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ABSTRACT 

This paper studies the dependency of the Bison 

Algorithm performance on the control parameter 

configuration. The Bison Algorithm is a new swarm 

algorithm based on the protection mechanisms of bison 

herds. It operates with two groups: the exploiting 

swarming group and the exploring running group. Even 

though that adjusting the group size parameters affects 

both the time requirements and the performance of the 

algorithm, there was no investigation of the parameter 

settings carried out yet. This paper describes the Bison 

Algorithm and then investigates the control parameters 

for a better understanding of their meaning and influence 

on the overall optimization process.  

INTRODUCTION 

A recent trend in the modern optimization is to exploit 

known biological findings. This is done by simulating 

instances of typical nature optimization patterns: the 

Darwinian evolution (Bäck 1996), genomes (Goldberg 

1989) or even animal behavior processes (Yang and Deb 

2013). 

The swarm algorithms model the swarm intelligence – a 

collective behavior of large animal groups, that can make 

intelligent decisions without an actual leadership. Based 

on partial information only, the swarms manage to 

optimize real-life problems like finding enough food 

supplies, shortening their travel distance, developing an 

ultimate hunting strategy, reproducing or escaping 

predators. The simulations such as the Bees Algorithm 

(Rajasekhar et al. 2017), Ant Colony Optimization 

(Dorigo and Stütle 2004; Duan and Ying 2009), Grey 

Wolf Optimizer (Mirjalili et al. 2014) and Cuckoo Search 

(Yang and Deb 2009) have been already successfully 

used in the optimization field.  

The Bison Algorithm is a recent swarm optimization 

algorithm (Kazikova et al. 2017). It simulates two of the 

most typical bison behavior: protecting the weak by 

forming a circle around them and the advantages of a 

running herd. 

Various extensions of the Bison Algorithm have been 

developed since (Kazikova et al. 2018). However, there 

has not been done any detailed parameter study, having 

all the previous papers on the subject relying on an early 

parameter test. 

This paper studies the Bison Algorithm with various 

parameter configurations. It simulates the movement 

differences and the impact on solution quality. In Section 

1 of the paper, the Bison Algorithm is outlined. Section 2 

describes the methods used in the parameter study. The 

outcomes of the experiments are presented in Section 3 

and discussed in Section 4. Finally, the meanings of the 

findings are considered in Section 5. 

BISON ALGORITHM 

The Bison Algorithm was inspired by the most typical 

behavior patterns of bison. Bison have two distinctive 

protective mechanisms: forming a circle around the weak 

ones and almost inexhaustible running manners (Berman 

2008). The algorithm implements both, as described in 

pseudocode Algorithm 1. 

Algorithm 1: Bison Algorithm Pseudocode 

Initialization: 

Obj. function: 𝑓(𝑥) = (𝑥1, . . . , 𝑥𝑑) 

Generate swarming group randomly 

Generate run. group around xbest

  Generate run direction vector Eq.(4) 

For every iteration do 

  Compute the swarming center Eq.(1,2) 

  For every swarmer do 

Compute position candidate Eq.(3) 

if 𝑓(𝒙𝒏𝒆𝒘)  <  𝑓(𝒙𝒐𝒍𝒅) then move to 𝒙𝒏𝒆𝒘

  End 

  Adjust run direction vector r Eq.(5) 

  For every runner do 

Move in run direction vector Eq.(6) 

  End 

  Copy success. runners to swarmers 

  Sort swarming group by 𝑓(𝑥) value 

End for 
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Definition of the Bison Algorithm  

The algorithm is defined by two groups, each simulating 

different behavior. The first group models the swarming 

pattern. It starts by computing the center of the fittest 

swarming individuals (sorted by the objective function 

value). This paper operates with the ranked center 

computation. This approach sorts the fittest individuals, 

giving them corresponding weights according to their 

solution quality (Eq. 1) and then computes the center 

concerning their weights (Eq. 2). A new position 

candidate is computed (Eq. 3) and used only if it 

improves the objective function value of the swarmer. 

𝑤𝑒𝑖𝑔ℎ𝑡 = (10, 20, … ,10 ∗ 𝑠) 

𝑐 = ∑
𝑤𝑒𝑖𝑔ℎ𝑡𝑖∗𝒙𝒊

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖
𝑠
𝑗=1

𝑠
𝑖=1   

𝑥𝑛𝑒𝑤 =  𝑥𝑜𝑙𝑑 + (𝑐 − 𝑥𝑜𝑙𝑑) ∙ 𝑟𝑎𝑛𝑑(0, 𝑣) (3) 

Where s is the elite group size parameter, defining the 

number of the fittest bison to compute the center of, c is 

the center, v is the overstep parameter, xi is the ith 

solution, xold is the current solution and xnew is the new 

solution candidate.  

 

The second group simulates the running behavior. During 

the initialization of the algorithm, a random run direction 

vector r is generated (Eq. 4) and then slightly altered after 

every iteration (Eq. 5). The running movement always 

happens in the run direction vector (Eq. 6), not 

concerning the quality of the solution. This means that 

unlike the swarmers the runners move even when it 

threatens their quality. 

𝑟 = 𝑟𝑎𝑛𝑑 (
𝑢𝑏−𝑙𝑏

45
 ,

𝑢𝑏−𝑙𝑏

15
)          (4) 

𝑟 =  𝑟 ∙ 𝑟𝑎𝑛𝑑(0.9,1.1)          (5) 

𝑥𝑛𝑒𝑤 =  𝑥𝑜𝑙𝑑 + 𝑟          (6) 

 

Where ub and lb are the upper and lower boundaries of 

the search space, r is the run direction vector and xold, xnew 

are the original and the new solutions. 

Since the Bison Algorithm considers the search space a 

hypersphere, the running movement can be based on the 

run direction vector throughout the whole optimization 

process. Whenever the individuals run over the 

boundaries, they appear on the other side of the exceeded 

dimensions, exploring the search space thoroughly. 

The control parameters of the Bison Algorithm are 

described in Table 1. The recommended value of the 

overstep parameter 3.5 means that the swarmers can 

exceed the center 2.5 times in accordance with Eq. 3. The 

size of the running group is defined with the help of the 

swarm group size (Eq. 7). 

𝑟𝑢𝑛 𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒 =  𝑁𝑃 − 𝑠𝑤𝑎𝑟𝑚 𝑠𝑖𝑧𝑒            (7) 

Where NP is the population number and swarm size is the 

swarm group size parameter. 

Table 1: Bison Algorithm Control Parameters 

Parameter Description 

Population 𝑁𝑃 Population size 

Elite group size Number of the fittest solutions used 

for center computation 

Swarm group size Number of the swarming group 

solutions 

Overstep 𝑣 Maximum length of the swarming 

movement in relation to the center 

0 = no movement 

1 = to the center 

Recommended: 3.5 - 4.1 

 
METHODS 

Two parameter scenarios were examined. The first 

scenario called the complete set consists of 12 

configurations described in Table 2 in the form, that first 

notes the swarm group size and then the elite group size. 

For example, S40E20 means a population of 40 swarmers 

and 20 elite individuals. The 40S set examines only the 

configurations with 40 swarming individuals. Other 

parameters were set to: 𝑁𝑃 = 50, 𝑣 = 3.5. 

Table 2: Tested Sets of Parameter Configurations 

Complete set S20E1, S20E10, S20E20, S30E1, 

S30E10, S30E20, S30E30, S40E1, 

S40E10, S40E20, S40E30, S40E40 

40S set S40E1, S40E10, S40E20, S40E30, 

S40E40 

This paper investigates the influence of the control 

parameter configuration on 1) movement patterns, 

2) performance of the algorithm, 3) computation time. 

 

The movement is presented by a 2D simulation of the 

population distribution on the Rastrigin’s Function 

(Fig. 1). The included models are: S40E1 with one bison 

being the sole center, S40E40 with the center computed 

from all the swarmers and S20E10 with many runners. 

For the performance experiments, we used the first 15 

functions of IEEE CEC 2017 benchmark (Awad et al. 

2016), on 30 independent runs, each consisting of 

10 000 ∙ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 evaluations. The solutions were 

compared with the Friedman rank test (p<0.05) in Fig. 2 

and 3 for the complete set and in Fig. 4, 5 for the 40S set. 

Table 3 presents the Friedman P-Values. Table 4 sum the 

results of the two most successful configurations 

Wilcoxon rank-sum tests (α=0.05) comparing the in 10 

and 30 dimensions. Table 5 shows the mean solution and 

standard deviation of the two approaches. The mean 

convergences of the 40S set are shown in Fig. 6, 7 and 8. 

 

The time requirements were compared by the Friedman 

rank test in Fig. 9 and 10. Table 6 shows the mean time 

needed for solving 10-dimensional problems with the 

40S testing set. The significantly better time results 

according to the Wilcoxon rank-sum test are bold.  

 



 

 

RESULTS 

Movement Patterns 
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Figure 1: 2D Movement of Parameter Configurations S40E1, S40E40, S20E10 

  



 

 

Performance Experiment Results 

 

 

 

Figure 2: Friedman Rank Test on Complete Set of Parameter Configurations in 10D 

 

Figure 3: Friedman Rank Test on Complete Set of Parameter Configurations in 30D 



 

 

 

Figure 4: Friedman Rank Test on S40 Set 10D 

 

 

Figure 5: Friedman Rank Test on S40 Set 30D 

Table 3: P-Values of the Friedman Rank Tests 

 Complete set S40 set 

10 dimensions 2.26E-22 2.79E-07 

30 dimensions 1.27E-46 1.45E-10 

Time experiments 

in 10 dimensions 
3.91E-74 1.87E-22 

 

Table 4: Significant Wins of the 2 Most 

Successful Parameter Configurations S40E20 

and S40E30 According to the Wilcoxon Rank-

Sum Test (α=0.05) 

Dimensionality None S40E20 S40E30 

10 dimensions 11 3 1 

30 dimensions 10 2 3 

 

 

 

Table 5: Mean Solutions and Standard 

Deviations of S40E20 and S40E30 in 10 

Dimensions 

 S40E20 = set 1 S40E30 = set 2 Win 

 avg std avg std avg 

f1 7.29E+02 1.12E+03 5.55E+02 8.29E+02 - 

f2 5.88E-02 2.38E-01 3.33E-02 1.83E-01 - 

f 3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

f4 2.70E-01 2.13E-01 4.23E-01 9.93E-02 1 

f5 9.15E+00 7.86E+00 1.12E+01 8.81E+00 - 

f 6 4.94E-05 2.65E-04 3.24E-06 1.23E-05 - 

f7 2.50E+01 8.27E+00 2.37E+01 8.02E+00 - 

f8 7.21E+00 6.10E+00 7.89E+00 7.63E+00 - 

f9 1.29E-01 4.53E-01 0.00E+00 0.00E+00 2 

f10 1.01E+03 4.32E+02 1.12E+03 2.52E+02 - 

f11 2.83E+00 2.57E+00 2.94E+00 2.01E+00 - 

f12 1.06E+04 1.02E+04 8.21E+03 7.32E+03 - 

f13 3.21E+03 3.06E+03 5.80E+03 4.24E+03 1 

f14 3.41E+01 6.54E+00 3.77E+01 5.47E+00 1 

f15 2.77E+01 1.54E+01 3.51E+01 2.04E+01 - 

 

 

 
 

Figure 6: Mean Convergence of 40S Set on F3 in 30D 

 

 

 

 
 

Figure 7: Mean Convergence of 40S Set on F4 in 30D 



 

 

 

 

Figure 8: Mean Convergence of S40 Set on F10 in 10D 

 

Computation Time Experiment Results 

 

 

Figure 9: Friedman Rank Test for the Computation Time 

on S40 Set in 10 Dimensions 

 

 

Figure 10: Friedman Rank Test for Computation Time 

on Complete Set of Parameter Configurations in 10 

Dimensions 

 

Table 6: Mean Time Needed for 100 000 

Evaluations of 10D Functions in Seconds 

 S40E1 S40E10 S40E20 S40E30 S40E40 

f1 5.07 5.02 5.25 5.59 5.75 

f2 5.50 5.42 5.55 5.68 5.83 

f 3 5.23 5.10 5.33 5.57 5.81 

f4 5.30 5.13 5.33 5.57 5.79 

f5 5.25 5.14 5.38 5.59 5.82 

f 6 5.21 5.27 5.53 5.80 6.04 

f7 4.98 5.18 5.39 5.64 5.89 

f8 5.04 5.18 5.37 5.61 6.11 

f9 4.95 5.16 5.37 5.62 5.97 

f10 5.75 5.64 5.77 6.02 6.28 

f11 5.13 5.20 5.39 5.61 5.82 

f12 5.20 5.21 5.42 5.63 5.89 

f13 5.63 5.40 5.51 5.76 5.97 

f14 5.84 5.58 5.70 5.93 6.08 

f15 5.66 5.78 5.58 5.78 5.99 

Best times according to the Wilcoxon rank-sum test: 

None S40E1 S40E10 S40E20 S40E30 S40E40 

8 4 3 0 0 0 

DISCUSSION 

The results of the performance experiments on the 

complete testing set indicated the superiority of the 

configurations with 40 swarming members except for 

the one with 1 elite bison. However, even the worst 

ranked S40E1 configuration demonstrated a promising 

convergence when solving F10 function (Fig. 8) in 

accordance with the No Free Lunch Theorem (Yang 

2012).  

 

A closer investigation of the S40 test set proved the 

efficiency of the S40E30 and S40E20. Comparing these 

two configurations proved, that the results were mostly 

comparable, S40E30 being slightly more successful in 

30 dimensions, while S40E20 in 10 dimensions. 

 

The time regarding experiments implied that the elite 

group size parameter might have a direct influence on 

the computation time as in most of the cases, the lower 

the elite group size parameter was, the better time was 

achieved. Based on these results, there seems to be a 

conflict between the time and performance 

requirements. 

 

Even though the difference between the times shown in 

Table 6 might not seem very wide, it is important to 

remember, that this experiment included solving 10-

dimensional problems only. In higher dimensions, the 

computation time tends to lengthen just as much as the 

difference between the time requirements of the 

parameter configurations.  



 

 

CONCLUSION 

This paper provided interesting findings regarding the 

parameter configuration of the Bison Algorithm. In most 

of the functions, the algorithm performed best with the 

parameter configuration of 40 swarming individuals and 

20 or 30 elite members. However, the time experiments 

preferred the lower amount of both the swarming and 

the elite individuals. 

 

Since in the real-time optimization are usually 

requirements for both the quality and the time of the 

optimization, the obtained results might be useful in the 

application of the Bison Algorithm on solving real-time 

problems. For a general optimization, we suggest the 

S40E20 configuration, as it provided faster evaluations 

while giving comparable results to the S40E30 

configuration. 

 

Since in the convergence analysis even the worst ranked 

configuration showed remarkable progress in 

comparison to the others, an adaptive parameter 

approach of the Bison Algorithm might be considered 

an exploitable extension of the algorithm and a possible 

subject of our future research. 
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