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ABSTRACT 

In this paper, we show the fragility of widely-used 

Stochastic Volatility Inspired (SVI) methodology. 

Especially, we highlight the sensitivity of SVI to the 

fitting penalty function. We compare different weight 

functions and propose to use a novel methodology, the 

implied vega weights. Moreover, we unveil the 

relationship between vega weights and the minimization 

task of observed and fitted price differences. Besides, 

we show that implied vega weights can stabilize SVI 

surfaces in illiquid market conditions. 

INTRODUCTION 

Vanilla options are traded with finite number of strikes 

and maturities. Thus, we can observe only some points 

of the implied volatility surface. It is known that vanilla 

prices are arbitrage free hence exotic option traders 

would like to calibrate their prices to vanillas (Dupire 

1994). The main difficulty is that calibration methods 

need the implied volatility surface. To overcome this 

problem we have to construct an arbitrage free surface 

from the observed points (Schönbucher 1998, Gatheral 

2013). In this paper we provide a robust arbitrage free 

surface fitting methodology.  

Chapters are structured as follows: Section 2. is a brief 

overview of SVI. In Section 3. we compare the different 

weight functions and present our implied vega weight 𝐿1

methodology. In Section 4. we summarize the findings. 

SVI 

After the Black Monday in 1987, traders behavior 

changed. Implied volatility skew became more 

pronounced. Risk aversion incorporated in the volatility. 

Hence, risk transfers between tenors and strikes get 

more sophisticated. 

The changes were in line with human nature, because 

people have different risk appetite in different tenors. 

Moreover, extreme high out of money implied 

volatilities are consequences of risk aversion and fear of 

the unpredictable.  

Besides, our risk neutral risk assessment should be 

consequent. Otherwise, calendar and butterfly arbitrage 

opportunities appear; 

C(K, τ1) <  C(K, τ2) if and only if τ1  < τ2 (1) 

C(K1 , τ) −
𝐾3−𝐾1

K3−K2
C(K2, τ) +

K2−K1

K3−K2
C(K3, τ) > 0 (2) 

where C(K, τ) represents the price of a European call 

option with strike 𝐾 and maturity 𝜏. 

Considering the behavior of compound interest the 

Black-Scholes log-normal model is applicable. 

dSt  =  rStdt + σStdWt (3) 

Also we have seen the volatility surface is not flat hence 

this model needs some adjustments. The most 

straightforward correction leads to the Local Volatility 

model (Dupire 1994). 

dSt  =  rStdt + σ(St, t)StdWt (4) 

However, calculating implied and realized volatilities 

show that Local Volatility is only an idealized perfect 

fit, because volatility is stochastic. 

dSt  =  rStdt + σ𝑡
𝑆𝑝𝑜𝑡

𝑆𝑡dWt (5) 

dσt
𝐵𝑆  =  u(k, t)dt + γ(k, t)dWt  +  ∑ vi(k, t)𝑛

i=1 dWt
i

where W, W1, … Wn are independent Brownian motions,

𝑘 is the log-moneyness and 𝜎𝐵𝑆 denotes the Black-

Scholes implied volatility. 

Schönbucher showed that the spot volatility can not be 

an arbitrary function of implied volatility, because of 

the static arbitrage constraints. 

σSpot =  
−𝛾𝑘

σBS(k,T)
±

√𝜎𝐵𝑆(k, T) +
𝑘2

(𝜎𝐵𝑆(𝑘,𝑇))
2 (∑ vi

2 − γ2𝑛
𝑖=1 ) (6) 

Besides the arbitrage constraints, Heston's model sheds 

more light on implied volatility modeling. Gatheral et 
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al. proposed the so called SVI (Stochastic Volatility 

Inspired) function to estimate all the implied volatility 

surface; 

σ𝐵𝑆  =  a + b (ρ(k − m) + √(k − m)2 + σ2) (7) 

where 𝑎 controls the level, 𝑏 the slopes of the wings, 𝜌 

the counter-clockwise rotation, 𝑚 the location and 𝜎 the 

at the money curvature of the smile. The SVI model has 

compelling fitting results, in addition it implies a static 

arbitrage free volatility surface. The only arguable step 

in the methodology is the model calibration. Kos et al. 

(2013) proposed to minimize the square differences 

between observed and fitted volatility, while Homescu 

(2011) advised a square difference method. 

Nevertheless West (2005) applied vega weighted square 

volatility differences. Zelida system (2009) used total 

implied variances. An other noticeable approach comes 

from Gatheral et al. (2013) who minimized squared 

price differences, but there are further regression based 

models as well (Romo 2011). 

In this article we propose a new absolute price 

difference based approach to stabilize SVI in illiquid 

market conditions. 

SENSITICITY ANALAYSIS OF SVI 

At the money options are more liquid than far out of 

money options, hence the bid-ask spread widens along 

the wings. This implies larger price ambiguity of OTM 

option prices. In order to stabilize the implied volatility 

surface we have to penalize price ambiguity. 

Uniform weights 

Highlighting the problem we can apply uniform 

weights. This approach assumes that all of the 

information is equally relevant. Thus, we get the usual 

square distance optimization task (Zelida 2009, Kos 

2013); 

min
σK,τ

Fit ∈ C0
∑ ∑ ( σK,τ

Fit − σK,τ
BS  )

2
𝐾∈𝓚𝜏∈𝓣 (8) 

where 𝓚 and 𝓣 represent the sets of the traded strikes 

and maturities, σK,τ
BS  is the implied and σK,τ

Fit   is the fitted 

volatility. 

1. Note that for fixed maturity σK,T
BS  increases in |K −

FT|. The volatility bid-ask spread also widens

along the wings. This implies that σK,T
BS,Ask

increases faster than σK,T
BS,Bid

hence defining the fair 

value of a deep OTM option from bid and ask 

price is not straightforward. 

2. Furthermore, deep out of money implied

volatilities are usually higher than ATM

volatilities. Therefore, uniform square penalty

overfits the wings and underfits the ATM range.

3. In addition, the set of traded strikes is not stable in

time. Therefore, the estimated surface will be

unstable in time.

Data truncation 

The simplest approach to solve the problem could be 

just using close ATM prices to fit SVI and then 

extrapolate along wings. The main drawback of this 

method is that OTM short dated options contain the 

market anticipated tail risk information. Truncating the 

data stabilizes the surface and implies accurate long 

term fit, but underestimates tail risk hence underprices 

exotic products. 

Square of price differences 

The most popular optimization technique is minimizing 

𝐿2 distances. The main drawback of this approach is

fitting to the mean, instead of the median which implies 

outlier sensitivity. 

Vega weights 

In order to deal with the skew and price ambiguity we 

propose to use a natural Gaussian based weight 

function. It turned out that truncating the data do not 

give the appropriate results. Therefore, we have to find 

a weight function which minimizes 𝐿1 distance,

penalizes price ambiguity, but still able to use tail risk 

information. 

min
σK,τ

Fit ∈ C0
∑ ∑ w(K, τ) | σK,τ

Fit − σK,τ
BS  |𝐾∈𝓚𝜏∈𝓣 (9) 

Note that the above optimization problem is still not 

general enough, because weight is a function of strike 

and maturity. This incorporates a sticky strike 

assumption. However, if we add the spot price 𝑆0 as

another independent variable to the weight, then we can 

get more general penalty functions. 

min
σK,S0,τ

Fit ∈ C0
∑ ∑ w(K, S0, τ) | σK,S0,τ

Fit − σK,S0,τ
BS  |𝐾∈𝓚𝜏∈𝓣  (10) 

Our initial problem is to find an implied volatility 

surface. This means that we would like to penalize 

observed and fitted volatility differences. 

Practitioners need the surface for trading. Hence, they 

are interested in the dollar amount of the discrepancies 

between fitted and observed volatilities. 

min
𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 ∈ C0
∑ ∑ |𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 − 𝐶𝐾,𝑆0,𝜏
𝐵𝑆 |𝐾∈𝓚𝜏∈𝓣 (11) 

After some calculations in Appendix, we can see that 

optimizing the price differences is approximately the 

same as optimizing vega weighted implied volatility 

differences. 

min
σK,S0,τ

Fit ∈ C0
∑ ∑ 𝒱K,S0,τ 

𝐵𝑆 | σK,S0,τ
Fit − σK,S0,τ

BS  |𝐾∈𝓚𝜏∈𝓣  (12)



 

 

 

Using the definition of 𝒱K,S0,τ 
𝐵𝑆  we get the price 

difference implied weight function. 

 

w(K, S0, τ) = S0e−qτφ(d1)√τ (13) 

 

where φ(x) represents the standard normal distribution 

function, 𝑑1 is the standard notation from the Black-

Scholes formula and 𝑞 is the continuous dividends rate. 

Figures 1: Vega weights as function of strike, and 

volatility σ ∈ [5,15, … ,45], 𝑆0 = 100, K ∈ [0, … ,200]  
and T = 1 year 

 

Supposing that 𝑞, 𝑟, 𝜎, 𝑆0, 𝜏 are fixed and using the 

definition of 𝑑1 we get that the weight function has a 

Gaussian shape in log moneyness  𝐾 = 𝐹𝑒𝑘. 

 

𝑤(𝐾) = S0 e−qτ  
1

2𝜋
e

−
1

2
(

ln
𝐹
𝐾+

𝜎2

2 𝜏

𝜎√𝜏
)

2

= 𝒪(𝑒−𝑘2
) (14) 

 

This implies that we highly penalize fitting 

discrepancies in the ATM range, while we are lenient 

with deep OTM fits. 

The next step is to fix 𝑞, 𝑒, 𝑆0, 𝜏 and use the first order 

Taylor approximation of 𝜎(𝐾, 𝑆0, 𝜏) around ATM log 

moneyness. 

 

𝑤(𝜎(𝑘)) =

𝑆0𝑒−𝑞𝜏

2𝜋
𝑒

−
1

2
(

−2𝑘+(𝜎(0,𝑆0,𝜏)+Ψ(𝑆0,𝜏)𝑘+𝒪(𝑘2))
2

𝜏

2(𝜎(0,𝑆0,𝜏)+Ψ(𝑆0,𝜏)𝑘+𝒪(𝑘2))√𝜏
)

2

√𝜏   (15) 

 

Hence we get; 

 

w(σ(k)) ≈ 𝒪(𝑒−𝑘4
) (16) 

 

ATM skew is represented by Ψ(𝑆0, 𝜏). The asymptotic 

behavior of 𝑤(𝜎(𝑘)) shows that the vega weighted 

implied volatility surface would be stable against 

extreme OTM implied volatilities. 

Moreover, it also can be seen that if 𝑘 is close to zero 

then for implied volatility skew and smile we get rather 

flat vega weights. 

 

−2k + (σ(0, S0, τ) + Ψ(S0, τ)k + 𝒪(k2))
2

=

−2k(1 − σ(0, S0, τ)Ψ(S0, τ)) + σ(0, S0, τ)2 + 𝒪(k2) 

 (17) 

 

Dividing with 𝜎(0, 𝑆0, 𝜏) we get: 

 

−2𝑘(1 − 𝜎(0, 𝑆0, 𝜏)Ψ(𝑆0, 𝜏)) + 𝜎(0, 𝑆0, 𝜏)2 + 𝒪(k2) 

2(𝜎(0, 𝑆0, 𝜏) + Ψ(𝑆0, 𝜏)𝑘 + 𝒪(k2))
 

 

This function is rather constant if 𝑘 is small. Equation 

14. also shows that for bigger |𝑘| values the weight 

should decrease with approximately exp(−𝑘2). 

 

 
Figures 2: Implied weights as function of strike, 

parameters: S0  = 100, σ0,100,1 = 0.2, K ∈  [0, … ,200],

slopes = (2% ,0.2%) 
 

Figure 2. unveils that vega weights take into account 

wings, but the bigger the |𝑘| the larger the impact of the 

exp(−𝑘2) term which balances the increasing OTM 

volatility. Hene, vega weights provide a balanced SVI 

fit. 

 

Empirical test 

In order to lend more color to the fragility of fitting 

methodology we simulated illiquid market environment 

by picking 5 data points in each slice from SPX 

15/09/2015 option data set (Gatheral 2013). To 

highlight the outlier-sensitivity we stressed the volatility 

of the last tenor (T=1.75), moneyness k=0.2 point by 

10%. 



 

 

Figure 3: fitted SVI surfaces to filtered SPX 15/09/2015 

data, solid lines: price difference based fit (implied vega 

weights), dashed lines: square price difference based fit, 

dotted line: square volatility difference based fit 

 

The results show that if we use 𝐿2 optimization 

techniques then we overpenalize outliers. It also can be 

seen using absolute difference based optimization 

makes the SVI fit stable. In illiquid market environment 

it is crucial because using square difference based fits 

only one outlier could have a huge impact on the 

affected slice or even the all surface, thus destabilizing 

option prices. 

 

CONCLUSION 

We showed that the absolute price difference based SVI 

fitting methodology is able to stabilize the implied 

volatility surface. Moreover, we shed some lights on the 

asymptotic behavior of the weights and displayed the 

connection with vega weights. We also stressed that 

absolute price difference based optimization do not 

assume any specific stickiness, hence it can be used in 

every volatility regime. 
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APPENDIX 

min
𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 ∈ C0
∑ ∑ |𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 − 𝐶𝐾,𝑆0,𝜏
𝐵𝑆 |

𝐾∈𝓚𝜏∈𝓣

 

= min
𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 ∈ C0
∑ ∑ |𝑆0𝑒−𝑞𝜏(Φ(𝑑1)

𝑆𝑉𝐼 − Φ(𝑑1)
𝐵𝑆 )

𝐾∈𝓚𝜏∈𝓣

− e𝑟𝜏𝐾(Φ(𝑑2)
𝑆𝑉𝐼 − Φ(𝑑2)

𝐵𝑆 )| 



 

 

= min
𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 ∈ C0
∑ ∑ | (𝑆0𝑒−𝑞𝜏𝜑(𝑑1

𝐵𝑆)
ln

𝐾
𝐹𝜏

+
𝜎𝐵𝑆𝜎𝑆𝑉𝐼

2

𝜎𝐵𝑆𝜎𝑆𝑉𝐼√𝜏
𝐾∈𝓚𝜏∈𝓣

− 𝐾𝑒−𝑟𝜏𝜑(𝑑2
𝐵𝑆)

ln
𝐾
𝐹𝜏

−
𝜎𝐵𝑆𝜎𝑆𝑉𝐼

2

𝜎𝐵𝑆𝜎𝑆𝑉𝐼√𝜏
) (𝜎𝑆𝑉𝐼 − 𝜎𝐵𝑆)

+ 𝒪 ((
𝜎𝑆𝑉𝐼 − 𝜎𝐵𝑆

𝜎𝐵𝑆𝜎𝑆𝑉𝐼√𝜏
)

2

) | 

= min
𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 ∈ C0
∑ ∑ | (𝒱𝐾,𝜏

𝐵𝑆
ln

𝐾
𝐹𝜏

+
𝜎𝐵𝑆𝜎𝑆𝑉𝐼

2

𝜎𝐵𝑆𝜎𝑆𝑉𝐼√𝜏
𝐾∈𝓚𝜏∈𝓣

− 𝒱𝐾,𝜏
𝐵𝑆

ln
𝐾
𝐹𝜏

−
𝜎𝐵𝑆𝜎𝑆𝑉𝐼

2

𝜎𝐵𝑆𝜎𝑆𝑉𝐼√𝜏
) (𝜎𝑆𝑉𝐼

− 𝜎𝐵𝑆) + 𝒪 ((
𝜎𝑆𝑉𝐼 − 𝜎𝐵𝑆

𝜎𝐵𝑆𝜎𝑆𝑉𝐼√𝜏
)

2

) | 

= min
𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 ∈ C0
∑ ∑ |𝒱𝐾,𝜏

𝐵𝑆(𝜎𝑆𝑉𝐼 − 𝜎𝐵𝑆)

𝐾∈𝓚𝜏∈𝓣

+ 𝒪 ((
𝜎𝑆𝑉𝐼 − 𝜎𝐵𝑆

𝜎𝐵𝑆𝜎𝑆𝑉𝐼√𝜏
)

2

) | 

≈ min
𝐶𝐾,𝑆0,𝜏

𝐹𝑖𝑡 ∈ C0
∑ ∑ |𝒱𝐾,𝜏

𝐵𝑆(𝜎𝑆𝑉𝐼 − 𝜎𝐵𝑆)|

𝐾∈𝓚𝜏∈𝓣

 

 

Note that 𝒱 𝑖𝑠 𝑜(√𝜏), thus options with short expiry are 

not vega sensitive. 

 

 

 

 

 

 

 

 

 

 




