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ABSTRACT 

In this paper we study a multi-server queueing model in 
the context of crowdsourcing useful in service sectors. 
There are two types of arrivals to the system such that 
one group of customers after getting service from the 
system may serve (with a certain probability) another 
group. Through simulation we point out, even for a small 
value of this probability, the significant advantage in 
considering crowdsourcing by offering more traffic load 
(through increasing the rate of online customers without 
violating the stability condition) to the system resulting 
in more customers served (which in turn increasing the 
revenues when cost/profits are incorporated). Also, the 
role of correlation, especially a positive one, present in 
the inter-arrival times in the system performance 
measures is highlighted.  

 
INTRODUCTION 

The concept of crowdsourcing has been used in different 
domains gaining significant exposure in many service 
sectors. We refer the reader to a recent survey paper by 
(Hosseini et al. 2015 and Evans et al. 2016). The meaning 
and interpretation of crowdsourcing is varied and despite 
its popularity among companies in many sectors it 
remains little understood. We refer the reader to (Howe 
2008) for a number of examples related to crowdsourcing 
in various sectors.  
 
The literature on the quantitative analysis of the 
crowdsourcing with the help of mathematical models is 
very small  even though the  literature on qualitative 
nature of crowdsourcing dealing with various definitions 
and classification is huge. The quantitative models for 
crowdsourcing will benefit business and service 
industries to better understand the system when 
underlying parameters change. For example, with the 
help of survival analysis and using the dataset from 
MTurk, (Wang et al. 2011) analyzed the completion time 
of crowdsourcing campaigns. The material flow of 
crowdsourcing processes in manufacturing systems was 
studied by using stochastic Petri nets in (Wu et al. 2014). 
Only recently stochastic models, more specifically 
queueing models, useful in crowdsourcing in the context 
of service sectors have been studied. To the best of our 

knowledge the first queueing model using one type of 
customers as possible servers for another group was 
studied by (Chakravarthy and Dudin 2017). The authors 
studied a queueing with corowdsourcing of M/M/c–type 
using matrix-analytic methods.  
 
It should be pointed out that the model studied in 
(Bernstein et al. 2012) deals with retaining a select few 
workers as “backup” servers on call for helping the 
system. These workers are allowed to tend to other tasks 
until a request for their help is made by the system. Thus, 
in their model the customers arriving at the system are 
never considered as servers for the system. 
 
In this paper, we generalize the model studied in 
(Chakravarthy and Dudin 2017) by considering a more 
versatile point process, namely, Markovian arrival 
process (MAP) for Type 1 arrivals, Poisson arrivals for 
Type 2, and phase type (PH-distribution) for services. 
That is, we study queueing model of MAP/PH/c–type 
with crowdsourcing and resort to simulation for the 
analysis since the state space of the queueing model 
grows exponentially with the number of servers, phase of 
the arrival, and the phase of the service processes. 
 
It is well-known (Neuts 1975) that a PH-distribution is 
obtained as the time until absorption in a finite-state 
Markov chain with an absorbing state. Realizing the 
limitations of Poisson processes and exponential 
distributions in spite of their nice mathematical 
properties, Neuts (Neuts 1979) first developed the theory 
of phase type distributions and MAPs. The MAP is a rich 
class of point processes that not only generalize many 
well-known processes such as Poisson, PH-renewal 
processes, and Markov-modulated Poisson process but 
also provides a way to model correlated arrivals. For 
further details on MAP and their usefulness in stochastic 
modelling, we refer to (Lucantoni et al. 1990; Lucantoni 
1991; Neuts 1992) and for a review and recent work on 
MAP we refer the reader to (Artalejo et al. 2010; 
Chakravarthy 2001; Chakravarthy 2010).  
 
MODEL DESCRIPTION 

We consider a c- server queueing system in which two 
types, say, Type 1 and Type 2, of customers arrive. We 
assume that Type 1 customers arrive according to a MAP 
with representation (��, ��) of order m. An arriving Type 
1 customer finding the server idle will get into service 
immediately. Otherwise, the customer will enter a finite 
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buffer of size �, 1 ≤ � < ∞, to be served on a First-
Come-First-Served (FCFS) basis when the server 
becomes free. Thus, it is possible for a Type 1 customer 
to be lost at the time of arrival due to the buffer being full. 
Let �, defined by � = �� + ��, govern the underlying 
Markov chain of the MAP such that �� accounts for the 
transitions corresponding to no arrival; �� governs those 
corresponding to an arrival of a Type 1 customer. By 
assuming �� to be a nonsingular matrix, the interarrival 
times will be finite with probability one and the arrival 
process does not terminate. Hence, we see that �� is a 
stable matrix. Let �� denote the arrival rate of Type 1 
customers. The arrivals of Type 2 customers are assumed 
to follow a Poisson process with rate ��. There is no 
restriction on how many Type 2 customers can be in the 
system. That is, there is an infinite buffer space for Type 
2 customers.  

While Type 1 customers are to be served by one of the c 
servers, Type 2 customers may be served by a Type 1 
customer having already been served and also available 
to act as a server or by one of the c (system) servers. For 
example, Type 1 customers visit the store to buy items 
while Type 2 customers order over some medium such as 
Internet and phone, and expects them to be delivered. The 
store management can use the in-store customers as 
couriers to "serve" the other type of customers. Not all 
in-store customers may be willing and in some cases not 
possible to act as servers for the store. Hence, a 
probability is introduced for Type 1 customers to opt for 
servicing Type 2 customers. 

A Type 2 customer getting serviced by a Type 1 customer 
depends on the following conditions. First, that Type 1 
customer should have just finished getting a service and 
opts to service a Type 2 customer. Secondly, at the time 
of opting to serve there is at least one Type 2 customer 
waiting to get a service. We assume that a served Type 1 
customer will be available to act as a server for a Type 2 
customer under the conditions mentioned above with 
probability �, 0 ≤ � ≤ 1. With probability � = 1 − �, 
the served Type 1 customer will leave the system without 
opting to serve a Type 2 customer. Upon completion of a 
service a free server will offer service to a Type 1 
customer on a FCFS basis; however, if there are no Type 
1 customers waiting, the server will serve a Type 2 
customer if there is one present in the queue. If a Type 1 
customer decides to serve a Type 2 customer, for our 
analysis purposes that Type 2 customer will be removed 
from the system immediately. This is due to the fact that 
the system no longer needs to track that Type 2 customer. 

We assume that all system servers offer services to either 
type on a FCFS within the type; however, Type 1 
customers have non-preemptive priority over Type 2 
customers. The service times are assumed to be of phase 
type with representation (�, �) of order n with mean 
1 �⁄ = �(−�)���, where � is a column vector of 1's of 
order n here and will be of dimension of appropriate 
dimension in the sequel.  

The arrival rate, ��, is given by �� = ����, where � is 
the stationary probability vector of the irreducible 
generator �, and is the unique (positive) probability 
vector satisfying �� = �, �� = 1. 

The model outlined above can be studied as a Markov 
process by keeping track of (a) the number, ��(�), of 
Type 2 customers in the queue; (b) the number, ��(�), 
Type 1 customers in the queue; (c) the number, ��(�), of 
servers busy serving Type 1 customers; (d) the number, 
��(�), of servers busy with Type 2 customers; (e) the 
phase , ��(�), of the ��� server, and (f) the phase, �(�), 
of the arrival process at time t. The process 

����(�), ��(�), ��(�), ��(�), ��(�),⋯ , ���(�)���(�)(�), �(�): 

� ≥ 0)} is a continuous-time Markov chain with state 
space given by 

Ω = {(��, ��, ��, ��, ��,⋯ , ��, �):	�� ≥ 0,			0 ≤ �� ≤ �,	 
    0≤ �� ≤ �, 0 ≤ �� ≤ �, 0 ≤ �� + �� ≤ �, 0 ≤ �� ≤ � 

	1 ≤ � ≤ �, 1 ≤ � ≤ �}. 

Note that we take �� = 0 when the ��� server is idle. The 
generator of this Markov process can be set up with the 
help of Kronecker products and sums of matrices. 
However, it is clear that the analysis of this model 
analytically requires a large state space to account for all 
the states described above. These are currently work-in-
process and the results will be reported elsewhere. 
However, our goal in this paper is to see how the impact 
of introducing crowdsourcing in the context of multi-
server queueing system with MAP arrivals through 
simulation. The rest of the paper is based on simulating 
the crowdsourcing queueing model described here with 
the help of ARENA (Kelton et al. 2010). Unless 
otherwise mentioned, we ran our simulation models 
using 3 replications and for 1,000,000 units (which in our 
case is minutes) for each replicate. 

VALIDATION OF THE SIMULATED MODEL 

In any simulation work, it is important to validate the 
simulated model by comparing the results with any 
known analytical results. Hence, we will do that in this 
section. The only cases for which analytical results are 
available for the model under study are for M/M/c 
(Chakravarthy and Dudin 2017). This is due to recent 
interests to study crowdsourcing from queueing theory 
perspective.  

We will list four key system performance measures 
among many for our illustration. 

 The probability, PLOS, that an arriving Type 1
customer is lost due to the buffer being full.

 The probability, PT2L1, that a Type 2 customer
leaves (served) with a Type 1 customer.

 The mean, MN1Q, number of Type 2 customers
waiting time in the queue.

 The mean, MN2Q, number of Type 2 customers
waiting time in the queue.



 

 

M/M/c crowdsourcing 

In (Chakravarthy and Dudin 2017), the authors studied 
an M/M/c type queueing models with crowdsourcing. We 
will compare our simulated results against their 
numerical ones, which were generated through analytical 
study by employing matrix-analytic methods. 
Specifically, we fix �� = 1, � = 1.1, � = 10, and vary 
other parameters as follows: � = 0, 0.5, 1, 	� = 0.8, 0.99, 
� = 1, 2, 5,10. The values  of ��, which depend on the 
(fixed) value of � (see (Chakravarthy and Dudin 2017)), 
are displayed in Table 1 below.  
 

Table 1: Values of �� for various scenarios for M/M/c 
 

 � = 0.8 � = 0.99 
c p = 0 p = 0.5 p = 1 p = 0 p = 0.5 p = 1 
1 0.1232 0.5016 0.8800 0.1524 0.6207 1.0890 
2 0.9602 1.3601 1.7600 1.1882 1.6831 2.1780 
5 3.6000 4.0000 4.4000 4.4550 4.9500 5.4450 
10 8.0000 8.4000 8.8000 9.9000 10.3950 10.8900 

 
The error percentage, which is calculated as 
{|���������� − ���������|	 	����������⁄ }	100%, for 
various scenarios are displayed in Table 2.  
 
By looking at Table 2 we notice that our simulated results 
are very close to the ones obtained using analytical 
results presented in (Chakravarthy and Dudin 2017) for 
all except a couple of scenarios. For these scenarios we 
ran the simulation again but with 10,000,000 minutes and 
3 replicates and found the error percentages for these 
cases drop significantly. 
 

Table 2: Error percentages (%) of analytical and simulated 
models for M/M/c 

 
  MN1Q MN2Q PLOS PT2L1 

c 
    � 

0.8 0.99 0.8 0.99 0.8 0.99 0.8 0.99 
p 

1 
0 0.13 0.20 0.66 7.24 0.00 0.00 0.00 0.00 

0.5 0.42 0.22 1.04 11.98 0.39 0.93 0.11 0.13 
1 0.30 0.16 0.10 22.47 1.16 0.00 0.10 0.07 

2 
0 0.10 0.05 0.51 7.05 0.00 0.00 0.00 0.00 

0.5 0.17 0.07 0.88 8.68 0.00 0.00 0.00 0.03 
1 0.09 0.00 0.07 3.05 0.00 0.00 0.02 0.02 

5 
0 0.22 0.18 0.28 0.80 0.00 0.00 0.00 0.00 

0.5 0.07 0.00 0.43 7.02 0.00 0.00 0.12 0.10 
1 0.07 0.05 0.20 2.77 0.00 0.00 0.07 0.11 

10 
0 0.22 0.10 0.19 1.16 0.00 0.00 0.00 0.00 

0.5 0.00 0.00 0.12 0.59 0.00 0.00 0.00 0.21 
1 0.20 0.00 0.26 1.00 0.00 0.00 0.35 0.00 

 
SIMULATED RESULTS FOR MAP/PH/c 
CROWDSOURCING 

For the arrival process, we consider the following five 
sets of values for �� and �� as follows.  
 
Erlang distribution (ERLA): 
 

�� = �
−2 2
0 −2

� , �� = �
0 0
2 0

� 

 
The exponential distribution (EXPA): 
 

�� = (−1), �� = (1) 
 

The hyper-exponential distribution (HEXA):  
 

�� = �
−1.90 0
0 −0.19

� , 		�� = �
1.710 0.190
0.171 0.019

� 

 
The MAP with negative correlation (MNCA):  
 

�� = �
−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

�, 

 

�� = �
0 0 0

0.01002 0 0.9922
223.4925 0 2.2575

� 

 
The MAP with positive correlation (MPCA): 
 

�� = �
−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

�, 

 

�� = �
0 0 0

0.9922 0 0.01002
2.2575 0 223.4925

� 

 
These MAP processes will be normalized to have a 
specific arrival rate. However, these are qualitatively 
different in that they have different variance and 
correlation structure. The first three arrival processes, 
namely, ERLA, EXPA, and HEXA, have zero correlation 
for two successive inter-arrival times. The arrival 
processes labeled MNCA and MPCA, respectively, have 
negative and positive correlation for two successive 
inter-arrival times with values -0.4889 and 0.4889. The 
ratio of the standard deviation of the inter-arrival times 
of these five arrival processes with respect to ERLA are, 
respectively, 1, 1.41421, 3.17450, 1.99335, and 1.99335. 
 
For the service times (�, �) we consider the following 
three PH-distributions.  
 
The Erlang distribution (ERLS): 
 

� = (1 0), � = �
−2 2
0 −2

� 

 
The exponential distribution (EXPS): 
 

� = (1), � = (−1) 
 
The hyper-exponential distribution (HEXS): 
 

� = (0.9 0.1), � = �
−1.90 0
0 −0.19

� 

 
Notice that these three PH-distributions all have the same 
mean but are qualitatively different in that the variations 
in the distributions are different. The ratio of the standard 
deviation of these three service times with respect to 



 

 

ERLS are, respectively, 1, 1.41422, and 3.17454. These 
distributions will be appropriately normalized to attain a 
specific mean in the numerical examples. 
 
Having validated our simulated crowdsourcing model for 
known cases in the previous section, we will now present 
a few illustrative examples to bring out qualitative nature 
of MAP/PH/c crowdsourcing model under study. We will 
discuss three examples here. In the sequel, we let � 
denote the waiting time in the system of a Type 2 
customer. In addition to the measures listed in the 
validation section we consider the following ones. 
 
 The probability, PIDL, the system is idle. 

 
 The probability, PBUS1, that the system is busy 

serving Type 1 customers.  
 

 The probability, PBUS2, that the system is busy 
serving Type 2 customers. 

 
 The mean, MWTS1, waiting time in the system of 

Type 2 customer. 
 
 The mean, MWTS2, waiting time in the system of 

Type 2 customer. 
 
 The fraction, FATH, of Type 2 customers whose 

waiting time in the system exceeds �, 	� ≥ 2, times 
the average service time by one of the system 

servers. That is, � �� >
�

�
�, � ≥ 2.  Since there is no 

analytical expression available for the measure, 
FATH, dealing with a specific tail probability of the 
waiting time in the system of a Type 2 customer, we 
used the simulated result instead. It should be 
pointed out that one can compute algorithmically the 
tail probability for classical single-server model, 
MAP/PH/1 using the matrix-analytic methods 
(Neuts 1981) but for a multi-server case it is highly 
complicated and hence we resort to simulation only 
for this particular measure. 

 
The purpose of our next example is to investigate the 
level of such effect MAP/PH/c case using simulated 
results. We will look at the ratio of a few of the measures 

under study here. The ratio, 
�(���)

�(���)
 , will be of interest for 

a given measure �.  
 
EXAMPLE 1: The effect of crowdsourcing is studied in 
this example by comparing the models: (a) � = 0 that 
corresponds to having two independent arrival processes 
and (b) � > 0 that corresponds to the crowdsourcing 
model in the context of a multi-server system. In the latter 
case there is a possibility for Type 1 customers to act as 
servers for Type 2. We fix �� = 1, �� = 2, � = 1.1, � =
3, � = 10 and vary � on the interval (0, 1] under different 
combinations of arrival and service distributions.  
 

In Figure 1 below we display the ratios of all but PBUS1 
since the ratio for PBUS1 for all scenarios are almost 1. 
Some key observations are summarized as follows. First 
observe that the smaller the ratio the better the system in 
terms of all measures except PIDL in which case it should 
be the larger the better. Having more idle time for the 
system will enable the management to use that time for 
other activities without having to lower the quality of 
service provided to the customers. 
 
In Figure 1, we display the ratios of the key measures 
under different scenarios for ERLS and HEXS services. 
Note that for lack of space we display only selected 
combinations; however, our observations summarized 
below are valid for other combinations not displayed in 
this figure. 
 
A quick look at these figures reveals the following 
interesting and important observations. 
 
 The ratio for the measure, PIDL, is greater than 1 and 

increases as � is increased indicating that the server 
becomes idle more often when � > 0 when 
compared to that of  � = 0. This is true for all 
combinations of arrivals and services. 

 
 The ratios of all other measures are less than 1 and 

decrease as � is increased. The rate of decrease 
depends on the type of arrivals and services. 

 
 The ratio for MWTS2 decreases significantly as � 

increases. This is true for all cases. This is very 
important from both management’s as well as 
customers' points of view. 

 
 The ratio for MWTS1 decreases as � increases but not 

as significantly as that of MWTS2. This is somewhat 
surprising since one would expect the ratio to be 
close to 1 since Type 1 service is not affected by the 
value of � due to non-preemptive nature of services. 
However, as � increases, Type 1 customers have a 
higher probability of serving Type 2 customers 
resulting in relatively fewer Type 2 customers to be 
served by one of the system servers and hence a 
reduction in the mean waiting time in the system. 

 
 The ratio for FATH is decreasing at a significantly 

higher rate as � increases (for all scenarios) which is 
again very important from both management as well 
as customers' points of view and can also be used by 
the management to guarantee some kind of a 
guarantee on the service times of Type 2 customers. 

 
The above observations show the significant advantage 
in introducing this type of variants, namely, 
crowdsourcing, to the classical queueing models. 
 



 

 

 
 
Figure 1: Ratios of various measures under different 
scenarios with ERLS and HEXS services 
 
In (Chakravarthy and Dudin 2017), it was shown that 
even in the case of small � there is a significant advantage 
in considering crowdsourcing by offering more traffic 
load through increasing the rate of Type 2 customers into 
the system. The rate of increase in the offered load to the 
system is much higher for small values of �. Here, we 
will investigate a similar advantage from a different point 
of view by considering the cases when � = 0 and � = 1. 
In the former case Type 1 customers are allowed only 
when at least one server is idle. Thus, the maximum 
number of Type 1 customers that can be present at any 
time in the system is � and � + 1, respectively. 
 
EXAMPLE 2: This example is very similar to Example 
1 except that we look at the cases when (a) � = 0  and (b) 
� = 1. Note that in these two cases the model can be 
considered as a slight variation of M/PH/c model since 
Type 2 arrivals arrive to a multi-server system with phase 
type arrivals and occasionally Type 1 customers are 
allowed to enter into the system. Hence, it will be 
interesting to see how having only a small number of 
Type 1 customers, namely, �  and � + 1 when � = 0  and 
� = 1, respectively, at any given time will have an 
impact on the selected system performance measures. 
Towards this end, we will fix �� = 1, �� = 2, � = 1.1, 
� = 3, and vary � on the interval (0,1] under different 
combinations of arrival and service distributions. Note 
that the queue is stable for all combinations under these 
values. In order to properly compare, we now look at the 

ratio 
�(���)

�(���)
 where �(� = �) =

�(���,���)

�(���,���)
, � = 0, 1.           

 

In Figure 2 below we display the ratios for selected 
measures and for representative scenarios. First observe 
that the smaller the ratio the better the system with � = 1 
as compared to � = 0 in terms of all measures except 
PIDL in which case it should be the larger the better. 
Having more idle time for the system will enable the 
management to use that time for other activities without 
having to lower the quality of service provided to the 
customers. 

 

 
 
Figure 2: Comparison of the ratio under different 
scenarios with ERLS and HEXS services 
 
A quick look at this Figure reveals a very significant 
advantage of having extra Type 1 customers in the 
system. This is the case for all scenarios (even the ones 
not displayed here for lack of space) and for all values of 
�. So, having Type 1 customers even if they are willing 
to offer services rarely plays a significant role in 
crowdsourcing applications. 
 
In the next example, we try to find the optimum �∗ such 
that the proportion of Type 2 customers whose waiting 
time in the system exceeds �, � ≥ 2, times the average 
service time by one of the system servers does not exceed 
a pre-determined value, such as 5%. Recalling that � 
denotes the waiting time in the system of a Type 2 
customer, then for any � ≥ �∗ when all other parameters 
are fixed, the following holds good. 
 

� �� >
�

�
� < 0.05, � ≥ 2. 

 
The purpose of this is to identify the regions where for a 
given � the minimum value of � that will guarantee that 
only certain (pre-determined) percentage of Type 2 
customers has longer than a (pre-determined) multiple of 



 

 

the average service time. Similarly, we can fix � and 
identify if there is any � that will yield a similar 
guarantee. 
 
EXAMPLE 3: Here we fix �� = 1, � = 1.1, � = 10, 
and vary other parameters as follows: � = 0.8, 0.9,       
� = 0, 0.5, 1.  
 
In Table 3 we display the optimum �∗ for various 
combinations. We ran our simulation for � up to 50 and 
if an optimum is not found in that range, we will denote 
this by simply displaying with "> 50". 
 

Table 3: Optimum  �∗ values 
 
  ERLS EXPS HEXS 
� MAP p=0 p=0.5 p=1 p=0 p=0.5 p=1 p=0 p=0.5 p=1 

0.8 

ERLA 3 2 2 4 4 3 >50 >50 >50 
EXPA 3 2 2 5 4 3 >50 >50 >50 
HEXA 3 3 2 5 4 3 >50 >50 >50 
MNCA 3 2 2 5 4 3 >50 >50 >50 
MPCA 3 2 2 20 4 3 >50 >50 >50 

0.99 

ERLA 3 3 2 4 4 3 >50 >50 >50 
EXPA 3 3 2 10 4 3 >50 >50 >50 
HEXA 3 3 2 5 4 3 >50 >50 >50 
MNCA 3 3 2 4 4 3 >50 >50 >50 
MPCA 3 3 2 20 4 3 >50 >50 >50 

 
A quick look at this table suggests that for HEXS, which 
has a large variation compared to the other two service 
distributions, one needs � to be larger than 50 for all 
values of �. Only in the case of positively correlated 
arrivals and with non-Erlang service times we see a 
relatively large � when Type 1 customers are not willing 
to serve Type 2 customers (i.e., when � = 0) which is not 
surprising as positively correlated arrivals are known to 
show such "odd" behavior with regard to other system 
performance measures in the literature (see e.g., 
(Chakravarthy 2010)). 
 

CONCLUSION 

In this paper we considered a queueing system useful in 
crowdsourcing. Specifically, we considered a multi-
server queueing model in which one type of customers 
may be available to serve another type of customers 
leading to more efficiency as well as to help the 
management to increase their productivity and hence 
revenues. Through illustrative numerical examples 
obtained via simulation, we showed the significant 
benefits in introducing this type of variants to the 
classical queueing models.  
 
Even for the small value of the probability introduced for 
in-store customers to opt for servicing the other type, we 
point out the significant advantage in considering 
crowdsourcing by offering more traffic load (through 
increased the rate of online customers without violating 
the stability condition) to the system resulting in more 
customers served (which in turn increasing the revenues 
when cost/profits are incorporated). Also, the role of 

correlation, especially a positive one, present in the inter-
arrival times in the system performance measures is 
highlighted. 
 
The model considered in this paper can be improved as 
follows. The assumption that Type 2 customers may be 
served singly by Type 1 customers can be relaxed to 
include batch services. 
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