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ABSTRACT

The authors for a long time have investigated the phe-
nomenon of global synchronization. Specifically, the occur-
rence of a self-oscillatory regime in a control system was
investigated. The model was built for the interaction of the
TCP protocol and the active queue management algorithm
RED. As a result of the research, the authors identified a set
of methods for constructing the model, studying the model
structure, calculating parameters of self-oscillations and veri-
fying theoretical results based on a computer simulation. The
paper summarizes the main results, obtained by the authors,
and gives the description of their approaches.

INTRODUCTION

In data networks with TCP such a parasitic phenomenon
as a global synchronization can take place. The TCP packets
are sent by sources synchronously, and also sources may

synchronously stop transmitting the TCP packets. This phe-
nomenon is extremely negative for the network parameters
(such as bandwidth, data transfer delays and etc) manifests
itself as the occurrence of a self-oscillatory regime in the
system. The use of AQM (Active Queue Management) al-
gorithms, such as RED,for traffic shaping may reduce the
likelihood of global synchronization, but does not completely
eliminate it.

Quite a lot of work devoted to the modeling of the process
of functioning of TCP with a random drop packets. Simplified
models are presented in the works Mathis et al. (1997); Padhye
et al. (1998); Floyd and Fall (1999). Later and more accurate
(in terms of assumptions about the packet loss process), the
TCP operation models in the stationary mode are presented,
for example, in Misra and Ott (1999); Misra et al. (1999a,
2000a); Firoiu and Borden (2000); Altman et al. (2000, 2005).
In many studies, the construction and analysis of models takes
into account the interaction of the data transmission process
using the TCP protocol and process flow control state when
congestion occurs. The RED algorithm Floyd and Jacobson
(1993) or its modifications is often considered as a regulatory
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process.
Making various changes to the classic RED and, as a

result, the emergence of a large number of modifications
is associated with the problem of selecting the algorithm
parameters (threshold values, maximum reset parameter, etc.)
at which the system would function stably and efficiently. The
analysis of the effectiveness of the RED algorithm and the
attempt to solve the problem of selecting its parameters are
devoted to the work Floyd (1997); Lin et al. (1997); Floyd
et al. (1998); May et al. (1999); Floyd (2000); Atsumi et al.
(1998); Pazos et al. (1999); Firoiu and Borden (2000); Ziegler
et al. (2001); Iannaccone et al. (2001); Feng et al. (1999).

The authors have studied the problem of occurrence of self-
oscillation mode in the interaction of TCP and RED algorithm
for a long time and several approaches have been applied. In
this paper the authors give an overview of the main approaches
to the study of the problem of the emergence of self-oscillatory
modes in TCP networks.

MODEL CONSTRUCTION
Our research was based on the model of the TCP-source and

RED algorithm interactions based on stochastic differential
equations with Poisson’s process (see Misra et al. (1999b,
2000b)). However, we were not satisfied with some artificiality
of this constructions. Our team has developed stochastization
approach of one-step processes that allows us to obtain models
from the first principles. In this case, the obtained model
models have immanent stochastic properties (see Hnatič et al.
(2016); Gevorkyan et al. (2018)).

TCP-like traffic transmission model with dynamic flow
rate, controlled by RED algorithm, is constructed from the
following assumptions:
• the model consists of two elements: the source which

generates TCP packets, and the recipient (the queue)
which acts as a router that processes received packets
according to the control algorithm and inform the source
device about delivered packages;

• the interaction between the source and the recipient
occurs through intermediate node according to the control
algorithm, i.e. the value of average queue length affects
the source settings, in particular, the TCP-window size;

• from the existing phases of the TCP Reno Protocol we
take into account only the slow start phase and the
congestion avoidance phase; the loss of packages is taken
into account only in the case of triple ACK redundancy.

Thus, we assume to obtain a nonlinear dynamic model of
TCP Reno interactions with RED, which uses two variables
condition: the size of the congestion window and the average
queue size. The change of the size of the TCP Reno window
will reflect the dynamics of congestion control of TCP proto-
col, while the average queue size will reflect the dynamics of
the queue in a router (or gateway) with RED control module.

Let consider W (t) to be the function of TCP-window size,
Q(t) is the queue size, T := T (Q(t)) = Tp + Q(t)/C is the
RTT with delays of packets processing in hardware, Tp is the
RTT excluding delays of packets processing in hardware, t is

the time, C is the intensity of packets service in the queue, δ
is the time spent by a single package in queues, Q̂(t) is the
exponentially weighted moving-average (EWMA) queue size
(see Floyd and Jacobson (1993)):

Q̂(t) = (1− wq)Q̂(t) + wqQ(t), (1)

where wq , 0 < wq < 1 is a weight factor.
First, we will write the equation responsible for the size of

the TCP Reno window changing.
According to RFC-5681 (see Allman et al. (2009)), the

window size increases when the source receives the ACK
message, which corresponds to the slow start phase of TCP
Reno:

W
(
tACKn + ∆tACK

)
= W

(
tACKn

)
+ 1.

Suppose that during the RTT all confirmations for the sent
window segment will come:

W (tn + ∆t) = W (tn) + 1 ·W (tn) ,

W (tn + ∆t)−W (tn)

∆t
=
W (tn)

∆t
.

If we consider that ∆t = T , then

dW (t)

dt
=
W (t)

T
. (2)

By solving (2), we will obtain

d lnW (t) =
dt

T
, lnW (t) =

1

T
; W (t) = exp

{
1

T

}
,

that corresponds to the exponential growth of TCP Reno
window size in the slow start phase.

Similarly, we may write the changes of the window size in
the phase of overloads prevention:

W
(
tACKn + ∆tACK

)
= W (t)

(
tACKn

)
+

1

W (tACKn )
.

Suppose that during the RTT all confirmations for the sent
window segment will come:

W (tn + ∆t) = W (tn) +
1

W (tn)
W (tn) ;

W (tn + ∆t)−W (tn)

∆t
=

1

∆t
.

If ∆t = T we obtain
dW (t)

dt
=

1

T
. (3)

By solving (3) the following result is derived

dW (t) =
dt

T
, W (t) =

1

T
,

which corresponds to the linear growth of TCP Reno window
size in the phase of overloads prevention.

Considering that all the packets arrive with intensity
W (t)/T , and served in queue with intensity C, we may write
the equation of change the average queue length:

dQ(t)

dt
=
W (t)

T
− C.



Based on (1), the following statement is valid:

Q̂(tn + ∆t) = (1− wq)Q̂(tn) + wqQ(tn),

Q̂(tn + ∆t)− Q̂(tn) = −wqQ̂(tn) + wqQ(tn),

Q̂(tn + ∆t)− Q̂(tn)

∆t
=
wq
∆t

(Q(tn)− Q̂(tn)).

Assuming that δ = ∆t and δ = 1
C , we obtain

dQ̂(t)

dt
=
wq
δ

(Q(t)− Q̂(t)) = wqC(Q(t)− Q̂(t)), (4)

which corresponds to the behavior of the exponentially
weighted moving average.

Next, we will apply the method of stochastization of one-
step processes to the resulting equations and write the cor-
responding Fokker–Planck and Langevin equations for the
random processes W (t) and Q(t).

For the random process W (t) we will denote by k11 the
arrival intensity of packets, and by k12 the service rate of
packets in the system.

From the equation (3) we obtain:

k11 =
1

W (t)
. (5)

Consideration of packages loss only upon receiving a triple
duplicate ACK gives that

k12 =
1

2

dN(t)

dt
, (6)

where dN(t) is the Poisson process similar to the introduced
in Misra et al. (2000b).

The corresponding kinetic equation for the congestion win-
dow of TCP Reno will have the form:0

k11−→W (t),

W (t)
k12−→ 0.

(7)

From (7) we can write the operators of the state. In
particular, for the number of packages before the interaction
N
α

i
1 we get:

N
α

i =

(
0
1

)
, (8)

and for the number of packets after interaction M
α

i we derive
the following expression:

M
α

i =

(
1
0

)
.

The transition operator rαi = Mα
i −Nα

i will look like:

r1i =
(
1
)
, r2i =

(
−1
)
. (9)

1We will use the abstract indices notation (see Penrose and Rindler (1987)).
In this notation tensor as a complete object is denoted merely by an index
(e.g., xi). Its components are designated by underlined indices (e.g., xi ).

From the general formula for the specific probability of
transition in the forward direction:

S+
α = kα

∏
i

xi !

(xi −Nα
i )!

and (8) we get:

S+
1 = k11, S+

2 = k12W (t). (10)

The Fokker–Planck equation coefficients we get from (10)
and (9):

Ai = S+
α r

αi = k11 − k12W (t),

Bij = S+
α r

αirαj = k11 + k12W (t),

where ai := Ai(xk, t) is the drift vector, Bij := Bij(xk, t) is
the diffusion vector for some n-dimensional random process
xk := xk(t) ∈ Rn. In this case xk := W (t).

Taking into account (5) and (6), we may write the Fokker–
Planck equation:

∂w(t)

∂t
= − ∂

∂W (t)

[(
1

W (t)
− W (t)

2

dN(t)

dt

)
w(t)

]
+

+
1

2

∂2

∂W 2(t)

[(
1

W (t)
+
W (t)

2

dN(t)

dt

)
w(t)

]
, (11)

where w(t) is the distribution density of the random process
W (t).

The form of the corresponding (11) Langevin equation is:

dW (t) =
1

W (t)
dt− W (t)

2
dN(t) +

+

√
1

W (t)
+
W (t)

2

dN(t)

dt
dV 1(t), (12)

where dV 1(t) is the Wiener process corresponding to the
random process W (t).

Similarly, for the random process Q(t), we may denote the
packets arrival rate in the queue as k21:

k21 =
W (t)

T
, (13)

and by k22 we will denote the intensity of packets service in
the queue:

k22 = −C. (14)

The corresponding kinetic equations for the average queue
length will have the form:0

k21−→ Q(t),

0
k22−→ Q(t).

(15)

From (15) state operators are derived:

N
α

i =

(
0
0

)
, M

α

i =

(
1
1

)
as well as the transition operator rαi = Mα

i −Nα
i :

r1i = (1), r2i = (1). (16)



The specific probability of transition in the forward direc-
tion:

S+
1 = k21, S+

2 = k22. (17)

The coefficients of the Fokker–Planck equation based on
expressions (17) and (16) take the form:

Ai = S+
α r

αi = k21 + k22,

Bij = S+
α r

αirαj = k21 + k22.

From (13) and (14) the Fokker–Planck equation is derived:

∂q(t)

∂t
=− ∂

∂Q(t)

[(
W (t)

T
− C

)
q(t)

]
+

+
1

2

∂2

∂Q2(t)

[(
W (t)

T
− C

)
q(t)

]
,

(18)

where q(t) is the distribution density of the stochastic process
Q(t).

The corresponding (18) Langevin equation has form:

dQ(t) =

(
W (t)

T
− C

)
dt+

√
W (t)

T
− CdV 2(t), (19)

where dV 2(t) is the Wiener process, corresponding to Q(t).
From (12), (19) and (4) the resulting system of equations

is obtained

dW (t) =
1

T
dt− W (t)

2
dN(t) +

+

√
1

T
+
W (t)

2

dN(t)

dt
dV 1(t),

dQ(t) =

(
W (t)

T
− C

)
dQ(t) +

√
W (t)

T
− CdV 2(t),

dQ̂(t)

dt
= wqC(Q(t)− Q̂(t)),

(20)
Wiener processes included in the corresponding equations

can be interpreted as a random deviation of the packet size
from the mean size.

For simplicity, we may write the system (20) in moments:



Ẇ (t) =
1

T (Q(t), t)
−

− W (t)W (t− T (Q(t), t))

2T (t− T (Q(t), t))
p(t− T (Q(t), t));

Q̇(t) =
W (t)

T (Q(t), t)
N(t)− C;

˙̂
Q(t) = −wqCQ̂(t) + wqCQ(t),

(21)

This model corresponds to the model described in
work Misra et al. (2000b).

The classical RED (see Floyd and Jacobson (1993)) algo-
rithm works with weighted average of queue length, marking

incoming packets for deletion (or deleting them) with some
probability, if the calculated value reaches the threshold:

p(Q̂(t)) =


0, 0 < Q̂(t) 6 Qmin,

Q̂(t)−Qmin

Qmax −Qmin
pmax, Qmin < Q̂(t) 6 Qmax,

1, Q̂(t) > Qmax.
(22)

This algorithm is a classic and is the most common RED-
like algorithm.

NUMERICAL EXPERIMENT
Our initial approach was to investigate the obtained sys-

tems: (20) and (21) numerically. In particular, our goal was to
obtain phase and parametric portraits of the system.

A family of phase trajectories for given parameters values
forms the phase portrait of the system, giving a complete
qualitative representation of its possible behavior. The qualita-
tive picture of the phase portrait is determined by equilibrium
positions (special points) and special trajectories, for example,
the mutual arrangement of limit cycles, equilibrium points.

The limit cycle corresponds to the regime of periodic
oscillations and it is the closed trajectory on the phase plane.
The equilibrium point, corresponding to the stationary regime,
is the point Q̂s on phase plane in which the right-hand sides
of differential equations turn to zero.

Special points and cycles are stationary solutions. If the
initial conditions coincide with the special point or are located
on the limit cycle, then the system will always remain in that
point. In practice, this will be in the case of sustainability,
when under initial conditions from a small area of solutions
the system returns to the original stationary mode. The phase
portrait gives a visual representation of the possible steady
solutions, and also the areas of their attraction, if there are
several solutions.

The relevant task is to study the phase portraits changes,
depending on the parameters or its deformations. Bifurcation
situations may occur during the deformation process, when
the structure of the phase portrait changes nearby of the
bifurcation carrier (the equilibrium or limit position) cycle) in
the phase space. For example, the phase portrait qualitatively
changes.

The set of bifurcation values of the parameters, which
breaks the parameter space into regions of different types of
phase portraits, is the parametric portrait of the system. The
ultimate goal of qualitative research is to obtain the parametric
portrait of the system, i.e. the space partitioning parameters on
the areas of different behavior corresponding to topologically
different phase portraits.

Since the reset p(Q̂) is a piecewise function, then the
system (21) can be written as a set of several systems of
nonlinear equations, each for one of the intervals of values of
the function p(Q̂). This approach is called the hybrid modeling
(see Korolkova et al. (2016)).

The solution can be either sustainable or represent the self-
oscillating process (see Fig. 1). For our system the appearance
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of self-oscillations can be caused by the nature of the discon-
tinuities of the function p(Q̂(t)), since there is a gap of the
1st kind. the self-oscillating mode occurs when the fixed point
value Q̂s, calculated in the workspace (the region of the slow
movements), falls in the interval of the unconditional reset
(p(Q̂(t)) = 1, fast motion region).

The parametric portrait of the system is the plot which
shows the behavior of the stationary point Q̂s under the
assumption that there is no area of unconditional reset. Note
that if you leave free n parameters, the result is a surface of
the dimension n.

The boundary surface of the dimension n−1 will divide the
regions of stable and unstable behavior of the system. Self-
oscillations will occur in areas of instability of the system
lying above the boundary surface. As an example, you can
consider parametric portraits with one free parameter (Fig. 2)
and with two free parameters (Fig. 3).

The study was conducted by Runge–Kutta method
(see Gevorkyan et al. (2016); Eferina et al. (2014)), the
programs were written in FORTRAN language.

STRUCTURAL STUDY

With all the convenience and simplicity of the computational
experiment it has its drawbacks. The main drawback is that
the model is studied as a single monolith. This does not allow
to identify the causes of self-oscillations. For atomic studies
of the causes of self-oscillations we should use structural
approach. As a structural approach we have chosen Krylov–
Bogolyubov method (see Kryloff and Bogoliuboff (1934)),

Stationary point
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Fig. 3. The parametric portrait of the system with RED
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−

Fig. 4. The block structure of the system for the harmonic linearization
method

1

and its development — the harmonic linearization method
(see Nyquist (1932)).

The harmonic linearization method allows to study approx-
imately stability and accuracy of nonlinear systems, applying
methods usually used for analysis of linear systems. The
method makes it possible to determine the presence of self-
oscillations, and to find their parameters: the frequency and
the amplitude. The difference of the harmonic linearization
from the usual linearization is the replacement of the nonlinear
characteristic with a straight line whose steepness depends on
the amplitude of the input signal nonlinear element.

System splits to “linear” Hl and “nonlinear” parts of Hnl

(see Fig. 4). These names are enough conditional. As the non-
linear part, we present the assumed source of self-oscillations.
The linear part serves as a low pass filter. Thus, the linear part
allows to restrict the decomposition in a row only to the first
member of the row.

For our model the block representation of its linearized
model is reduced to the corresponding form fig. 4. In this case,
as a nonlinear function the linearized reset function PRED (23),
obtained from reset functions (22), will be used:

PRED := δp(Q̂, t) =

=


0, 0 < Q̂(t) 6 Qmin,

pmax

Qmax −Qmin
δQ̂(t) , Qmin < Q̂(t) 6 Qmax,

0, Q̂(t) > Qmax.

(23)

The structural linearized system has the following form:

x0 + Hl(ω)

∣∣∣∣
ω=0

κ0(A,ω, x0) = 0,

1 +Hl(κ(A,ω, x0) + iκ′(A,ω, x0)) = 0.
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Here a is the oscillation amplitude, ω is the cyclic frequency
fluctuations, x0 is the shift of the oscillations relative to the
Ox axis. The functions κ0, κ and κ′ define the “nonlinear”
part of the system.

As a free parameter, we may set the service intensity C.
Let’s set the following RED algorithm parameters: number of
sessions N = 60, RTT without accounting packet delays in
hardware Tp = 0.5 s, thresholds Qmin = 75 packages and
Qmax = 150 packages, maximum reset level pmax = 0.1, the
weighting factor of the EWMA wq = 0.002.

The results of the study are the following parametric por-
traits (see Fig. 5, 6, 7). As a free parameter we use the intensity
of services Ca = 15 Mbps. That is, judging by the plots, for
C > Ca the system will be in self-oscillating mode.

The structural approach allows to identify and study the
sources of self-oscillations occurrence. However, in computa-
tional terms, it is much more labor-intensive than the direct
numerical simulation.

VERIFICATION
The obtained theoretical studies should be verified by full-

scale or simulation experiment. Real network hardware is not
always available for experiments. The virtual network has high
requirements for computer hardware (see Velieva et al. (2015))
and experiment may take lot of time. In order to save resources
and time simulation tools are usually used.
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Fig. 7. The parametric portrait that represent self-oscillation shift dependence
from service intensity
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Fig. 8. The behavior of the average queue length when the service intensity
is C = 5 Mbit/s
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Fig. 9. The behavior of the average queue length when the service intensity
is C = 20 Mbit/s

As a reference simulation tool for network simulation and
replacing the full-scale experiment, researchers are still using
ns-2 (see Issariyakul and Hossain (2012); Altman and Jiménez
(2012)). Third version of this software has been developing
since 2006 to the present time. Ns-3 architecture is more
consistent with models of the protocol stacks than ns-2, but
ns-3 has not yet been widely used as a tool verification of
research results in this area.

The main programming language of ns-2 projects is TCL
language (see Welch and Jones (2003); Nadkarni (2017)).

The result of the simulation experiment is saved to large
trace-file that contains a description of all simulated events.
This data can be visualized (see Fig. 8 and 9). For obtaining the
parameters of self-oscillations we found their spectrum using
a fast Furies transform (see Rao et al. (2010)) (see Fig. 10).
The programs are written in Julia language (see Joshi and
Lakhanpal (2017)).

The results of the computer simulation coincides with high
accuracy with theoretical results of both the computational
experiment and the structural study.

CONCLUSION

We have developed a stochastic model of interaction be-
tween the TCP protocol and the RED algorithm based on the
one-step process stochastization method. The proposed model
(the model in the moments) in general coincides with the
models proposed by other authors. The study was conducted in
two directions. Structural study allowed to identify the cause
of the self-oscillatory regime. The computational experiment
made it possible to effectively build parametric portraits of the
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Fig. 10. The spectrum of self-oscillations of the instantaneous queue length
when the intensity of the service is C = 20 Mbit/s

system and to obtain the characteristics of the zone of self-
oscillation and the parameters of self-oscillations themselves.
In general, we believe that we successfully solved the problem
of investigating the emergence of the self-oscillatory mode in
the TCP–RED system.
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