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ABSTRACT

A theorem due to L. J. Gleser stating that a gamma
distribution with shape parameter no greater than one
is a mixed exponential distribution is extended to
generalized gamma distributions introduced by E. W.
Stacy as a special family of lifetime distributions con-
taining both gamma distributions, exponential power
and Weibull distributions. It is shown that the mixing
distribution is a scale mixture of strictly stable laws
concentrated on the nonnegative halfline. As a corol-
lary, the representation is obtained for the mixed Pois-
son distribution with the generalized gamma mixing
law as a mixed geometric distribution. Limit theorems
are proved establishing the convergence of the dis-
tributions of statistics constructed from samples with
random sizes obeying the mixed Poisson distribution
with the generalized gamma mixing law including
random sums to special normal mixtures.

INTRODUCTION

A. Motivation

In most papers dealing with the statistical analysis
of meteorological data available to the authors, the
suggested analytical models for the observed statistical
regularities in precipitation are rather ideal and far

from being adequate. For example, it is traditionally
assumed that the duration of a wet period (the number
of subsequent wet days) follows the geometric distri-
bution (for example, see [1]). Perhaps, this prejudice
is based on the conventional interpretation of the
geometric distribution in terms of the Bernoulli trials
as the distribution of the number of subsequent wet
days (“successes”) till the first dry day (“failure”).
But the framework of Bernoulli trials assumes that the
trials are independent whereas a thorough statistical
analysis of precipitation data registered in different
points demonstrates that the sequence of dry and wet
days is not only independent, but it is also devoid
of the Markov property so that the framework of
Bernoulli trials is absolutely inadequate for analyzing
meteorological data.

It turned out that the statistical regularities of the
number of subsequent wet days can be very reli-
ably modeled by the negative binomial distribution
with the shape parameter less than one. For example,
in [2] the data registered in so climatically differ-
ent points as Potsdam (Brandenburg, Germany) and
Elista (Kalmykia, Russia) was analyzed and it was
demonstrated that the fluctuations of the numbers of
successive wet days with very high confidence fit the
negative binomial distribution with shape parameter
r ≈ 0.8. In the same paper a schematic attempt was
undertaken to explain this phenomenon by the fact that
negative binomial distributions can be represented as
mixed Poisson laws with mixing gamma-distributions
whereas the Poisson distribution is the best model
for the discrete stochastic chaos (see, e. g., [3], [4])

Proceedings 31st European Conference on Modelling and 
Simulation ©ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi, 
Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors) 
ISBN: 978-0-9932440-4-9/ ISBN: 978-0-9932440-5-6 (CD) 



and the mixing distribution accumulates the stochastic
influence of factors that can be assumed exogenous
with respect to the local system under consideration.

In the present paper we try to give further theoretic
explanation of the high adequacy of the negative
binomial model. For this purpose we use the concept of
a mixed geometric law introduced in [5] (also see [6],
[7]). Having first proved that any generalized gamma
distribution (GG-distribution) with shape parameter
less than one is mixed exponential and thus general-
izing Gleser’s similar theorem on gamma-distributions
[8], we then prove that any mixed Poisson distribution
with the generalized gamma mixing law (GG-mixed
Poisson distribution) is actually mixed geometric. The
mixed geometric distribution can be interpreted in
terms of the Bernoulli trials as follows. First, as a result
of some ”preliminary” experiment the value of some
random variables taking values in [0, 1] is determined
which is then used as the probability of success in the
sequence of Bernoulli trials in which the original ”un-
conditional” mixed Poisson random variable is nothing
else than the ”conditionally” geometrically distributed
random variable having the sense of the number of
trials up to the first failure. This makes it possible
to assume that the sequence of wet/dry days is not
independent, but is conditionally independent and the
random probability of success is determined by some
outer stochastic factors. As such, we can consider the
seasonality or the type of the cause of a rainy period.

The obtained results can serve as a theoretical
explanation of some mixed models used within the
popular Bayesian approach to the statistical analysis of
lifetime data related to high performance information
systems.

B. Notation and definitions

In the paper, conventional notation is used. The
symbols d

= and =⇒ denote the coincidence of distri-
butions and convergence in distribution, respectively.
The integer and fractional parts of a number z will be
respectively denoted [z] and {z}.

In what follows, for brevity and convenience, the
results will be presented in terms of random variables
(r.v:s) with the corresponding distributions. It will be
assumed that all the r.v:s are defined on the same
probability space (Ω, F, P).

A r.v. having the gamma distribution with shape
parameter r > 0 and scale parameter λ > 0 will be
denoted Gr,λ,

P(Gr,λ < x) =

∫ x

0

g(z; r, λ)dz,

with

g(x; r, λ) =
λr

Γ(r)
xr−1e−λx, x ≥ 0,

where Γ(r) is Euler’s gamma-function, Γ(r) =∫∞
0
xr−1e−xdx, r > 0.

In these notation, obviously, G1,1 is a r.v. with the
standard exponential distribution: P(G1,1 < x) =

[
1−

e−x
]
1(x ≥ 0) (here and in what follows 1(A) is the

indicator function of a set A).
The gamma distribution is a particular representative

of the class of generalized gamma distributions (GG-
distributions), which were first described in [9] as a
special family of lifetime distributions containing both
gamma distributions and Weibull distributions.

DEFINITION 1. A generalized gamma distribution
(GG-distribution) is the absolutely continuous distri-
bution defined by the density

g∗(x; r, γ, λ) =
|γ|λr

Γ(r)
xγr−1e−λx

γ

, x ≥ 0,

with γ ∈ R, λ > 0, r > 0.
The properties of GG-distributions are described in

[9], [10]. In what follows we will be interested only
in GG-distributions with γ ∈ (0, 1]. A r.v. with the
density g∗(x; r, γ, λ) will be denoted G∗r,γ,λ.

For a r.v. with the Weibull distribution, a particular
case of GG-distributions corresponding to the density
g∗(x; 1, γ, 1) and the distribution function (d.f.)

[
1 −

e−x
γ ]
1(x ≥ 0), we will use a special notation Wγ .

Thus, G1,1
d
= W1. It is easy to see that W 1/γ

1
d
= Wγ .

A r.v. with the standard normal d.f. Φ(x) will be
denoted X ,

P(X < x) = Φ(x) =
1√
2π

∫ x

−∞
e−z

2/2dz, x ∈ R.

A r.v. having the Laplace distribution corresponding to
the density fΛ(x) = 1

2e
−|x|, x ∈ R, will be denoted

Λ.
The d.f. and the density of a strictly stable distri-

bution with the characteristic exponent α and shape
parameter θ defined by the characteristic function
(ch.f.)

fα,θ(t) = exp
{
− |t|α exp{− 1

2 iπθαsignt}
}
, t ∈ R,

wheter 0 < α ≤ 2, |θ| ≤ min{1, 2
α − 1}, will be

respectively denoted Fα,θ(x) and fα,θ(x) (see, e. g.,
[11]). A r.v. with the d.f. Fα,θ(x) will be denoted Sα,θ.
To symmetric strictly stable distributions there corre-
spond the value θ = 0 and the ch.f. fα,0(t) = e−|t|

α

,
t ∈ R. Hence, it is easy to see that S2,0

d
=
√

2X .
To one-sided strictly stable distributions concen-

trated on the nonnegative halfline there correspond the



values θ = 1 and 0 < α ≤ 1. The pairs α = 1,
θ = ±1 correspond to the distributions degenerate in
±1, respectively. All the rest strictly stable distribu-
tions are absolutely continuous. Stable densities cannot
be explicitly represented via elementary functions with
four exceptions: the normal distribution (α = 2,
θ = 0), the Cauchy distribution (α = 1, θ = 0), the
Lévy distribution (α = 1

2 , θ = 1) and the distribution
symmetric to the Lévy law (α = 1

2 , θ = −1).
According to the ¡¡multiplication theorem¿¿ (see, e.

g., theorem 3.3.1 in [11]) for any admissible pair of pa-
rameters (α, θ) and any α′ ∈ (0, 1] the multiplicative
representation Sαα′,θ

d
= Sα,θ · S1/α

α′,1 holds, in which
the multipliers on the right-hand side are independent.
In particular, for any α ∈ (0, 2]

Sα,0
d
= X

√
2Sα/2,1, (1)

that is, any symmetric strictly stable distribution is a
normal scale mixture.

Let p ∈ (0, 1). By Vp we denote a r.v. having the
geometric distribution with parameter p : P(Vp = k) =
p(1−p)k, k = 0, 1, 2, ... This means that for any m ∈
N

P(Vp ≥ m) =
∑∞

k=m
p(1− p)k = (1− p)m.

DEFINITION 2. Let Y be a r.v. taking values in the
interval (0, 1). Moreover, let for all p ∈ (0, 1) the r.v:s
Y and Vp are independent. Let N = VY , that is,

P(N ≥ m) =

∫ 1

0

(1− y)mdP(Y < y)

for any m ∈ N. The distribution of the r.v. N will be
called Y -mixed geometric.

MAIN RESULTS

In the paper [8] it was shown that any gamma
distribution with shape parameter no greater than one
is mixed exponential. For convenience, formulate this
result as the following lemma.

LEMMA 1 [8]. The density of a gamma distribution
g(x; r, µ) with 0 < r < 1 can be represented as

g(x; r, µ) =

∫ ∞
0

ze−zxp(z; r, µ)dz,

where

p(z; r, µ) =
µr

Γ(1− r)Γ(r)
· 1(z ≥ µ)

(z − µ)rz
.

Moreover, a gamma distribution with shape parameter
r > 1 cannot be represented as a mixed exponential
distribution.

LEMMA 2 [12]. For r ∈ (0, 1) let Gr, 1/2 and
G1−r, 1/2 be independent gamma-distributed r.v:s. Let
µ > 0, p ∈ (0, 1). Then the density p(z; r, µ) in lemma
1 corresponds to the r.v.

Zr,µ = µ(Gr, 1/2 +G1−r, 1/2)/Gr, 1/2.

LEMMA 3 [13]. Let α ∈ (0, 1]. Then Wα
d
= W1·S−1

α,1

with the r.v:s on the right-hand side being independent.

LEMMA 4. A d. f. F (x) with F (0) = 0 corresponds
to a mixed exponential distribution if and only if the
function 1 − F (x) is completely monotone: F ∈ C∞
and (−1)n+1F (n)(x) ≥ 0 for all x > 0.

This statement immediately follows from the Bern-
stein theorem [14].

THEOREM 1. Let α ∈ (0, 1], r ∈ (0, 1), µ > 0. Then
the GG-distribution with parameters r, α, µ is a mixed
exponential distribution: G∗r,α,µ

d
= W1 ·

(
Sα,1Z

1/α
r,µ

)−1

with the r.v:s on the right-hand side being independent.
Moreover, a GG-distribution with αr > 1 cannot be
represented as mixed exponential.

PROOF. Prove the first assertion of the theorem.
First, note that P(G

1/α
r,µ > x) = P(Gr,µ > xα). Hence,

according to lemma 1 for x ≥ 0 we have

P(G1/α
r,µ > x) = P(W1 > Zr,µx

α) =

=

∫ ∞
0

e−zx
α

p(z; r, µ)dz =

∫ ∞
0

P(Wα > xz1/α)p(z; r, µ)dz,

that is, G1/α
r,µ

d
= Wα ·Z−1/α

r,µ . Now apply lemma 3 and
obtain

G1/α
r,µ

d
= W1 ·

(
Sα,1Z

1/α
r,µ )−1. (2)

Second, it is easy to see that

G1/α
r,µ

d
= G∗r,α,µ (3)

for any r > 0, µ > 0 and α > 0. Now the desired
assertion follows from (2) and (3).

To prove the second assertion, assume that αr > 1
and the r.v. G∗r,α,µ has a mixed exponential distribu-
tion. By lemma 4 this means that the function ψ(s) =
P(G∗r,α,µ > s), s ≥ 0, is completely monotone. But
ψ′(s) = g∗(s; r, α, µ) ≥ 0 for all s ≥ 0, whereas
ψ′′(s) = (g∗)′(s; r, α, µ) = αµr

Γ(r)s
αr−2e−µs

α(
(αr −

1) − µαsα
)
≤ 0, only if (αr − 1) − µαsα ≤ 0,

that is, s ≥ s0 ≡
[
(αr − 1)/µα

]1/α
> 0, and

ψ′′(s) ≥ 0 for s ∈ (0, s0) 6= ∅ contradicting the
complete monotonicity of ψ(s) and thus proving the
second assertion. The theorem is proved.



DEFINITION 3. For r > 0, α ∈ R and µ > 0 let
Πr,α,µ be a r.v. with the GG-mixed Poisson distribution

P(Πr,α,µ = k) =
1

k!

∫ ∞
0

e−zzkg∗(z; r, α, µ)dz,

k = 0, 1, 2...

Since negative binomial distributions are mixed
Poisson laws with gamma-mixing distributions [15],
[4] the class of GG-mixed Poisson laws contains
negative binomial distributions (α = 1). Moreover, it
also contains Poisson-Weibull distributions (r = 1)
[6].

THEOREM 2. If r ∈ (0, 1], α ∈ (0, 1] and µ >
0, then a GG-mixed Poisson distribution is a Yr,α,µ-
mixed geometric distribution:

P(Πr,α,µ = k) =

∫ 1

0

y(1− y)kdP(Yr,α,µ < y),

k = 0, 1, 2..., where

Yr,α,µ
d
=

Sα,1Z
1/α
r,µ

1 + Sα,1Z
1/α
r,µ

d
=

d
=

µ1/αSα,1(Gr,1/2 +G1−r,1/2)1/α

G
1/α
r,1/2 + µ1/αSα,1(Gr,1/2 +G1−r,1/2)1/α

, (4)

where the r.v:s Sα,1 and Zµ,r or Sα,1, Gr,1/2 and
G1−r,1/2 are independent.

PROOF. Using theorem 1 we have

P(Πr,α,µ = k) = − 1

k!

∫ ∞
0

e−zzkdP(G∗r,α,µ > z) =

= − 1

k!

∫ ∞
0

e−zzkdP(W1 > Sα,1Z
1/α
r,µ z) =

=
1

k!

∫ ∞
0

x

(∫ ∞
0

e−z(1+x)zkdz

)
dP(Sα,1Z

1/α
r,µ < x) =

=
Γ(k + 1)

k!

∫ ∞
0

x

(1 + x)k+1
dP(Sα,1Z

1/α
r,µ < x) =

=

∫ ∞
0

x

1 + x

(
1− x

1 + x

)k
dP(Sα,1Z

1/α
r,µ < x).

Changing the variables x
1+x 7−→ y, we finally obtain

P(Πr,α,µ= k)=

∫ 1

0

y(1− y)kdP
(
Sα,1Z

1/α
r,µ < y

1−y
)

=

=

∫ 1

0

y(1− y)kdP

(
Sα,1Z

1/α
r,µ

1 + Sα,1Z
1/α
r,µ

< y

)
. (5)

Moreover, (5) and lemma 2 yield representation (4).
The theorem is proved.

REMARK 1. With the account of lemma 1 it is easy
to verify that the density q(y; r, α, µ) of the r.v. Yr,α,µ

admits the following integral representation via the
strictly stable density fα,1(x):

q(y; r, α, µ) =
µr

Γ(1− r)Γ(r)
· 1(0 ≤ y ≤ 1)

(1− y)2
×

×
∫ ∞
µ

fα,1

(
yz−1/α

1− y

)
dz

(z − µ)rz1+2/α
.

REMARK 2. It is easily seen that the sum Gr,1/2 +
G1−r,1/2 in (4) has the exponential distribution with
parameter 1

2 . However, the numerator and denominator
of the expression on the right-hand side of (4) are not
independent.

From (4) we easily obtain the following asymptotic
assertion.

COROLLARY 1. As µ → 0, the r.v. Yr,α,µ is the
quantity of order µ1/α in the sense that

µ−1/αYr,α,µ =⇒ Sα,1Z
1/α
r,1

d
=

d
= Sα,1 ·

(
Gr,1/2 +G1−r,1/2

Gr,1/2

)1/α

,

where the r.v:s Sα,1 and Zµ,r or Sα,1, Gr,1/2 and
G1−r,1/2 are independent.

Theorem 1, corollary 1, lemma 3 and theorem 1 of
[12] yield the following statement.

THEOREM 3. If r ∈ (0, 1], α ∈ (0, 1] and µ > 0,
then

µ1/αΠr,α,µ =⇒ W1

Sα,1Z
1/α
r,1

d
=

d
= Wα ·

(
Gr,1/2

Gr,1/2 +G1−r,1/2

)1/α
d
= G∗r,α,µ

as µ → 0, where the r.v:s W1, Sα and Zr,1 are
independent as well as the r.v:s Wα, Gr,1/2 and
G1−r,1/2.

LIMIT THEOREMS FOR SUMS OF
INDEPENDENT RANDOM VARIABLES IN

WHICH THE NUMBER OF SUMMANDS
HAS THE GG-MIXED POISSON

DISTRIBUTION
Consider a sequence of independent identically dis-

tributed (i.i.d.) r.v:s X1, X2, . . . defined on a prob-
ability space (Ω, F, P). Assume that EX1 = 0,
0 < σ2 = DX1 < ∞. For a natural n ≥ 1 let
Sn = X1 + . . .+Xn. Let N1, N2, . . . be a sequence of
nonnegative integer random variables defined on the
same probability space so that for each n ≥ 1 the
random variable Nn is independent of the sequence
X1, X2, . . . A random sequence N1, N2, . . . is said to



be infinitely increasing (Nn −→ ∞) in probability, if
P(Nn ≤ m) −→ 0 as n→∞ for any m ∈ (0,∞).

LEMMA 5. Assume that the r.v:s X1, X2, . . . and
N1, N2, . . . satisfy the conditions specified above and
Nn −→∞ in probability as n→∞. A d.f. F (x) such
that

P
(
SNn < xσ

√
n
)

=⇒ F (x) (n→∞),

exists if and only if there exists a d.f. Q(x) satisfying
the conditions Q(0) = 0,

F (x) =

∫ ∞
0

Φ
(
x/
√
y
)
dQ(y), x ∈ R,

P(Nn < nx) =⇒ Q(x) (n→∞).

PROOF. This lemma is a particular case of a result

proved in [16], the proof of which is, in turn, based
on general theorems on convergence of superpositions
of independent random sequences [18]. Also see [19],
theorem 3.3.2.

Re-denote n = µ−1/α. Then µ = 1/nα. Consider
the r.v. Πr,α,1/nα . From theorem 3 it follows that
Πr,α,1/nα →∞ in probability and

Πr,α,1/nα

n
=⇒ W1

Sα,1Z
1/α
r,1

d
=

d
= Wα ·

(
Gr,1/2

Gr,1/2 +G1−r,1/2

)1/α

(6)

as n → ∞, where in each term the involved r.v:s are
independent.

Now from (6), lemma 5 with Nn = Πr,α,1/nα , (1)

and the well-known relation Λ
d
= X
√

2W1 we directly
obtain

THEOREM 4. Assume that the random variables
X1, X2, . . . and N1, N2, . . . satisfy the conditions
specified above. Let r ∈ (0, 1], α ∈ (0, 1]. Then

SΠr,α,1/nα

σ
√
n

=⇒ X ·
√
G∗r,α,µ

d
=

d
= X ·

√
W1

Sα,1Z
1/α
r,1

d
=

Λ√
2Sα,1Z

1/α
r,1

as n →∞, where in each term the involved r.v:s are
independent.

LIMIT THEOREMS FOR STATISTICS
CONSTRUCTED FROM SAMPLES WITH

RANDOM SIZES HAVING THE GG-MIXED
POISSON DISTRIBUTIONS

Consider a sequence of i.i.d. r.v:s X1, X2, ... defined
on a probability space (Ω, F, P). Let N1, N2, ... be
a sequence of nonnegative integer random variables
defined on the same probability space so that for each
n ≥ 1 the random variable Nn is independent of the
sequence X1, X2, ... A random sequence N1, N2, ...
is said to be infinitely increasing (Nn −→ ∞) in
probability, if P(Nn ≤ m) −→ 0 as n → ∞ for
any m ∈ (0,∞).

For n ≥ 1 let Tn = Tn(X1, ..., Xn) be a
statistic, that is, a measurable function of the ran-
dom variables X1, ..., Xn. For each n ≥ 1 de-
fine the random variable TNn by letting TNn(ω) =
TNn(ω)

(
X1(ω), ..., XNn(ω)(ω)

)
for every elementary

outcome ω ∈ Ω. We will say that the statistic Tn is
asymptotically normal, if there exists ϑ ∈ R such that

P
(√
n
(
Tn − ϑ

)
< x

)
=⇒ Φ(x) (n→∞). (7)

LEMMA 6. Assume that Nn −→∞ in probability as
n→∞. Let the statistic Tn be asymptotically normal
in the sense of (7). Then a distribution function F (x)
such that

P
(√
n
(
TNn − ϑ

)
< x

)
=⇒ F (x) (n→∞),

exists if and only if there exists a distribution function
Q(x) satisfying the conditions Q(0) = 0,

F (x) =

∫ ∞
0

Φ
(
x
√
y
)
dQ(y), x ∈ R,

P(Nn < nx) =⇒ Q(x) (n→∞).

This lemma is a particular case of theorem 3 in [17],
the proof of which is, in turn, based on general theo-
rems on convergence of superpositions of independent
random sequences [18]. Also see [19], theorem 3.3.2.

From (6), lemma 5 with Nn = Πr,α,1/nα and (1)
with the account of the easily verified property of GG-
distributions (G∗r,α,µ)−1 d

= G∗r,−α,µ we directly obtain
THEOREM 5. Let r ∈ (0, 1], α ∈ (0, 1]. Let the

statistic Tn be asymptotically normal in the sense of
(7). Then

√
n
(
TΠr,α,1/nα − ϑ

)
=⇒ X ·

√
G∗r,−α,µ

d
=

d
= X ·

√
Sα,1Z

1/α
r,1

W1

d
= S2α,0 ·

√
Z

1/α
r,1

2W1

as n →∞, where in each term the involved r.v:s are
independent.



REMARK 3. The distribution of the limit r.v. in
theorem 4 is a special case of the so-called generalized
variance gamma distributions, see [10]. If α = 1, then
Sα,1 ≡ 1 and according to lemma 1 the limit law in

theorem 4 turns into that of the r.v. X
√
Zr,1W

−1
1

d
=

XG
−1/2
r,1 , that is, the Student distribution with 2r

degrees of freedom (see [20], [4]).

REMARK 4. It is worth noting that the mixing
GG-distributions in the limit normal scale mixtures
in theorems 4 and 5 differ only by the sign of the
parameter α.

CONCLUSION

In the paper, a theorem due to L. J. Gleser stating
that a gamma distribution with shape parameter no
greater than one is a mixed exponential distribution
was extended to generalized gamma distributions in-
troduced by E. W. Stacy as a special family of lifetime
distributions containing both gamma distributions, ex-
ponential power and Weibull distributions. It was
shown that the mixing distribution is a scale mixture
of strictly stable laws concentrated on the nonnega-
tive halfline. As a corollary, the representation was
obtained for the mixed Poisson distribution with the
generalized gamma mixing law as a mixed geometric
distribution. Limit theorems were proved establish-
ing the convergence of the distributions of statistics
constructed from samples with random sizes obeying
the mixed Poisson distribution with the generalized
gamma mixing law including random sums to special
normal mixtures.

The obtained results can serve as a theoretical
explanation of some mixed models used within the
popular Bayesian approach to the statistical analysis of
lifetime data related to high performance information
systems.
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