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ABSTRACT 

In this paper, a simulation of predictive control of a 
two-input two-output (TITO) system with non-
minimum phase is presented. The proposed controller is 
based on extended setting of constraints. This setting 
represents a modification for purposes of control of non-
minimum phase multivariable systems. The main 
problem of control of this particular type of system is 
undesirable undershoot in the initial phase of the 
control. Known methods can properly reduce the 
undershoot in case of predictive control of single-input 
single-output (SISO) systems. The paper proposes a 
modification of a predictive controller for two-input 
two-output systems with non-minimum phase 
behaviour. The non-minimum phase TITO models are 
simulated using its mathematical representation in the 
form of transfer function matrix. 

INTRODUCTION 

Control of systems which are characterized by non-
minimum-phase behavior (Hoagg and Bernstein, 2007) 
requires a quite sophisticated approach for a controller 
design. The main problem is an undershoot which is 
present during the control using classical controllers 
without any modifications taking into account the non-
minimum phase behaviour of the controlled system. A 
suitable method for control of the non-minimum-phase 
systems is model predictive control (MPC) (Huang, 
2002; Rawlings and Mayne, 2009; Corriou, 2004). A 
successful implementation of MPC for control of non-
minimum phase SISO systems is presented for example 
in (Barot and Kubalcik, 2014). Generally, many 
technological processes require a simultaneous control 
of several variables related to one system. In this case, a 
design of a controller is more sophisticated. One of the 
most effective approaches to control of multivariable 
systems is model predictive control. An advantage of 
model predictive control is that multivariable systems 
can be handled in a straightforward manner. Therefore, 
model predictive control appears as a suitable approach 
for control of non-minimum phase multivariable 
systems. 

Model Predictive Control is one of the control methods 
which have developed considerably over a few past 
years. Predictive control is essentially based on discrete 
or sampled models of processes. Computation of 
appropriate control algorithms is then realized 
especially in the discrete domain. The basic idea of the 
generalized predictive control (Camacho and Bordons, 
2007; Kwon, 2005) is to use a model of a controlled 
process to predict a number of future outputs of the 
process. A trajectory of future manipulated variables is 
given by solving an optimization problem incorporating 
a suitable cost function and constraints. Only the first 
element of the obtained control sequence is applied. The 
whole procedure is repeated in the following sampling 
period. This principle is known as the receding horizon 
strategy.  

The known approach for control of non-minimum-phase 
SISO systems (Camacho and Bordons, 2007) consists of 
increasing of a minimum control horizon. However, this 
classical modification may not be generally successful. 
The further possibility is setting of equality constraints 
applied in several initial sampling periods of control 
(Barot and Kubalcik, 2014). This modification was also 
tested for control of non-minimum phase TITO systems. 
The obtained results were not satisfactory. The 
undershoots were not eliminated using this approach.   

In this paper, an appropriate setting of constraints in 
MPC which eliminates undershoots in the initial phase 
of model predictive control of non-minimum phase 
multivariable systems is presented. This approach was 
implemented for control of a TITO non-minimum phase 
system. 

MODEL OF THE CONTROLLED TITO SYSTEM 

A continuous TITO system can be expressed using the 
transfer function matrix: 
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A non-minimum phase behaviour is characterized by 
positive values of roots 4;1 ; ∈iiϑ  in numerators in 
partial transfer functions 2;1, ; ∈jiGij  of the transfer 

function matrix (2). 8;1 ; ∈llπ  are poles. 
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In the discrete simulation of MPC, the model (2) is 
expressed in Z-transform (Kučera, 1991) for a given 
sampling period T as (3). 

⎥
⎦

⎤
⎢
⎣

⎡
=

−−

−−
−

)()(
)()(

)( 1
22

1
21

1
12

1
111

zGzG
zGzG

zG  (3) 

For the simulation purposes, the mathematical model of 
TITO system (3) can have a form of the matrix fraction 
(4). 

)()()( 1111 −−−− = zzz BAG  (4) 

The structure of the particular matrices A(z-1) and B(z-1) 
can be seen in (5)-(6) with description of polynomials in 
(7)-(8). 

⎥
⎦

⎤
⎢
⎣

⎡
=

−−

−−
−

)()(
)()(

)( 1
22

1
21

1
12

1
111

zz
zz

z
αα
αα

A  (5) 

⎥
⎦

⎤
⎢
⎣

⎡
=

−−

−−
−

)()(
)()()( 1

22
1

21

1
12

1
111

zz
zzz

ββ
ββB  (6) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

++=

+=

+=

++=

−−−

−−−

−−−

−−−

2
222

1
221

1
22

2
212

1
211

1
21

2
122

1
121

1
12

2
112

1
111

1
11

1)( 

;)(

;)(

 ;1)(

zzz

zzz

zzz

zzz

ααα

ααα

ααα

ααα

     (7) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

+=

+=

+=

+=

−−−

−−−

−−−

−−−

2
222

1
221

1
22

2
212

1
211

1
21

2
122

1
121

1
12

2
112

1
111

1
11

)(

 ;)(

;)(

 ;)(

zzz

zzz

zzz

zzz

βββ

βββ

βββ

βββ

     (8) 

The transformation from the continuous model (1) to its 
discrete version (4) is possible using the least squares 
method (Nelles, 2001). The parameters of the 
polynomials (7)-(8) were included in an ARX model 
(Nelles, 2001) of the TITO system.  

MODEL PREDICTIVE CONTROL OF TITO 
SYSTEMS 

The model predictive control is a control strategy which 
incorporates a model of the controlled system for 
predictions of output variables. The calculations are 
performed on the receding horizon window which 
corresponds to a maximum prediction horizon N2. The 
control action signal is denoted as u(k). The output 
signal is y(k), e(k) is a control error and w(k) is a 

reference signal. Each variable in TITO MPC is two-
dimensional. 

The vector of future increments of manipulated variable 
uΔ

 

with Nu elements is determined by solving an 
optimization task which comprises a suitable cost 
function and constraints of variables. Nu is a control 
horizon. In the optimization task, the unknown variable 
y is determined by prediction equations (11) where the 
future outputs of the controlled model are determined by 
CARIMA model (Controlled AutoRegressive Integrated 
Moving Average) (Rossiter, 2003) (9). Equation (9) can 
be rewritten to equations (10) and (11) without 
consideration of the noise signal es(k). N1 and N2 are 
minimum and maximum prediction horizons. Matrices 
P and G are defined in (12)-(14) where Z is a zero 
matrix of a given dimension. 
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The optimization problem is then solved as a 
minimization by the quadratic programming. A cost 
function J is defined by (15)-(16) where the vector uΔ  
is solved with regard to the constraints defined by 
matrix inequality (17). Matrix I is an identity matrix. 
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CLASSICAL MODIFICATIONS FOR MPC OF 
NON-MINIMUM PHASE SISO SYSTEMS 

The method of predictive control enables a particular 
setting of the horizons for the purposes of control of 
non-minimum phase systems. The recommended 
approach increases the minimum horizon N1. It means 

reducing of N1 upper rows in matrices P and G  for 
SISO control or 2N1 rows for TITO control. Simulations 
performed for SISO systems proved that this method 
can not be generally successfully applied with 
appropriate results. The undesired undershoots were not 
eliminated in all cases. 
 
Therefore, further possible modification was proposed 
in (Barot and Kubalcik, 2014) which successfully 
eliminated undershoots for SISO systems. The principal 
of this method consists of particular equality constraints 
settings (18) of maxuΔ in the initial part of control. E.g., 
the constraint value was obtained experimentally as a 
relatively small constant ζ. For TITO systems, the 
experiments were not successful using the approach 
which was successfully used for SISO systems. 
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MODIFICATION FOR MPC OF NON-MINIMUM 
PHASE TITO SYSTEMS 

TITO MPC of non-minimum phase systems is more 
complicated than SISO MPC. The efforts to eliminate 
the undershoot using the methods described in the 
previous section were not successful. In this section it is 
introduced a modification which provided satisfactory 
control results without undesired undershoot also for 
TITO non-minimum phase systems. 
The main principle consists of restriction of the 
controlled variable y. In this case, restricted is the lower 
limit of y in the initial part of control. This restriction is 
applied only in the initial part of control. The matrix 
inequality (17) is then modified to matrices (20) and 
(21). 
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SIMULATION RESULTS 

As a simulation example it was chosen a TITO non-
minimum phase system given by equations (22)-(24). 
The continuous-time model of this system has only 
positive roots in the numerators of the transfer functions 
(22). The sampling period was chosen as 0.5 [s]. The 
step responses of the system are in Fig. 1 – 4.  
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Figure 1: Step Functions of G11(s) of TITO Model (22)  

 
Figure 2: Step Functions of G12(s) of TITO Model (22)  

 

 
Figure 3: Step Functions of G21(s) of TITO Model (22)  

 
Figure 4: Step Functions of G22(s) of TITO Model (22)  

 

MPC of the non-minimum phase TITO system was 
implemented using MATLAB scripts. The optimization 
part was programmed using the Hildreth’s dual method 
(Wang, 2009).  
 
The previously introduced methods applied for control 
of SISO systems were not successful. In this case of the 
multivariable system undershoots were not eliminated, 
as can be seen in Fig. 5. The approach proposed in this 
paper provided satisfactory results, as can be seen in 
Fig. 6. The minimum, control and prediction horizons 
were chosen as N1=1, Nu=30 and N2=40. The constraints 
of variables were set according to (21) in several initial 
steps which cover the undershoot. In this particular case 
it was 10 steps. 
 
The proposed method was applied for control of the 
introduced TITO systems with an elimination of 
significant undershoots in the initial part of the 
predictive control. The modification was active only 
during start-up of the control process. It is not 
appropriate for other step changes which also causes 
some minor undershoots.  
 
 

 



 

 

 
Figure 5: Simulation of Control without Proposed Modification 

 
Figure 6: Simulation of Control with Proposed Modification 

  



 

 

CONCLUSIONS  

The undershoot during the control of the non-minimum 
phase TITO system was eliminated using the proposed 
particular setting of constraints in the predictive control. 
This modification enables successful control of systems 
with this specific behaviour. The presented restriction is 
applied in the initial part of control. The approaches 
suitable for SISO systems were not satisfactory in case 
of the TITO system. The principal of the proposed 
modification is based on inequality constraints settings 
in the optimization task. The modification is used in 
several initial sampling periods in MPC and the 
undershoots are successfully eliminated.  
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