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ABSTRACT 

In this paper we discuss two aspects of kinetic approach 

for time series modeling in terms of dynamical system. 

One method is based on the interpretation of kinetic 

equation for empirical distribution function density as a 

reduced description of statistical mechanics for 

appropriate dynamical system. For example, if 

distribution function density is satisfied to Liouville 

equation with some velocity, then this velocity can be 

treated as an average velocity of particle in phase space. 

The second method is based on the so-called Chernoff 

theorem from the group theory. According to the 

consequence from this theorem some iteration procedure 

exists for construction of group or semigroup, which is 

equivalent in some sense to average shift generator over 

the trajectory of appropriate dynamical system. 

Connection between these two methods enables us to 

construct a strict approach to nonstationary time series 

modeling with non-parametric estimation of statistical 

properties of corresponding sample distribution 

function. Also the notion of Chernoff-equivalent 

semigroup can be used for the calculation optimization 

procedure. 

INTRODUCTION 

In the traditional approach to nonstationary time series 

analysis (see e.g. Harris 1995) the cointegration method 

is applied for construction some linear combination of 

finite differences of time series, so that this combination 

is a process with stationary distribution function. 

Besides that there are several heuristic methods such as 

Winters model (Winters 1960) and others econometric 

models (Johnston and Dinardo, 1997), using for 

forecasting of nonstationary behavior of time series.  

In this paper we construct a new theoretical scheme for 

statistical analyzing and numerical modeling of 

nonstationary time series. As far as we know the 

evolution equations for the sample distribution function 

(SDF) were not derived in the frame of time series 

analysis. 

The main problem is to predict the SDF at some horizon 

 with the use of a given sample data  nxx ,...,1 . In 

practice this problem arises under investigation of the 

evolution of statistical properties of any complex system

with many degrees of freedom. For example, in the 

works (Orlov et al. 2017; Ivchenko et al. 2017) the 

quality metrics of wireless connection were modeling

for the case of non-stationary random walk of 

subscribers. For this purpose the method of kinetic 

evolution equation for SDF was proposed. In this

method there is a problem of mathematical correctness

of construction of nonstationary empirical statistics,

such as drift velocity of the sample distribution function 

density (SDFD). If we have a sample of data  nxx ,...,1 , 

where n is sufficiently large number, we can construct 

SDF )(xFn  as an empirical probability, corresponding

to random variable with the values kx . If we suppose

further, that this function approximates an objective 

general distribution function )(xF  with density )(xf , 

then numerical difference )()()( xFxxFxF nnn 

can be approximately interpreted in terms of SDFD 

)(xfn , so that )()()( xoxxfxF nn  . But if the 

analizing data  nxx ,...,1 correspond to nonstationary 

random process, then we need to introduce a time 

dependence of SDF ),( txFn  and SDFD ),( txfn , where

time t is measured in terms of numbers k of values kx .

So it is naturally to construct the evolution equation for 

SDFD ),( txfn  as an approximation procedure for some

differentiating function of two variables ),( txf . We 

suggest a following scheme. 
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Let ),,( tvxn  is a joint SDFD of values x and 

differences xv  with unit time step, so that the value 

kkk xxv  1  numerically approximates velocity 

dtdx / . According to construction of joint probability 

density we have 

 

                          dvtvxtxf nn ),,(),( ,                    (1) 

 

where the integral in (1) represents in fact the 

summation over the differences kv . As it is known from 

traditional statistical mechanics, if we have a dynamical 

system dtdxtxv /),(   and phase coordinates vx,  are 

independent, the joint DFD ),,( tvx  in phase space 

obeys to Liouville equation, which express the phase 

space volume conservation law: 
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If we assume, that the boundary conditions for ),,( tvx  

correspond to zero density, we obtaine from (2): 
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Here the value ),( txu  is introduced as an average 

velocity in phase space: 

 

                     dvtvxvtxftxu ),,(),(),(                  (4) 

 

Following to this logic, we can consider the appropriate 

phase space, associated with two time series samples 

 nxx ,...,1  and  11,..., nvv , and construct for n-1 joint 

combinations  kk vx ,  the corresponding SDFD and 

empirical velocity ),( txun , so that in the sense of 

numerical procedure we obtain Liouville equation  
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for the case, when the process )(tx  has independent 

differences.  

If we know the empirical velocity ),( txun , we can solve 

the equation (5) under given initial conditions and 

analyze the statistical properties of ensemble of 

forecasting trajectories of this process. If we need to 

construct average trajectory, the velocity ),( txun  is 

taken to be a continuous analog of the corresponding 

discrete dynamical system, based on the sample of size n 

and defined by the equation 

 

                         ),(1 txuxx tntt  .                         (6) 

 

The main problem is that the empirical velocity ),( txun  

is unknown for time moments 1 nt  and ),( txfn  can 

not be forecasted without additional suppositions. For 

example, if we put, that estimated phase velocity 

),( txun  dose not depend on time, the corresponding 

value )(xun  might be used for forecasting over some 

horizon   from 1 nt  to  nt . Initial SDFD is 

given for the time moment nt 0 . But in fact it is a very 

rough approximation.  

One approach to solve this problem is to derive 

evolution equation for velocity itself, using the 

equations (2), (4) and (5). We have in one-dimensional 

case the following sequence of equalities, which leads to 

infinite chain of moment equations: 
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If we introduce the average square of velocity ),( txen , 

so that 
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we obtaine from (6), that 
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But the problem is not solved yet: we need now to 

suppose the definite dependence on time for the value 

),( txen  and so on. In practice we can stop, if ),( txen  or 

moment of higher order is sufficiently small. But it is 

not very conveniently, because higher order moments 

are usually increased with the order number.  

Another approach is to calculate some velocity ),(~ txun  

for several samples as an average value over the 

samples. If we have several (s) samples  nxx ,...,1 , 

 nn xx 21,...,  and so on, we can construct the value 
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Here tsn   and sum of positive weight coefficients kp  

is equal to unit: 
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Unfortunately, the value of ),(~ txun  has no mechanical 

sense as appropriate velocity in phase space, because in 

general case the average value of group (or semigroup) 

is not a group. In this paper below we present an 

iteration mathematical procedure, which enables us to 

use the formulas (10-11) in correct mathematical sense. 

 

TIME SERIES GENERATION METHOD 

Let us suppose, that we solve the kinetic equation (5) for 

SDFD. Then we have this function in a discrete 

moments of time ),(),...,1,(  txftxf nn  as a set of 

real non-negative values in definite class intervals. 

Thereafter, for each time ...,,2,1k  a random value 

kx
~  is generated from corresponding distribution 

function, which is represented as 
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In practice we deal with limited values, so that it is 

convenient to normalize the sample on the unite interval. 

In particular, if the solution of equation (5) is 

represented as a histogram ),( tjfn , where j  is a 

number of class interval which divided the area of 

integration, than the continuous strictly monotonic DF 

has the form 
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The computational step on the variable x is equal to 

J/1 , where J is a number of class intervals in (13). So 

if we know the value of drift velocity ),(~ tjun  for each 

class interval, we can construct the SDFD in the form: 
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The trajectory of random process )(tx  can be generated 

as follows. At first we generate stationary series of 

numbers  k  of length  , which is uniformly 

distributed at ]1;0[ . The corresponding series with 

distribution ),( txFn  from equations (12-14) is based on 

the inverse function to the distribution function, that 

moving in a sliding window of length  :  

 

                                 kxF knk ,~ .                        (15) 

 

By generating a set of N  uniformly distributed samples, 

denoted by the superscript Ni ...,,2,1 , we obtain the 

corresponding set of trajectories that can be considered 

as an ensemble of solutions of the kinetic equation (5):  

 ii xx 
~,...,~

1 . Each of the trajectories has SDFD, which 

depends on time according to Liouville equation (5).  

The principal distinction from traditional generation 

method is that SDF in the formula (15) explicitly 

depends on time through the variable k.  

To examine the accuracy of this method we need to 

estimate the non-stationafy level of SDF. This level is 

introduced following by (Orlov, 2014). It is called as 

self-consistent significance level (SCSL). This value 

represents a stationary point of significance level for 

distribution function of the values of non-parametric 

Kolmogorov-Smirnov criterion (Kolmogoroff, 1933; 

Durbin, 1972). This distribution is a distribution of the 

distances between sample distribution functions.  

 

SELF-CONSISTENT SIGNIFICANCE LEVEL 

The problem of belonging of two SDF )(,1 xF n  and 

)(,2 xF n  to the same general set can be solved with the 

use of non-parametric statistics of Kolmogorov-Smirnov 

test 
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for which the following asymptotic representation is 

valid: 
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where )(zK  is a tabulated Kolmogorov function (see 

e.g. Durbin, 1972) and n  is a sample length. In formula 

(16) the significance level Q  is usually approximated 

by the value of )(1 zK . More precisely, if we shall be 

given a significance level   of the distribution function 

of criterion (16), we must calculate the corresponding 

 -quantile. Let us denote )(n  the value of 

probability of exceeding of a given value z , that is  

   zSP n . The critical set for this criterion is 

defined by the condition )(NNS  . For this function 

in the work (Bol'shev, 1963) the asymptotic 

representation was obtained: 
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where z  is a root of the equation  
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It is more conveniently to use the stationary point of the 

function (19). Namely, let   be a distance between 

samples in the supremum norm, defined by (16). Then 

SCSL for the sample of length n is defined as a solution 

of the equation 
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In the stationary case the corresponding SCSL 

)(0 n   does not depend on the distribution function 

F. This solution is unique because of the monotonicity 

of the function )(zK . Tabulated values of )(0 n  can be 

found in (Orlov, 2014). 

For nonstationary SDF the distribution of distances 

between samples with defined length n differs from the 

statistics (17). We can construct the empirical 

distribution function )(SGn  for the distances nS  

between two independent samples with length n. The 

numerical solution of the equation 

 

                                SSGn 1)(                            (21) 

 

is called as self-consistent stationary level )(* nS . It will 

be the probability that distance between independent 

samples of length n is more than )(* nS . If it happens, 

that )()( 0
* nnS  , then this time series is 

nonstationary. Especially for this case we suggest the 

above procedure of kinetic forecasting of nonstationary 

distribution function. The characteristic feature of this 

procedure is that the SCSL for the various samples from 

the forecasting ensemble of trajectories is more, then 

stationary level )(0 n  and less, then self-consistent 

stationary level )(* nS  between two independent SDF 

),( txFn  and ),( ntxFn  . It means, that the modeling 

process is nonstationary and our forecasting method is 

more precise, then stationary approximation. 

 

CHERNOFF EQUIVALENCE 

Chernoff theorem (Chernoff, 1968) is concerned to 

iteration process of semigroup construction as a solution 

of Cauchy problem for differential equation in partial 

derivatives. In terms of solver operators this theorem is 

following. 

Let X is Banach Space and B(X) is Banach Space of 

bounded linear operators acting in X. Let also the 

function )(: XBR   satisfies to a condition 

I)0( , continuous in strong operator topology and 

0,
)(

 teat
XB

 , where a is some finite value. If 

also operator )0(  being closed and its closure is a 

generator of strong continuous semigroup U(t), then 

there exists a following limit: 
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for all T > 0 and for all Xg  .  

This theorem is generalization of well-known 

mathematical limit for differentiable functions: if 

function )(x  satisfies to the conditions, that 1)0(   

and  a)0( , then there exists the limit 

  atn

n
ent 


/(lim  . 

This theorem enables us to construct dynamical systems 

as an asymptotical state of some chaotical process after 

iteration procedure (22). Finite iteration procedure 

corresponds to approximation of the semigroup with 

definite accuracy. The examples of this method for 

quantum mechanics problems were presented in the 

work (Smolyanov et al., 2007). 

In the work (Orlov et al., 2014) the definition of 

Chernoff-equivalent operator functions was introduced. 

The operator-valued functions   and  , acting from a 

right half-neighborhood of the origin of the axis of real 

numbers to the Banach Space B(X) of bounded linear 

operators acting in a Banach Spase X are said to be 

Chernoff-equivalent, if the following condition is valid: 
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for all T > 0 and for all Xg . We shall write in this 

case 
Ch

 . 

A random variable   taking values in the set C(X) of 

strongly continuous one-parameter semigroups of 

operators acting in a Banach space X is called a random 

semigroup of operators in the Banach space X. 

A strongly continuous one-parameter semigroup U of 

bounded linear transformations of the Banach space X is 

called a generalized mean value of a random semigroup 

  if the semigroup U is Chernoff equivalent in the sense 

(23) to the mathematical expectation ][E . 

The following theorem of averaging semigroups is valid 

(Orlov et al., 2014). 

Let  nH  be a sequence of generators of strongly 

continuous semigroups in a Banach space X. Let  np  

be a sequence of nonnegative numbers such that 

1
1




n
np . Suppose also that there exits a linear 

manifold XD  that is an essential domain for each 

generator nH , and is such that the series 




1n
Xnn gHp  converges for every Dg . If the 

operator H, defined on the linear manifold D as 
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Chernoff equivalent to the unitary semigroup 
tHetU )( . 

So this theorem helds, that 
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For the problem of random process approximation this 

result means, that the random value ),( txu tn  from (6) 

can be averaged in the sense of (10-11) and represented 

the finite approximation of the semigroup, solving 

Cauchy problem for Liouville equation (5) for the 

sample distribution function density. 

 

CHERNOFF EQUIVALENCE FOR 

SIGNIFICANCE LEVEL 

The Chernoff equivalence notion is very useful for 

optimization of numerical experiments in the area of 

non-parametric nonstationary statistics. Suppose that we 

have self-consistent significance level  totn LS  for the 

time-series of length totL  as a solution of equation (21) 

for two nearest independent samples from the main data 

set. It should be taken into account that nLtot 2  and 

it is possible to fit enough numbers of segments with 

length n, so that we can actually collect statistics for 

building of the distribution )(SGn . For this length totL  

in some cases the distance between two nearest samples 

from the main data set is greater than )( totn LS . If now 

in a certain sliding window of length L the proportion of 

events where distances between two nearest samples 

from the main data set of length n turned out to be larger 

than the value )( totn LS , then in this window we can 

register a disorder situation. To achieve such 

conclusion, it is required that the SCSL of the 

nonstationary time series must be a stochastic variable 

with a stationary distribution. 

Studying the local value of the SCSL – that is, the value 

obtained over the whole interval L, which is 

substantially smaller than the original data set totL , the 

question can arise about the fluctuations of this local 

SCSL relative to the base self-consistent stationary level 

of the whole data set. It is important to understand that 

the SCSL of the whole data set )( totn LS  is not the 

average value of the sequence of SCSL ),( LkSn , where 

k is a number of subset. Each element of the sequence 

),( LkSn  is constructed for a certain set of two nearest 

samples of length n from the main data set in windows 

of length L. Let us consider the function 
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Suppose that empirical distribution function )(SGn  

approximates the differentiable function )(SG  of the 

corresponding general data set. Then the function 

)(Sn  has the following properties: 

0)0(,1)0(  nnn a . In this case there exist a 

limit 
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Following the above definitions for operator functions, 

the limit function )(Sn  is called Chernoff equivalent 

function to )(Sn  or, that is the same, to the 

significance level of the distribution )(SGn . So  
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Obviously, )()()(  oNN  . 

According to above theorem of semigroup averaging, if 

there is a set (finite or infinite) of functions ),( Skn  in 

the form of (25), each of them is equivalent in the sense 

of (26-27) to the function ),( Skn  with a coefficient 

(
k
na ) in the exponent. If we specify a set of 

corresponding non-negative coefficients kp  so, that 

1
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kp , then the average function 
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nkn SkpS ),()(  is Chernoff equivalent in the 

sense of (27) to the function naS
n eS
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Consider a sequence of disjoint intervals of length L . 

For each interval k  we construct an empirical 

distribution ),( LSGkn  of distances between two nearest 

samples of length n from the main data set. Let it be m 

of such intervals, so that totLmL   is the total length of 

the sequence. Then the distribution of distances, 

constructed over the entire data, is the average 

distribution obtained by averaging over individual 

samples:  
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Using the results (23, 24), we can prove the following 

theorem about stationary points of distributions with 

continuous densities. 

Let the distributions of random variables have 

continuous densities and let some non-negative measure 

be given on the set of these stochastic variables. Then 

the stationary point of the function will be Chernoff 

equivalent to the average level of significance of the 

given distributions, with accuracy up to second order of 

an infinitesimal, coincides with invers value of the mean 

value of the reciprocals of the stationary points of the 

functions Chernoff equivalent to levels of the 

significance of these distributions.  

Namely, let )(
~
kSn  is a stationary point of the function 

),( Skn , so that ),(
~

LkSn  is a solution of the equation 

SSkn  ),( . Let )(
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totn LS  is an analogous solution for 

average function  
k

nkn SkpS ),()( . Then 

 

                  



m

k n

k

totn LkS

p

LS 1 ),(
~

)(
~
1

.                       (30) 

 

The formula (30) is very important, because it allows to 

reduce considerably the number of calculations while 

studying the behavior of SCSL on unions of data sets in 

different tasks of Big Data analysis. 

 

CONCLUSION 

In this paper we proved the theorem, concerning 

statistical application of the special group theoretical 

notation, which is known as Chernoff equivalence. It 

allows us to significantly reduce the volume of 

calculation for analysis of complex statistical object 

such as variation between sample distribution function 

of the distances between sample distribution functions of 

non-linear functional of stochastic trajectories.  

In particularly, it appears, that two sets of data with 

various non-stationary levels can be statistically 

separated in sufficiently narrow sliding window. The 

disorder indicator in the form of Chernoff equivalent 

self-consistency level has a stationary distribution 

function for each subset with the same non-stationary 

level, as a main sample of data. In other words, the type 

of non-stationary behavior of the data does not change 

during the period of time when the physical system is in 

the same condition. 

This disorder indicator can be used for the practical 

solution of the problem of optimal non-stationary 

stochastic control. 
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