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ABSTRACT

This paper proposes a new hybrid heuristic (SomAla) for
the capacitated p-median problem (CPMP) which combines
a self-organising map (SOM), integer linear programming,
an alternating location-allocation algorithm (ALA) and a
partial neighbourhood optimisation. To improve the per-
formance of the algorithm, the structure of the CPMP is
exploited for several size-reduction methods and also for
variable-fixing techniques. The capability of this algorithm
to find good solutions in reasonable times for large problem
instances has been tested on several benchmark instances.

INTRODUCTION

The capacitated p-median problem (CPMP) is a well-known
model intended to find optimal locations of sources which
have to serve a set of demand nodes in order to minimise
the total distances between the sources and the destinations.
It can be described by using a network G = (N,A) with a
set N of demand nodes and a set A = {(i,j) | i€ N,j € N}
of directed arcs joining the nodes. Each node, for which a
particular demand g;; j € N exists, is a potential candidate
for the location of one of p sources. If a source is located
at the demand node i € N, then the binary variable y;;i €
N equals one. All p sources have an identical supply Q.
The weights of the arcs represent the distances d;j; (i, j) € A
between the nodes i € N and j € N. A matrix of binary
variables x;; € {0,1};(i, j) € A is needed for the decision
of allocating each demand node to exactly one source. The
variable x;; equals one, if the demand node j is allocated
to a source located at the node 7 or x;; = 0 if not so. The
mathematical model can be formulated as follows (Daskin
and Maass, 2015):
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The objective is to minimise the total distances as per (1).
A demand node j € N can only be served by exactly one
source i € N due to constraints (2). Constraints (3) en-
sure, that a demand node can only assigned to an established
source (y; = 1) and that the outgoing flows of a source i € N
cannot exceed the supply Q. Exact p sources have to be
established due to constraint (4).

This paper proposes a new hybrid heuristic which com-
bines a self-organising map (SOM), integer linear program-
ming, an alternating location-allocation algorithm (ALA)
and a partial neighbourhood algorithm.

One novelty of this approach is the combination of a SOM
and a generalised assignment problem (GAP) in the first
step of the algorithm. This approach exploits the structure
of the CPMP, because the first clusters of demand nodes
found by the SOM define a neighbourhood in which the
optimal locations of the sources in the CPMP can poten-
tially be expected. A first capacitated solution as basis for
the next working steps are found by solving a GAP using
these first clusters. The next working steps combine sev-
eral known techniques (integer linear programming, alter-
nating location-allocation algorithm, partial neighbourhood
optimisation) in a new manner. All of these approaches are
extended by several size-reduction methods and a variable
relaxing-fixing heuristic to improve the capability of the en-
tire algorithm to find good solutions for large problem in-
stances as fast as possible.

This paper starts with a literature review, followed by the
description of the proposed algorithm. The capability of
this algorithm to find good solutions in reasonable times for
large problem instances has been tested on several bench-
mark instances. The computational results are reported in
the next section. The paper is finished with conclusions.

LITERATURE REVIEW

This literature review is only focused on the results of re-
cently published CPMP algorithms for which the test results
of three groups of problem instances are given in tables 1, 2
and 3. A good overview of the CPMP-related literature can
be found in Lorena et al. (2003).

Lorena and Senne (2003) introduced the sjc instances,
which are derived from a geographic database of the Brazil-
ian City Sao Jose dos Campos. Diaz and Fernandez (2006)
presented the spain instances, which contain 737 Spanish
cities as demand nodes, that have to be served by 74 or 148
sources. The instances p-3038 were introduced by Lorena
et al. (2003), whereby they adapted the TSPLIB instance
pcb3038 (Reinelt, 1994) by including from 600 up to 1000
sources.

As shown in table 1, the approaches by Boccia et al.
(2008) and Stefanello et al. (2015) provide the best objec-



Table 1: Objective function values for the sjc instances

Instance Scheuerer and Fleszar and Chaves et al. Boccia et al. Stefanello Herda (2015) Herda (2017)
Wendolsky Hindi (2008) (2007) (2008) etal. (2015)
(2006)
sjcl 17,289 17,289 17,289 17,289 17,289 17,657
sjc2 33,293 33,271 33,271 33,271 33,271 33,485
sjc3a 45,338 45,335 45,335 45,335 45,335 45,380
sjc3b 40,636 40,636 40,636 40,636 40,636 41,199 40,705
sjcda 61,926 61,926 61,929 61,926 61,926 62,893 62,138
sjc4b 52,531 52,470 52,531 52,458 52,458 53,051 52,605
Average 41,836 41,821 41,832 41,819 41,819 42,361
Table 2: Objective function values for the spain instances
Instance Diaz and Stefanello et al. Janosikova et al.
Fernandez (2006) (2015) (2017) GA
(post-processing)
spain-737-74-1 8,967 8,876 8,959
spain-737-74-2 8,970 8,894 8,945
spain-737-148-1 6,012 5,917 5,913
spain-737-148-2 6,009 5,917 5,920
Average 7,490 7,401 7,434
Table 3: Objective function values for the p-3038 instances
Instance Lorena and Stefanello et al. Janosikova and Janosikova and  Janosikova etal.  Janosikova et al.
Senne (2004) (2015) Vasilovsky Vasilovsky (2017) GA (2017) GA
(2017) SGA (2017) GGA  (hypermutation) (post-
processing)
p-3038-600 122,021 122,725 125,929 125,392 125,638 126,010
p-3038-700 108,686 109,696 113,769 112,633 114,978 113,374
p-3038-800 98,531 100,084 105,633 104,208 105,484 105,004
p-3038-900 90,240 92,318 99,168 99,546 100,373 99,015
p-3038-1000 83,232 85,857 92,805 92,765 96,290 93,175
Average 100,542 102,136 107,461 106,909 108,553 107,315

tive function values for the sjc instances. These objective
function values are equal to the optimal solutions. Both
algorithms are able to find these solutions in a reasonable
time. It is in general difficult to compare runtimes of differ-
ent algorithms when the results were obtained on different
computer systems. Stefanello et al. (2015) tried to solve
this problem by comparing the relative time gaps between
the times needed to solve the original CPMP exactly and
to solve the problem by using the heuristic. It seems, by
comparing these gaps, that their algorithm has a better per-
formance compared to Boccia et al. (2008) (Stefanello et al.,
2015).

Table 2 shows the results of the spain instances. The
averages of the objective function values found by Ste-
fanello et al. (2015) are slightly better compared to Diaz
and Fernandez (2006) and Janosikova et al. (2017). Ste-
fanello et al. (2015) analysed the computational times be-
tween their algorithm and the approach by Diaz and Fer-
nandez (2006). It seems, even when different hardware is
considered, that the heuristic by Stefanello et al. (2015) pro-
vides a better performance with an average computational
time of 854 seconds compared to the 32,008 seconds needed
to solve these instances with the algorithm by Diaz and Fer-
nandez (2006). There could also be an improvement com-
pared to Janosikova et al. (2017), because they always let
their genetic algorithm run with a stopping criterion of 3,600
seconds to find the best solutions (Janosikova et al., 2017).

Table 3 shows that the column generation approach by
Lorena and Senne (2004) provides the best objective func-
tion values for all p-3038 instances followed by Stefanello

et al. (2015). But it seems, even considering the differ-
ent hardware, that Stefanello et al. (2015) produce the so-
lutions faster, because the average computational time is
only 2,239 seconds compared to 34,739 seconds for the ap-
proach by Lorena and Senne (2004). All other approaches
proposed by Janosikova and Vasilovsky (2017) and values
Janosikova et al. (2017) achieve poorer objective function
values. The computational times of these approaches seem
similar to Stefanello et al. (2015), since they use a stopping
criterion of 3,600 seconds for these algorithms (Janosikova
and Vasilovsky, 2017; Janosikova et al., 2017).

It can be summarised according to all of these results that
the algorithm proposed by Stefanello et al. (2015) is the
most competitive approach of the recently published algo-
rithms. It is a hybrid heuristic, using local search and math-
ematical programming techniques and is called IRMA (It-
erated Reduction Matheuristic Algorithm) (Stefanello et al.,
2015).

PROPOSED ALGORITHM: SOMALA
Overview

SomAla is a new hybrid heuristic which combines a
self-organising map, integer-programming, an alternating
location-allocation algorithm and a partial neighbourhood
optimisation heuristic. This section describes the proposed
algorithm in general with the following three working steps.
1. SOM-GAP-based heuristic to solve a continuous, capac-
itated p-median problem: A SOM is used to solve a con-
tinuous, uncapacitated p-median problem. The locations
of the sources and the allocations of the demand nodes



are the basis to find a solution for a continuous, capaci-
tated p-median problem by solving a GAP.

2. Capacitated alternating location-allocation heuristic:
The solution found in the first step is used in a ca-
pacitated ALA heuristic to find and improve a solution
for the CPMP. The allocation of the destinations to the
sources is based on a GAP which is solved by using
a size reducing technique and variable relaxing-fixing
heuristic. The locations are modified by determining
new medians for each allocation cluster. Both steps are
repeated as long as improvements for the CPMP occur
or a maximum number of steps is not reached.

3. Partial neighbourhood optimisation heuristic: In the last
step, the best solution found so far is improved by us-
ing a partial neighbourhood optimisation heuristic. In
each step, a subregion, surrounding a selected median,
is solved. If the solution found for this subregion im-
proves the objective function value of the entire problem,
then the partial solution updates the entire solution. This
procedure is repeated until all medians are optimised or
a maximum number of steps with no improvements is
reached.

Step 1: SOM-GAP-based heuristic to solve a continuous,
capacitated p-median problem

This section describes the generation of a solution for a con-
tinuous, capacitated p-median problem using a SOM and a
GAP.

Self-organising maps

A SOM is a particular type of an artificial neural network
and was introduced by Kohonen (1982). The main charac-
teristic of a SOM is the capability to find a topographical
projection f : ®@ — €2, where ® describes L input patterns
of attributes and €2 a usually one- or two-dimensional rep-
resentation of the input patterns (Kohonen, 1982). A to-
pographical mapping means that neighbouring areas of the
input space have to activate neighbouring output units.

A SOM can be described as a feed-forward network con-
sisting of two layers of units. The input units are com-
pletely connected with the output units in the second layer.
Let a SOM consist of I input units and O output units.
The weights on the edges between the input and outputs
unit can be formulated as a Matrix w = {wy,,, € R | m €
{1,2,...,I},n € {1,2,...,0}}. The output units are usu-
ally organised as a one- or two-dimensional array, where
the units are laterally connected (Kohonen, 1982).

The projection f : @ — €2 has to be found during the so-
called learning phase, which means that the following steps
have to be carried out T times.

Given an (randomly selected) input vector 8; € ©® =
{Onm € {1,2,...,I}};1 € {1,2,...,L}, only one unit of
the output layer can be activated according to the winner-
takes-all output function (7). This is the output unit ) €
{1,2,...,0} with the minimum squared Euclidean distance
between the input vector 8; and its weight vector wy (Ko-
honen, 2001, p. 106).

n =arg min
ne .

{12,...0

)

}||91 —wa)? ©)

After finding the winning output unit, the weights of this
unit have to be updated in order to improve the matching.
Since the projection between the input patterns and the ac-
tivity of the output units have to be topographically cor-
rect, the weights of the neighbours of the winner unit also
have to be updated. Kohonen proposed the Gaussian neigh-
bourhood function as shown in expression (8) for a one-
dimensional array of output units, where ¢ defines the width
of the kernel (Kohonen, 2001, p. 111).

e [
6(n,m) =exp 552 sne{l,2,...,0}.  (8)

To update a weight w,,, between an input unit m and an
output unit n, the difference (6, — wy,) is multiplied by the
neighbourhood value §(n,n) and a learning-rate factor « as
shown in the learning rule (9) (Kohonen, 2001, p. 111).

AWy =0 8(n, M) - (B — Win)
yme{1,2,...,1},ne{l,2,...,0} 9)

Both parameters o and o are usually decreased in each
step of the learning phase to ensure faster changes of the
weights in a broader neighbourhood at the beginning of the
learning process and to refine it at the end of the process.

Afterwards, for all patterns 8; € © the corresponding out-
puts have to be determined by applying the winner-takes-all
function:

o, =arg min |6, —w,,H2
n

€{1,.2,..,0}
le{l,2,... L} (10)

SOM-based approach to solve a continuous, uncapacitated
p-median problem

There are some similarities between a SOM and a con-
tinuous, uncapacitated p-median problem (Cooper, 1964).
Therefore, Lozano et al. (1998), Hsieh and Tien (2004) and
Aras et al. (2006) proposed several SOM-based approaches
to solve such a location-allocation problem.

A continuous, uncapacitated p-median problem can be
described as follows. Additionally to the definitions of
the parameters and the variables of the CPMP, let § =
{1,2,...,p} be a set of sources, for which the coordinates
wi = {wi1,wi2 }; k € S have to be determined. The coordi-
nates of the demand nodes 8; = {0;,6,}; j € N are known.
As shown in the model below, the intention is to find the
locations of the sources over a two-dimensional continuous
space and to allocate the destinations to the sources in order
to minimise the total distances as per (11), whereby, due to
the expressions (12), each destination has to be served by
exactly one source (Cooper, 1967).

Y Y d(wy,0)) - xij — min (11)
keS jeN

S.t.

Y xuj=1 :jen (12)
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x; €4{0,1} keS,jeEN (13)
Wkl,WkQER ke s (14)



SomAla uses an adapted SOM to solve the continuous,
uncapacitated p-median problem. Therefore, a network
with I = 2 input units and O = p output units organised in a
one-dimensional array has to be created.

This SOM is intended to find a projection f : ® —
Q, where © describes the coordinates 8, = {0;,60,};1 €
{1,2,...,L} = N of the demand nodes and Q2 the vector
of the indices of the winner units per input pattern, which
have to be obtained by the winner-takes-all function (7).
This projection is equivalent to the allocation of the demand
nodes to the sources.

In the initialisation step, the coordinates of randomly cho-
sen demand nodes are used as initial values of the weights.
The output nodes are forced to become specialised for par-
ticular areas of the input space and have to update their
weights in order to minimise the distances d(wy,,0;);n €
S,1 € N. It is possible to use alternative distance functions
(squared Euclidean distance, Euclidean distance, Manhat-
tan distance, great circle distance) to determine the winner
output unit in SomAla.

After the learning process, the weights wy,;m €
{1,2},ne€{1,2,..., p} can be interpreted as the coordinates
of the p sources. The allocation of the demand nodes to the
sources and therefore the values of the assignment variables
xijsk € S,j € N can be obtained by applying the adapted
winner-takes-all function:

l,for k=arg min d(w,,0)
Xij = ne{l2,....,p
0, otherwise
keSS, j=1eN (15)

This solution can be interpreted as an initial solution for
the rest of the SomAla algorithm which exploits the struc-
ture of the CPMP because the first clusters of demand nodes
found by the SOM define a neighbourhood in which the op-
timal locations of the sources can be expected. These explo-
rations improve the objective function value and partially
the runtime of the entire algorithm in comparison to other
relevant initial solution approaches

This positive effects can be shown with several tests in
comparison to a simple randomised initial solution, a greedy
initial heuristic and the approach reported by Mulvey and
Beck (1984) which Stefanello et al. (2015) applied as an
initial solution. Using the instances which are introduced in
the section COMPUTATIONAL RESULTS, the SOM initial
solution improves the average of the total distances after the
first SomAla step by 8 %, 31 % and 5 % and overall by 2 %,
3% and 2% in comparison to the greedy initial solution,
the randomised initial solution and the approach by Mulvey
and Beck (1984). There is a deterioration of the runtime
of the entire algorithm of 7 % and 12 % in comparison to
the greedy initial solution and the approach by Mulvey and
Beck (1984) which is unproblematic because the tests in the
section Runtime comparison for SomAla and IRMA show
that SomAla’s runtimes seem faster than the computational
times of the most competitive approach. If a randomised
initial solution is used instead of the SOM-based initial so-
lution then there is an increase of the runtime of 26 %. This
effect is mainly based on the exploration of the structure
of the CPMP using the SOM which helps to decrease the

number of the time-consuming iterations in the following
alternating location-allocation heuristic.

GAP-based approach to solve a continuous, capacitated p-
median problem

The activities of the allocation variables and the coordinates
of the p sources found with a SOM are used to solve a GAP
to assign the demand nodes to the sources considering the
supply of the sources. It can be described by using a di-
rected network with a set of source nodes S, a set of demand
nodes N and a set of directed arcs A joining the sources and
the demand nodes. The weights of the arcs represent the
distances dy;; (k, j) € A. If a demand node j € N is assigned
to a source k € S, then the corresponding binary allocation
variable x;; equals one, or zero otherwise. All other param-
eters are defined as before. The mathematical model can be
formulated as follows (Lorena and Senne, 2003):

Z dkj-xkj—>min (16)
(k,j)EA
S.t.
xj=1 ;jEN (17)
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The intention is to allocate the demand nodes to the
sources in order to minimise the total distances between the
sources and the destinations as per (16). Since it is a contin-
uous model, the distances have to be determined on the basis
of the coordinates of the sources found by the SOM and the
coordinates of the demand nodes. Each demand node has to
be served by exactly one source due to the constraints (17).
The supply constraints (18) ensure that the deliveries of each
source cannot exceed the supply.

To decrease the effort solving this binary, linear pro-
gramme, several size reducing, variable relaxing and fixing
techniques are used.

Assuming that a source usually serves only demand nodes
in its neighbourhood (Stefanello et al., 2015), the size of
the model can be reduced by ignoring all arcs between
the sources and the destinations with distances which are
greater than a defined radius d surrounding the sources:

A={(k,j)| ke S,jEN,d;<d} (20)

This size-reduced model is solved in two steps using a
simple but effective variable relaxing-fixing heuristic. In
the first step the problem is solved as a continuous, linear
programme by relaxing the integer constraints (19):

0<x; <1 ;(k,j)eA 21

In the second step, the GAP is solved as a binary linear
programme, whereby several variables x;;, which have an
activity xj ;=0 in the solution of the continuous problem,
are fixed to zero. If the supply of a source k € S is com-
pletely shipped }° (l(kj)edr 4 Xy =0 then all unused rela-
tions xj; ;= 0:j € N are fixed to zero and therefore deleted



in the binary problem. For underutilised sources, an unused
relation is uniformly fixed at random with a particular prob-
ability.

The set A of the directed arcs joining the sources and the
destinations can be now determined as follows:

A={(k.j) | k€S, jEN,
d(k,j) < d_,xkj not fixed} 22)

In addition to the size reducing, relaxing-fixing tech-
niques described above, two solver specific options are used
to decrease the solving time of the binary GAP. The solving
process is stopped if a specific relative mip gap or a maxi-
mum solving time is reached.

The variable-fixing heuristic is also used for the following
ALA heuristic and has a huge positive impact on the runtime
of the entire SomAla algorithm. This effect was tested com-
pared to the exactly solved GAP as part of the SomAla al-
gorithm by solving the problem instances used to compare
SomAla’s and IRMA’s results which will be introduced in
the section COMPUTATIONAL RESULTS. If the GAP as
part of the SomAla algorithm is solved exactly as a binary
linear programme then there is an increase of the average of
the runtimes of 28.0 % with a very small improvement of the
average of the objective function values of 0.3 % compared
to the variable-fixing heuristic used for the GAP.

Step 2: Capacitated alternating location-allocation algo-
rithm

An alternating location-allocation algorithm is often used as
a heuristic to solve location problems, for that, the location
decision and the allocation decision have to be made simul-
taneously.

Cooper (1964, 1972) was the first to propose this ap-
proach to solve continuous p-median problems. An exam-
ple for the CPMP is the approach reported by Mulvey and
Beck (1984), which is utilised by Stefanello et al. (2015) as
an initial solution. Lorena and Senne (2003) use an ALA
as part of a local search heuristic for the CPMP, where they
re-allocate the demand nodes by solving a GAP as binary
linear programme.

The capacitated ALA heuristic proposed in this section is
also based on a GAP and consists of the following working
steps:

1. Find new medians minimising the total distances for
each of the p clusters.

2. Solve a GAP to allocate the demand nodes to the sources
found in step 1 in order to minimise the total distances.

3. If the objective function value is improved then continue
with step 1.

In step 1, the medians for the p clusters have to be calcu-
lated, where each cluster Cy; k € S can be found by analysing
the activities of the binary allocation variables x;; j;k €S, je
D:

Go={jlieNx;=1,(kj)eA}keS (23)

The median M, is the node s € Cy, that minimises the dis-
tances to all other nodes in this cluster:

M = arg?elicn Z dy keSS 24)
kIGCk

These medians define the new locations of the sources. The
basis of these calculations is a distance matrix D = {d;; | i €
N, j € N}, with which the distance between a source k € §
and a demand node j € N can be found via My, which is the
index of the node i € N hosting the source:

dkj:dej ;kGS,jGN 25)

This distance matrix can be based on road network distances
or on the same distances measures used for the first Som-
Ala step to obtain a solution for a continuous, capacitated
p-median problem (squared Euclidean distance, Euclidean
distance, Manhattan distance, great circle distance).

For the allocations of the demand nodes to the sources,
a GAP is solved as in the first SomAla step using the
same size-reducing technique and the variable relaxing-
fixing heuristic.

The results of the ALA steps are the positions of the
sources and the allocations of the destinations to the sources.
The locations can be determined by the last medians My; k €
S found in step 1. The allocations can be obtained by the
activities of the allocation variables x; ;; (k, j) € A in the so-
lution of the last GAP solved in step 2.

Step 3: Partial neighbourhood optimisation heuristic

In the last step of the SomAla algorithm the best solution

found so far is to be improved by a partial neighbourhood

optimisation heuristic, which is adapted from an approach

proposed by Stefanello et al. (2015).

The idea is to solve in each step of this heuristic a CPMP
for a subregion surrounding a selected median. If the solu-
tion found for this subregion improves the objective function
value of the entire problem, then the partial solution is used
to update the entire solution. This procedure is repeated un-
til all medians are optimised or a maximum number of steps
without an improvement is reached.

The working steps can be described as follows:

0. The initial solution consists of the medians M;k € S and

the activities of the allocation variables x;; (k, j) € A

found with the ALA steps.

Mark all sources k € S as non-optimised.

. Select randomly a non-optimised source k € S.

3. Create a set of sources S C S, which consists of k and
the z closest sources surrounding K.

4. Create a set of demand nodes N = {jj | j € Cy,k € §},
which belong to the sources S.

5. Calculate the total distances C for the sources S and the
corresponding demand nodes N.

6. Solve a CPMP for the demand nodes N and j = |S]
sources and obtain the objective function value C for this
sub-problem.

7. If there is an improvement C < C, then update the solu-
tion of the entire problem by using the new locations of
the sources and the allocations of the demand nodes to
the sources found in step 6.

If there is no improvement ¢ > C, then mark the source
K as optimised.

8. If there exists at least one non-optimised source and a
maximum number of no-improvements is not reached,
then continue with step 2.

N =



This heuristic follows the idea proposed by Stefanello
et al. (2015), but there are some differences. The first dif-
ference is that Stefanello et al. (2015) mark all sources S as
optimised if no improvement occurs after solving the sub-
problem. However, in SomAla only the selected source K
is marked as optimised in this case. That means the neigh-
bourhood of each source has to be examined. But this pro-
cedure is interrupted if a maximum number of succeeding
no-improvements is reached.

An additional difference is that in SomAla there are two
alternatives to solving the CPMP in step 6. The first alterna-
tive is to use the first two SomAla working steps. The sec-
ond alternative is an size-reduced CPMP. As in the original
model, each of the demand nodes in N is a potential location
of the p = |§]| sources. But it is assumed that sources only
serve destinations in their neighbourhood, so that the size of
the model can be reduced by using a maximum distance d
for the arcs A.

After completing all working steps, a best solution is
found with locations of the p sources at the demand nodes
and the allocations of the demand nodes to these sources.

COMPUTATIONAL RESULTS
Test environment and instances

This last section is intended to prove the capability of the
proposed SomAla algorithm to find feasible solutions with
good objective function values in reasonable runtimes for
large problem instances.

Since it could be shown in section LITERATURE
REVIEW that IRMA by Stefanello et al. (2015) is the most
competitive approach to solving CPMPs, this algorithm is
the benchmark for SomAla. Therefore, the objective func-
tion values and the runtimes of both approaches are com-
pared in this section by computing six of the largest in-
stances which Stefanello et al. (2015) used to test the re-
sults of their algorithm. These instances are u-724, spain,
rl-1304, pr-2392, p-3038 and fnl-4461.

The spain instances were introduced by Diaz and Fer-
nandez (2006) and contain 737 Spanish cities as demand
nodes served by 74 or 148 sources. Both combinations are
additionally separated in two cases with different demands
and supplies. Lorena et al. (2003) proposed the p-3038
instances, which are adapted from the TSPLIB instance
pcb3038 (Reinelt, 1994) by introducing five cases with 600,
700, 800, 900 and 1000 sources. All other instances u-724,
rl-1304, pr-2392 and fnl-4461 are introduced by Stefanello
et al. (2015) and adapted from the TSPLIB.

All distances are Euclidean distances, except the dis-
tances for the spain instances, which are calculated as great-
circle distances.

These instances provide a wide range of problem sizes
and different ratios between the demand nodes and the
sources. All instances used for the benchmark calculations
have a supply-demand ratio of ~ 125 %.

The last instances g-11056 are not used for the com-
parison. These instances are only intended to show Som-
Ala’s capability to find feasible solutions with good objec-
tive function values in reasonable times for very large in-
stances and also to provide instances for future comparisons.

The demand nodes are the 11,056 German cities and com-
munities published by the Statistisches Bundesamt (2017)
with their geographical coordinates. Four instances are cre-
ated with different ratios between the number of the sources
and the number of the the destinations.

Hereinafter, the name of a problem contains the number
of the source and of the destinations (name-nrOfSources-
nrOfDestinations). All examples and the corresponding
solution files are available at the SomAla project website
(http://stegger.net/ SomAla).

Objective function value comparison for SomAla and
IRMA

This section reports the results of the objective function
value comparison between IRMA and SomAla. The re-
sults for SomAla have to be distinguished due to the alterna-
tive approaches for the partial neighbourhood optimisation
heuristic as described before. Either the first two SomAla
working steps or a size-reduced CPMP can be used to solve
the CPMP. The abbreviation for the first approach is Som-
Ala-MS and SomAla-MM for the a size-reduced CPMP. Ta-
ble 4 shows the results for IRMA, SomAla-MM and Som-
Ala-MS.

The best known solutions per instance are given in the
column BKS. The best known solutions for the p-3038
instances were reported by Diaz and Fernandez (2006).
Most of the other best solutions were found with IRMA
by Stefanello et al. (2015), excluding the best known so-
lutions for spain734-74-1, spain734-148-1, rl-1304-010,
pr-2392-020, pr-2392-075 and fnl-4461-100, which were
obtained with SomAla. The average objective function
values for ten runs per instance for IRMA, SomAla-MM
and SomAla-MS are shown in the next three columns.
Each instance has been run with particular parameters,
which are published for IRMA in Stefanello et al. (2015).
For SomAla, all parameters can be obtained in the exam-
ple files for all instances at the SomAla project website
(http://stegger.net/SomAla).

For a better comparison, the relative gap between the ob-
jective function values Z and the best known solutions BKS
(ObjGap = (Z/BKS — 1) - 100) are shown in the last three
columns for the three approaches.

The results for IRMA are slightly better, but the dif-
ference of the average ObjGap for all instances between
IRMA and SomAla-MM is only 0.21%. For most of the
instances the objective function values of SomAla-MS are
greater than the results of the other two algorithms, but with
a small difference of the average ObjGap for all instances
of 0.93 % compared to SomAla-MM and 1.14 % to IRMA.

It seems that IRMA and SomAla-MM are similar in their
objective function values for all instances and also on av-
erage over all instances. This can be seen in table 5. The
first column shows four classes for ObjGap. The relative
number of instances belonging to the particular GAP class
for the three approaches are given in the next three columns.
The results for IRMA and SomAla-MM are identical. With
both algorithms it is possible to find a solution with an
ObjGap < 1% to the best known solution for 86.2 % of the
instances. For 93.1 % of the instances, a solution with an
ObjGap < 2% and for 96.6 % with an ObjGap < 3% are



Table 4: Objective function values for IRMA and SomAla

Instance BKS Avg. objective function value ObjGap [%]

IRMA SomAla- SomAla-MS IRMA SomAla- SomAla-MS

MM MM

u-724-010 181,783 182,611 182,588 182,382 0.46 0.44 0.33
u-724-030 95,034 95,160 95,824 95,344 0.13 0.83 0.33
u-724-075 54,735 54,735 54,867 55,626 0.00 0.24 1.63
u-724-125 38,977 38,977 39,088 39,808 0.00 0.28 2.13
u-724-200 28,080 28,083 28,292 28,881 0.01 0.76 2.85
spain-737-74-1 8,785 8,876 8,799 8,901 1.04 0.16 1.33
spain-737-74-2 8,870 8,894 8,926 8,996 0.27 0.63 1.42
spain-737-148-1 5,879 5,902 5,886 6,019 0.39 0.12 2.37
spain-737-148-2 5,914 5917 5,960 6,077 0.05 0.78 2.75
rl-1304-010 2,146,252 2,166,552 2,148,798 2,149,366 0.95 0.12 0.15
rl-1304-050 802,283 806,425 804,258 804,254 0.52 0.25 0.25
rl-1304-100 498,091 498,412 500,294 502,275 0.06 0.44 0.84
rl-1304-200 276,978 276,984 279,339 280,879 0.00 0.85 1.41
rl-1304-300 191,225 191,259 192,440 195,690 0.02 0.64 2.33
pr-2392-020 2,231,213 2,250,292 2,236,889 2,235,790 0.86 0.25 0.21
pr-2392-075 1,091,983 1,098,560 1,097,700 1,092,917 0.60 0.52 0.09
pr-2392-150 711,111 711,315 714,315 715,719 0.03 0.45 0.65
pr-2392-300 458,145 458,222 460,720 462,726 0.02 0.56 1.00
pr-2392-500 316,043 316,092 317,466 323,348 0.02 0.45 2.31
p-3038-600 122,021 122,725 123,152 124,558 0.58 0.93 2.08
p-3038-700 108,686 109,696 110,034 111,653 0.93 1.24 2.73
p-3038-800 98,531 100,084 100,351 102,324 1.58 1.85 3.85
p-3038-900 90,240 92,318 92,942 95,417 2.30 2.99 5.74
p-3038-1000 83,232 85,857 86,315 88,501 3.15 3.70 6.33
fnl-4461-0020 1,283,537 1,292,622 1,284,555 1,284,037 0.71 0.08 0.04
fnl-4461-0100 548,845 550,758 551,031 549,126 0.35 0.40 0.05
fnl-4461-0250 335,889 336,007 336,901 337,205 0.04 0.30 0.39
fnl-4461-0500 224,662 224,684 225,423 226,283 0.01 0.34 0.72
fnl-4461-1000 145,862 145,871 146,577 148,454 0.01 0.49 1.78
Minimum 0.00 0.08 0.04
Average 420,412 422,893 421,966 422,951 0.52 0.73 1.66
Maximum 3.15 3.70 6.33

Table 5: ObjGap distributions for IRMA and SomAla

ObjGap IRMA[%] SomAla- SomAla-
MM[%] MS|[%]

<1% 86.2 86.2 44.8
<2% 93.1 93.1 62.1
<3% 96.6 96.6 89.7
<4% 100.0 100.0 93.1

found. Due to the maximum ObjGap over all instances,
both algorithms found solutions with an ObjGap < 4 % for
all instances. Both approaches are better than SomAla-
MS. Nevertheless, it is possible to find solutions with an
ObjGap < 3% for 89.7 % and with an ObjGap < 4% for
93.1 % of all instances with SomAla-MS.

Runtime comparison for SomAla and IRMA

In this section, a comparison of the runtimes of IRMA
and SomAla will be attempted. In general it is difficult to
compare the computational times, as the tests for IRMA
and SomAla were computed on different computer sys-
tems. Stefanello et al. (2015) used a computer with an
Intel 15-2300 2.80GHz CPU with 4 GB RAM running on
Ubuntu 10.10, whereby the tests for SomAla were com-
puted on a MacBook Pro with a Core 17-6820HQ CPU and
16 GB RAM on macOS 12.13.4. There is an advantage
for the SomAla tests due to the newer and more performant
hardware. Both algorithms use CPLEX to solve linear pro-
grammes as part of the algorithm, whereby CPLEX 12.8
has been used for SomAla and CPLEX 12.3 for IRMA (Ste-
fanello et al., 2015). There could be an additional advantage

for the SomAla tests due to the release-wise performance
improvements of CPLEX.

Therefore, it does not make sense to compare the origi-
nal computational times reported by Stefanello et al. (2015)
with the SomAla runtimes. There is, however, an opportu-
nity to estimate computational times for IRMA, assuming
that the same hardware and the same CPLEX version would
have been used for the tests.

To compute the time savings due to different hardware,
three selected CPU benchmarks (PassMark, UserBench-
mark and GeekBench) are considered. Table 6 shows the
results of these benchmarks, distinguished in single-thread
and multi-thread tasks for the CPUs used for IRMA (i5-
2300) and for SomAla (i7-6820HQ). The results for the i5-
2300 CPU (si5) and for the i7-6820HQ CPU (si7) in the sec-
ond and the third columns are scores, computed in a partic-
ular time. Therefore, the rounded ratios i7/i5 (si7/si5 - 100)
in the last column are also interpretable as the relative com-
putational time of the 17-6820HQ system compared to the
15-2300 system. The computational time of an i7-6820HQ
system is on average for single-thread tasks 80 % and for
multi-thread tasks 61 % of the computational time on an i5-
2300 system.

Without any other information, it is furthermore assumed
that 10 % of IRMA’s algorithm runs in a single-thread mode
and 90 % is multi-threaded. Depending on this assump-
tion and the benchmarks, a weighted average of 62% =
[0.1-0.80+0.9-0.61] - 100 can be calculated as a first es-
timation of IRMA’s runtime. That means that IRMA would
only need 62 % of its original computational time, if Som-



Table 6: Selected CPU benchmarks (PassMark, 2018b,a;
UserBenchmark, 2018; GeekBenchmark, 2018)

Benchmark Intel Core Corei7- Ratioi7/i5
15-2300 6820HQ [%]

PassMark

single-thread 1,577 1,884 84

multi-thread 5,345 8,798 61
UserBenchmark.com

single-thread 77 93 82

multi-thread 288 483 60
GeekBench

single-thread 2,890 3,991 72

multi-thread 7,975 12,787 62
Avg. single-thread 80
Avg. muti-thread 61

Ala’s environment was used and all other impacts on the
runtime are ignored.

To estimate the potential time savings depending on dif-
ferent CPLEX versions, it is assumed (in absence of any
other information) that each CPLEX major release pro-
vides a 15 % time saving for size-reduced CPMP instances.
(Several own tests of the changes of the runtimes between
CPLEX 12.7 and CPLEX 12.8 of selected size-reduced
CPMP instances have observed an improvement of only
3.43%.) This assumption of an release-wise 15 % time
saving can be combined with the benchmark based run-
time estimation for IRMA, whereby it is assumed that
CPLEX causes 90 % of IRMA’s entire computational run-
time. Therefore, IRMA would only need 30% = [0.1 -
0.624+0.9-0.62- (1 —0.15)>] - 100 of its original computa-
tional time, if SomAla’s test environment and CPLEX 12.8
was used.

The runtime comparisons are reported in table 7. The
original averages of the runtimes of ten runs per instance
are shown in the second, third and fourth columns. Based
on the runtimes for IRMA #7gp4 and SomAla ¢5,,,4;, the run-
time ratios between SomAla and IRMA #5414 /tirMA - 100
are shown in the last two columns for both SomAla variants.
These ratios can be used to compare SomAla’s runtimes
with the runtime estimation of 30 % calculated for IRMA.

As shown in the last row, SomAla-MM only needs
15.09 % and SomAla-MS only 7.63 % on average over all
instances of the computational time needed for IRMA. Both
averages are less than the boundary of 30 % of the estimated
relative computational time assuming that IRMA is running
on SomAla’s test environment. Additionally, the maximum
ratios of 27.93 % for SomAla-MM and 24.11 % for Som-
Ala-MS are also less than the boundary of 30 % of IRMA’s
runtime estimation, which means that IRMA’s runtime esti-
mations could be undercut by 100 % of the instances solved
with SomAla.

The results of a second test corresponds with these run-
time comparisons. SomAla was additionally tested on an
older Mac mini with an 17-4578U CPU and 8 GB Ram run-
ning on macOS 12.13.4 using SCIP 6.0 instead of CPLEX.
The same benchmarks and CPU improvement assumptions
as before have been used to determine a new IRMA runtime
estimation with the result, that IRMA would need 112 %
of its original computational time, if this Mac mini was
used. Not included in this estimation is the fact that SCIP
is usually more slowly compared to CPLEX which is used

for IRMA. These tests show that SomAla-MM only needs
89,12 % and SomAla-MS only 19,01 % of the computa-
tional time needed for IRMA on average over all instances
which is less than IRMA’s runtime estimate of 112 % for
this environment.

The results of the comparisons in this section cannot be
evidence that SomAla solves CPMPs faster then IRMA.
But, if the assumptions for the estimations of IRMA’s rela-
tive computational times on SomAla’s test environment are
correct, then the results are strong indicators that there are
runtime improvements for all of the tested instances solved
with SomAla.

Results for the g-11056 instances

These instances are only introduced to show SomAla’s capa-
bility to find feasible solutions with good objective function
values in reasonable times for very large CPMP instances
and also to provide instances for future comparisons. These
instances are the largest instances which have ever been
published for the CPMP.

As described above, the demand nodes are all 11,056
German cities and communities published by the Statistis-
ches Bundesamt (2017) with their geographical coordinates.
Four instances are created with different ratios between the
number of the sources and the number of the destinations,
whereby for the ratio the values 1 %, 5 %, 10 %, 20 % and
30 % have been chosen. The integer demands in an inter-
val [1;100] are computed randomly and the supplies are ob-
tained with a supply/demand ratio of ~ 143 %.

The results were obtained on a computer with an
AMD Ryzen 7 1800X CPU with 64GB RAM running on
Kubuntu 17.10.1 using CPLEX 12.8 for solving linear pro-
grammes.

Table 8 shows the objective function values and the com-
putational times for these five instances. The columns two,
three and four contain the best known solutions (BKS) and
the averages of the objective function values of the ten runs
per instance for SomAla-MM and SomAla-MS. The best
known solutions are best solutions found during the test
of the instances. In the next columns the relative ObjGap
are shown. The runtimes for SomAla-MM and SomAla-
MS are given in the last two columns. The averages of the
relative gaps with 0.42 % for SomAla-MM and 1.16 % for
SomAla-MS are quite small and were found with an average
computational time of 2,059 seconds with SomAla-MM and
1,423 seconds with SomAla-MS which is more than satis-
factory for such large instances.

The relative gaps and the computational times show that
SomAla is a heuristic which enables decision makers to find
feasible solutions for very large instances with good total
distances in a reasonable time.

CONCLUSIONS

This paper proposes a new hybrid heuristic for the CPMP
which combines a self-organising map (SOM), integer lin-
ear programming, an alternating location-allocation algo-
rithm (ALA) and a partial neighbourhood heuristic in three
working steps.

In the first step, a solution for a continuous, capacitated
p-median problem is found using a SOM and a generalised



Table 7: Computational times for IRMA and SomAla

Instance Computational time [sec] Ratio SomAla/IRMA [%]
IRMA SomAla-MM SomAla-MS SomAla-MM SomAla-MS
u-724-010 59.65 0.79 0.98 1.33 1.64
u-724-030 300.72 242 6.63 0.80 2.20
u-724-075 546.39 109.65 14.68 20.07 2.69
u-724-125 643.31 106.59 25.99 16.57 4.04
u-724-200 706.29 79.96 34.53 11.32 4.89
spain-737-74-1 1,131.32 175.84 23.89 15.54 2.11
spain-737-74-2 979.12 128.99 51.73 13.17 5.28
spain-737-148-1 652.34 134.56 67.78 20.63 10.39
spain-737-148-2 653.79 134.62 98.24 20.59 15.03
rl-1304-010 181.66 15.29 1.63 8.42 0.90
rl-1304-050 1,199.98 15.43 14.70 1.29 1.23
rl-1304-100 1,634.18 208.39 35.04 12.75 2.14
rl-1304-200 1,227.78 140.46 71.41 11.44 5.82
rl-1304-300 951.75 165.33 117.68 17.37 12.36
pr-2392-020 551.82 6.05 6.07 1.10 1.10
pr-2392-075 825.85 24.83 51.11 3.01 6.19
pr-2392-150 2,019.23 0.00 118.98 26.01 5.89
pr-2392-300 2,382.39 266.80 171.14 11.20 7.18
pr-2392-500 2,402.6 547.65 232.99 22.79 9.70
p-3038-600 2,685.38 549.00 252.85 20.44 9.42
p-3038-700 2,239.84 625.67 327.76 27.93 14.63
p-3038-800 2,819.26 765.91 462.45 27.17 16.40
p-3038-900 1,578.17 439.31 380.47 27.84 24.11
p-3038-1000 1,874.08 478.40 405.19 25.53 21.62
fnl-4461-0020 538.97 38.31 21.24 7.11 3.94
fnl-4461-0100 3,880.37 110.59 92.58 2.85 2.39
fnl-4461-0250 4,592.66 1,239.09 178.86 26.98 3.89
fnl-4461-0500 3,912.36 665.33 286.88 17.01 7.33
fnl-4461-1000 3,433.26 662.38 575.98 19.29 16.78
Minimum 0.80 0.90
Average 1.607.05 270.26 142.39 15.09 7.63
Maximum 27.93 24.11
Table 8: Results for the g11056 instance
Instance Obj. value ObjGap [%] Computational time [sec]
BKS SomAla- SomAla-MS SomAla- SomAla-MS SomAla- SomAla-MS
MM MM MM
g-11056-111 208,570 209,025 208,970 0.22 0.19 523 491
g-11056-553 88,708 89,472 90,318 0.86 1.81 1,800 559
2-11056-1106 58,753 58,847 58,832 0.16 0.13 2,649 1,014
g-11056-2212 38,400 38,554 38,686 0.40 0.75 1,743 1,605
g-11056-3317 30,611 30,755 31,502 0.47 291 3,580 3,447
Minimum 0.16 0.13
Average 85,009 85,331 85,661 0.42 1.16 2,059 1,423
Maximum 0.86 291

assignment problem (GAP). This solution is used in the sec-
ond step in an ALA based on GAPs to find and improve
a solution for the CPMP. In the last step, the best solution
found so far is improved by using a partial neighbourhood
optimisation heuristic.

The combination of a SOM with a GAP in the first step
of the algorithm exploits the structure of the CPMP and im-
proves the objective function value of the entire algorithm in
comparison to alternative initial solutions. The next work-
ing steps combine several known techniques (integer linear
programming, ALA, partial neighbourhood optimisation) in
a new manner. All of these approaches are extended by sev-
eral size-reduction methods and a variable relaxing-fixing
heuristic to improve the SomAla’s capability to find good
solutions for large problem instances as fast as possible.

SomAla was tested on several benchmark instances in
comparison to IRMA by Stefanello et al. (2015), which is,
according to the literature review, the most competitive ap-
proach to solving CPMPs. It could be shown that IRMA
and SomAla-MM are more or less similar in their objective

function values. Both approaches provide better results than
SomAla-MS. But this approach is also able to find solutions
for 89.7 % of all instances with a relative gap of < 3 % to the
best known solutions. Since the tests for IRMA and Som-
Ala were run on different test systems, the original compu-
tational times cannot be compared. Therefore, estimations
of the computational times for IRMA, assuming this algo-
rithm would run on SomAla’s test system, were generated.
These estimations depend on benchmark-based assumptions
about time savings of different hardware as well as assump-
tions about release-wise runtime improvements of CPLEX.
The comparison of SomAla’s runtimes and the runtime es-
timations for IRMA indicates runtime improvements for all
of the tested instances solved with SomAla.

These results and the results of the g-11056 instances,
which are the largest instances ever published for the CPMP,
show that SomAla is a heuristic which enables decision
makers to find good feasible solutions for large instances
with reasonable computational times.
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