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ABSTRACT 

Simulation is an important tool for testing and 
verification of newly designed or modified control 
algorithms. One of the aims of the simulation 
verification is a comparison of control quality achieved 
with new or modified methods with control quality 
achieved with known methods. For an analysis of 
control quality, criterions based namely on sum of 
powers of control errors and sum of powers of control 
increments are commonly used. These criterions can 
result only in descriptive attributes of control quality. It 
means that on the basis of particular values of the 
criterions it is not possible to identify if the control 
quality achieved with one algorithm is statistically 
significantly different from control quality achieved 
with another algorithm. The aim of this paper is 
examining of control quality with use of testing 
hypotheses on existence of statistically significant 
differences between partial values of the control quality 
criterions in individual sampling periods. The analysis 
was performed on a strictly defined significance level 
0.001, which is a standardly used value in technical 
applications. A realization is presented on a simulation 
of a multivariable predictive control with a modified 
optimization technique. 

INTRODUCTION 

In process control (Corriou, 2004), various approaches 
to a synthesis of controllers have been proposed with 
many particular applications e.g. (Abraham et al., 2018). 
Simulation is an important tool in technical applications 
e.g. (Samsonov et al., 2019; Strmiska et al., 2018), for a
verification and testing of designed controllers e.g.
(Kubalcik et al., 2006; Spacek, 2017). In simulations,
among others, a quality of control achieved with
individual controllers can be observed.

Achievement of a suitable quality of control is one of 
the main aims in the process control. The quality of 
control is then examined in order to evaluate which 
control algorithm reaches the best results in a particular 
control problem. The control algorithms which yield 
appropriate control results are often complex and 
computationally demanding. Therefore, there is an 

effort to simplify the control algorithms. This 
simplification is obviously at the expense of control 
quality. The quality of control is then examined in order 
to evaluate, if it was significantly affected or if it is still 
suitable for a particular control problem. In this paper, 
this case was considered.   

As a suitable example of an improving a control 
algorithm with regards to decreasing of the 
computational complexity, a multivariable Model 
predictive control (MPC) will be considered. Model 
predictive control is one of currently utilized modern 
control methods, as can be seen in e.g. (Camacho et al., 
2004; Rossiter, 2003).  

In MPC, a computational complexity can significantly 
increase in control of multivariable processes, control of 
processes with fast dynamics and in case of higher 
horizons or constrained variables. A significantly 
important part of the constrained MPC is an 
optimization task. It is characterized by higher 
computational complexity. Therefore, a reduction of the 
computational complexity of the optimization methods 
in MPC has been widely researched. Various methods 
of improving of an optimization part of MPC can be 
seen in an explicit optimization solution with 
applications (Ingole et al., 2015). An alternative 
approach is a development of modifications of online 
optimization procedures, e.g. (Wang, 2009). 

The control quality is often analyzed using general 
control quality criterions based on sums of powers of 
control increments and on sums of powers of control 
errors (Kubalcik et al., 2006). These criterions can result 
only in descriptive attributes of control quality. 
Therefore, on the basis of particular values of the 
criterions, it is not possible to identify if the control 
quality achieved with one algorithm is statistically 
significantly different from control quality achieved 
with another algorithm. The aim of this paper is to 
examine the control quality with use of testing 
hypotheses (Kitchenham et al., 2016; Vaclavik et al., 
2019) on existence of statistically significant differences 
between partial values of the control quality criterions in 
individual sampling periods. The analysis was 
performed on a strictly defined significance level 0.001, 
which is a standardly used value in technical 
applications. In this paper, the testing hypothesis is 
applied in comparison of control quality between a 
standard MPC algorithm and particularly modified MPC 
algorithm (Kubalcik et al., 2019), where a modification 
of an iterative numerical optimization method was 

Communications of the ECMS, Volume 33, Issue 1, 
Proceedings, ©ECMS Mauro Iacono, Francesco Palmieri, 
Marco Gribaudo, Massimo Ficco (Editors) 
ISBN: 978-3-937436-65-4/978-3-937436-66-1(CD) ISSN 2522-2414 



 

 

proposed. The modification consists in an addition of a 
new termination condition in the iterative algorithm. 
 
MODEL OF CONTROLLED PROCESS 

For purpose of discrete simulations, a model in the form 
of the matrix fraction (Kucera, 1991; Fajmon and 
Novak, 2010) with two-inputs and two outputs defined 
by (1)-(2) was considered.   
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The structure of the matrices A(z-1) and B(z-1) is 
described by (3)-(6). 
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MODEL PREDICTIVE CONTROL  

 
The model predictive control (Camacho, 2004) has been 
widely implemented in control engineering practice. A 
predictive controller includes a model of the controlled 
process for purpose of a computation of predictions of 
the output variables. Constants N1 and N2 are minimum 
and maximum prediction horizons. In a receding 
horizon strategy (Rossiter, 2003), a horizon window is 
given by a maximum prediction horizon N2. The 
manipulated variable is denoted as u(k), y(k) is the 
output controlled signal. The variable e(k) is a control 
error and w(k) is a reference signal.  
 
A vector of future increments of the manipulated 
variable uΔ

 

with Nu elements is determined by solving 
an optimization task. Nu is a control horizon. The 
unknown variable y is then determined by prediction 
equations (9)-(11). Matrices P and G (10)-(12) contain a 
zero matrix Z. 
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The optimization problem is then solved using quadratic 
programming. A cost function J is defined by (13)-(14) 
where the uΔ

 

vector is solved with regards to m 
constraints (15)-(16), where the matrix I is an identity 
matrix. Dimension n is considered as Nu. 
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MODIFIED ALGORITHM OF MODEL 
PREDICTIVE CONTROL 

The Hildreth method (Wang, 2009) is a widely applied 
numerical method for the quadratic programming 
optimization. In this optimization method, numerical 
iterations are considered as particular sub-results d, 
which are gradually improving into the final solution 
(17).  
 

)()( 1 TTk bdMHΔu +−= −                    (17) 

Vector d, which is being improved during the Hildreth’s 
method, can be expressed by (18). This vector is being 
progressively improved in each ω-th iteration. 
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The numerical algorithm is terminated if there are lower 
differences between sub-results from two previous 
iterations than a defined threshold. 

The modification published in (Kubalcik et al., 2019) 
incorporated a new termination condition based on 
inequality (19). The computation is terminated when the 
solution fulfils constraints of variables.  
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As it was proved by simulations, application of this 
condition significantly saved computational time. On 
the other hand, the solution of the optimization task 
might not be optimal and therefore the quality of control 
might be significantly decreased. Further in this paper, 
testing hypothesis was applied to compare control 
quality of the modified and non-modified algorithms. 
The result of the testing should be a decision if the 
difference in control quality according to a chosen 
criterion is statistically significant or not.   

 
PROPOSAL OF ANALYSIS OF CONTROL 
QUALITY USING STATISTICAL METHODS 

In this paper, testing hypotheses (Kitchenham et al., 
2016) is used for a more detailed comparison of the 
control quality of the modified and non-modified 
optimization algorithms in MPC. Testing hypotheses 
based on an analysis of existence of statistically 
significant differences between variables appears to be 
more suitable for purpose of evaluation of control 
quality achieved with different control algorithms than 
evaluation of control quality from single values of 
control quality criterions (20)-(21). The result of the 
testing should be a decision if the difference in control 
quality according to a chosen criterion is statistically 
significant or not.  
 
An assessment of control quality of modified algorithm 
can be based on comparison of pairs of data of control 
quality criterions (20)-(21) before and after applied 
modification in each sampling period of control. For 
each criterion, parts (22)-(23) of the criterions are 
paired-compared during the whole control process. 
Testing hypotheses on an existence of statistically 
significant differences can provide a conclusion with 
regards to a chosen significance level. In this paper, the 
strictly defined significance level 0.001, which is a 
standardly used value in technical applications, was 
used.  
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In selection of a suitable method for testing of the data, 
testing normality (Vaclavik et al., 2019) of the data is 
important. A volume of available data is also an 
important aspect for selection of an appropriate method. 
For cases with less extensive data sets, exact tests are 
recommended (Kitchenham et al., 2016; Barot and 
Krpec, 2019). Each hypothesis is generally defined by 
the zero and alternative hypotheses.  
 
Modern statistical approaches and software solutions, 
e.g. PAST Statistics (Hammer et al., 2000), are able to 
perform testing hypothesis in form of p value. If the p 
value is greater or equal to the defined significance 
value 0.001, the zero hypothesis is failed to rejected. In 
the opposite case, the zero hypothesis is rejected in 
favour of an alternative hypothesis. According to the 
testing normality, e.g. using Shapiro-Wilk test 
(Vaclavik et al., 2019) of data set, appropriate 
corresponding methods should be used for testing paired 
differences. In case of appearance of data normality, 
Paired T-test should be applied. In the opposite case, 
Wilcoxon Paired test should be used with respect to an 
exact variant for a particular volume of measured data. 
 
SIMULATION RESULTS 

For the purpose of comparison, MPC of TITO process 
(2) with polynomial matrices (24)-(25) both with and 
without the proposed modification was simulated in 
MATLAB. Constraints of the manipulated variables and 
increments of the manipulated variables were 
considered which is obvious from definition (27). 
Setting of constraints is obvious from (28) where I is an 
identity matrix and E is a unit matrix.  
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For the purpose of a control quality analysis, control 
quality criterions (20)-(21) and their parts (22)-(23) 
were evaluated. The results for various values of N 
(maximum prediction and control horizon) can be seen 
in Table 1.  
 
Table 1: Results of Control Quality Criterions for MPC 

without and with Modification 
 

  

MPC 
without 
Modif. 

MPC 
with 

Modif. 

MPC 
without 
Modif. 

MPC 
with 

Modif. 
N J1  J1 J2 J2 
10 58,3219 58,3219 195,4043 195,4043 
15 56,0261 56,0260 196,0840 196,0841 
20 55,0907 55,0907 197,6620 197,6621 
25 55,6287 55,6286 196,7332 196,7333 
30 58,1919 58,1917 193,0959 193,0962 
35 58,2704 58,2704 192,9479 192,9479 
40 58,3068 58,3068 192,7495 192,7495 

 
As it is obvious from the results in Table 1, the values 
of the criterions for the modified and original MPC 
differs by one percent at the most. Better control quality 
was obviously achieved with the original MPC 
algorithm.  
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 Figure 1: Simulation of MPC without Modifications 
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 Figure 2: Simulation of MPC with Modification 

A complexity function for the non-modified algorithm 
is expressed by equation (28). Equation (29) expresses 
the complexity function for the modified algorithm. 
Equations (28) and (29) were computed using a non-
linear regression (Krivy et al., 2000).  Only the highest 
power of the variable N is displayed in the equations.  
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More relevant conclusions concerning the control 
quality can bring testing hypothesis. The results of 
testing hypothesis, which means a corresponding 
conclusion (failed to reject or rejected), with strictly 
defined significance level 0.001 are in Table 2.    
 

Table 2: Results of Testing Hypotheses on Non-
Existence of Statistical Significant Differences Using 

Paired Wilcoxon Exact Test on Sig. Level 0.001 
 

  

MPC 
without 
Modif. 

MPC with 
Modif. 

MPC 
without 
Modif. 

MPC with 
Modif. 

N Data of J1 Data of J1 Data of J2 Data of J2 
10 Fail to Reject on α=0.001 Fail to Reject on α=0.001 
15 Fail to Reject on α=0.001 Fail to Reject on α=0.001 
20 Fail to Reject on α=0.001 Fail to Reject on α=0.001 
25 Fail to Reject on α=0.001 Fail to Reject on α=0.001 
30 Fail to Reject on α=0.001 Fail to Reject on α=0.001 
35 Fail to Reject on α=0.001 Fail to Reject on α=0.001 
40 Fail to Reject on α=0.001 Fail to Reject on α=0.001 

 
For testing hypotheses, the Wilcoxon exact test was 
used with respect to failing normality of data, which 
was determined using the Shapiro-Wilk test. Both the 
testing normality and testing hypotheses was performed 
using the PAST Statistics software (Hammer, 2001). It 
was achieved the proof of non-existence of statistically 
significant differences in control quality according to 
the chosen criterions for each value of the problem 
dimension N. It was then proved that the application of 
the modified control algorithm, which significantly 
decreases the computational complexity, does not 
significantly influence control quality in comparison 
with the control quality achieved using the non-
modified algorithm.  
 

CONCLUSIONS  

In the simulation of multivariable predictive control, the 
control quality achieved with two different algorithms 
was analyzed and compared using testing hypothesis. In 
this hypothesis testing, partial values of control quality 
criterions were analyzed in each sampling period of 
MPC. It would not be possible to consider statistical 
significance of differences in achieved control quality 
only from the descriptive attributes given by standardly 
used control quality criterions. The analysis using 
testing hypothesis was performed on a strictly defined 
significance level 0.001, which is a standardly used 
value in technical applications. Therefore, the achieved 
results had relevant informational value based on 
mathematical statistics. The control results of the 
original method were compared with the results 
obtained using its modification. The modification is in 
fact a simplification of the original method and it is 
supposed that the quality of control will be decreased. 
Nevertheless, it was then proved that the difference 
between control quality of modified and original 
methods of optimization in predictive control was not 
statistically significant.  
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