint violation and correct control actions 

in an appropriate way. The input constraints are, 
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The implementation of MPC with constraints involves 

the minimization of a quadratic cost function 
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Subject to the linear inequalities AU≤b, which is a 

Quadratic Programming (QP) problem. The QP problem 

can be solved e.g. using the function quadprog in 

MATLAB (Honc and Dušek 2013). 

 

Predictive control of mobile robot 

 

The augmented model is an error based model whose 

state variables are deviations from reference variables. 

The reference variables can be seen as an ideal robot 

following a time-varying reference trajectory. These 

reference velocities vr, r  and orientation angle r  can be 

calculated from Equations (14) to (16) from the reference 

inputs (positional coordinates of the robot - xr, yr). The 

other reference variables xD_r and uD_r  can be pre-

calculated from the model, Equation (10), by closed loop 

control with set-points (as previously calculated) vr, r 

and with an initial condition calculated from steady state 

Equation (9) . The trajectory tracking of the mobile robot 

is achieved by model predictive control with the linear 

time-variant model, Equation (20), with a cost function 

as in Equation (25) considering the constraints, Equation 

(26). At every time instance, the MPC algorithm will 

calculate the optimal control inputs (motor voltage 

control inputs - uL and uR). The overall control scheme is 

shown in figure 5. 
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xr,yr

Model Predictive control

Optimiser

Cost 

function

Constraints

Input (uL,uR), 

Output (xB, yB, α)
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Figure 5: Overall Control Scheme 
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SIMULATION RESULTS  

Chassis parameters and DC motor parameters were 

chosen as in (Dušek et al. 2011).These values are chosen 

so that they roughly correspond to the real physical 

values of the mobile robot. The reference trajectory 

chosen was an S-shaped trajectory as follows, 
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The mobile robot MPC was simulated in the MATLAB 

simulation environment with a sample time of 0.1 s and 

prediction horizon, N=5. The initial position of the robot 

was chosen to be the same as the reference trajectory 

points. The weighing matrices are chosen as, 

)10 10 1( ,,diagQ  

)10 10( ,diagR  

In figure 6, the simulated trajectory is compared with the 

desired (reference trajectory). The control inputs and 

reference (calculated by Equation 14 and 16) and 

simulated linear and angular velocities are shown in 

figure 7.  Figure 8 depicts the wheel speeds and currents. 

Figure 9 shows the reference orientation (calculated by 

Equation (15)) and simulated orientation. 

 

Constraints were applied to controlled variables (control 

voltages to right and left wheel). The constraints of 

control voltage of the motors were set to [0, 1] since the 

source voltage is 10 V and no backward motions of motor 

was assumed. The trajectory was chosen in such a way 

that we can see the response of the robot when a sudden 

change of position and orientation to the robot.  

 

Figure 6: Trajectory Tracking 

 

 
Figure 7: Control Inputs, Linear and Angular Velocity 

 
Figure 8: Currents and Wheel Speeds 

 
Figure 9: Reference and Simulated Orientation 

 

Since the main objective of the paper was to model and 

simulate the response, efforts were not made in the 

control quality (e.g. constraints on state variables, tuning 

of weighing matrices, steady state error etc.). Control 

quality can be significantly improved by proper tuning of 

weighing matrices and/or by choosing an optimal horizon 

and/or by including a state observer etc. 

 

 



 

 

CONCLUSION 

In this paper, a linear time-variant model is derived by 

considering both the kinematics and dynamics of the 

mobile robot, which will allow trajectory tracking of 

mobile robot by controlling the control voltage to the 

motors. Constraints were considered only for the control 

variable. 

 

As a future research direction, we are looking to 

incorporate other issues into our MPC formulation, such 

as including constraints on wheel speeds and currents, 

decreasing the computation time etc. Moreover, we 

expect to finish this controller implementation in a real 

robot and to conduct real experiments with the mobile 

robot in various environments. Path planning, obstacle 

avoidance etc., are other elements we wish to consider. 
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