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ABSTRACT

We investigate a simulation methodology for sys-
tematically optimizing air cooling in an existing battery
system by placement of passive components. The goal in
such retrofit optimization is to achive design improvement
by making as few and cheap changes in the original sys-
tem as possible. Our methodology utilizes CFD for fluid
flow and heat transfer modeling and machine learning for
cause-effect assessment across binary design variables,
such as wall placement for passive flow control. As an
application, we consider computational optimization of
air cooling in a scaled-down electric bus charging station
battery system.

I INTRODUCTION

I-A Background

Battery systems are seen today as a promising alter-
native for fossil fuels in mobile machinery, for reducing
carbon dioxide emissions. Indeed, the electric vehicle
technology in consumer use is already relatively mature,
and progress has also been reported in electrification of
public transport (Valenti et al., 2017), as well as heavy
machinery (Moreda, Muñoz-Garcı́a, & Barreiro, 2016;
Valenzuela Cruzat & Anibal Valenzuela, 2018). It is
important to note that batteries are used in their charging
stations, too, for power peak control among others (Li,
Huang, Zhang, & Bao, 2017).

An industrial-scale battery often requires a separate
cooling system that aims to keep the temperature across
the battery cells below a threshold level, typically 40◦C-
60◦C, specified by the cell manufacturer. Excess heat
is known to deteriorate the cell and reduce its lifetime
(K. Xu, Zhang, Jow, Xu, & Angell, 2002). Consequently,
the cooling system should also ensure that the temperature
variation between the cells is minimal, in order to ensure
that the cells wear out evenly within a battery (Wang,
Tseng, Zhao, & Wei, 2014).

The design of a battery cooling system is non-trivial,
because the design objectives are complex and contra-
dictory. On the one hand, the cells should be efficiently
and uniformly cooled. On the other hand, the cooling
system should be cheap and easy to install and maintain

in practical use. In mobile applications, also a low weight
for the cooling system is an obvious pre-requsite. Battery
cooling systems are typically designed by using Computa-
tional Fluid Dynamics (CFD), whereby designers attempt
to find an optimum cooling medium as well as a means
to distribute it around the cells; see e.g. (An, Chen,
Zhao, & Gao, 2019; Xun, Liu, & Jiao, 2013) and the
references therein. For a survey of modern battery cooling
methodologies, we refer the reader to (Peng, Garg, Zhang,
& Shui, 2017).

Air cooling is often preferred in practice, because it
yields a simple-to-build system which is also lightweight
and low-cost. Furthermore, the cooling medium (cold air)
can, at least in principle, be distributed around the cells
without additional ductwork. However, the heat capacity
rates in air cooling are also typically quite low. This
implies that flow control, i.e. guiding the cooling air
efficiently, plays a pivotal role in battery air cooling
system design. The fact that the heat transfer coefficient
for forced convection is up to an order of magnitude larger
than that for natural convection further necessitates air
motion around the cells in an air-cooled battery.

I-B Contribution of the article

Several computational approaches for optimizing bat-
tery air cooling have been proposed in the academic
literature, e.g. (Li, He, & Ma, 2013; Na, Kang, Wang, &
Wang, 2018; Wang et al., 2014; X. Xu & He, 2013). How-
ever, to the authors’ knowledge, little research has been
reported on optimizing existing battery systems. In such
“retrofit” optimization scenarios, one attempts to improve
an existing design by making minimal modifications, as
the equipment may be in daily use or difficult to access
in practice.

The purpose of this article is to investigate the degree
to which retrofit battery air cooling system optimization
can be carried out by using passive components alone,
and whether this optimization can be systematically car-
ried out by utilizing CFD and machine learning. This
optimization problem is not an easy one, because one
should be able to draw conclusions robustly from a
relatively small subset of the vast number of all con-
ceivable design alternatives. In addition, as illustrated in
Subsection I-C below, even simple geometry optimization
tasks that involve fluid flow are often nonlinear math-
ematical problems. In this article, we present a generic
methodology attempting to address these challenges and,
as an application, we consider a down-scaled electric
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bus charging station battery built at Turku University of
Applied Sciences.

I-C Motivating example

In a simple retrofit flow optimization case, an existing
design layout is modified to locally enhance or balance
air flow by passive equipment, such as plate blockages
and guide vanes. However, even this simple scenario is
a nonlinear mathematical problem, with complex cause-
effect interactions. This is illustrated in Figure 1, which
displays the velocity field in a turbulent air flow CFD
simulation (see Subsection II-A for details) across an
array of 4 square objects. In both cases, the flow is
specified as 1 m/s from left to right, extending to a
virtual wind tunnel geometry with only the zone around
the squares shown. The only difference between the two
geometries is the baffle blockage connecting the squares
on the right. Yet this small difference affects the entire
flow field: Notice that not only downstream, but also flow
conditions upstream from the blockage are affected, and
that effects are seen away from the baffle.

Fig. 1: Effect of Blockage on Flow Velocity Magnitude

II METHODOLOGY
The retrofit design optimization methodology we con-

sider in this article is based on fluid flow and heat
transfer modeling by CFD and a systematic cause-effect
assessment across binary design variables by machine
learning. The details of this approach are given in this
section, and the methodology is then applied for an
existing battery system in the remainder of this article.

II-A CFD modeling

1) Fluid flow

We assume that air motion in the battery system is
incompressible turbulent fluid flow, which is described by
the Reynolds Averaged Navier-Stokes (RANS) equations
in the steady state. In tensor notation, they read:
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= 0 (1)
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the fluid velocity, ρ denotes the (constant) fluid density,
p denotes pressure, and µ denotes dynamic viscosity. In
addition, subscripts denote coordinates, and for any scalar

quantity a, ā denotes its time average and a′ denotes
the fluctuating component in the Reynolds decomposition
a = ā+ a′.

The above equations require modification for any fan
sections, as for design optimization it is not feasible to
model fan blade motion directly. Instead, each fan zone
constitutes a rotating reference frame, which yields a
time-averaged (steady state) flow solution through the
blades via the absolute velocity formulation.

To model turbulence, similar to the approach of
(X. Xu & He, 2013), we assume that the Reynolds stresses
ρu′iu

′
j can be described via turbulence kinetic energy k

and its dissipation rate ε, as in the k−ε turbulence model:
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where G represents the effect of turbulence generation
by velocity gradients, and µt = ρCµ

k2

ε represents eddy
viscosity, which yields the Reynolds stresses via the
Boussinesq hypothesis. We use the default constant values
C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, and
σε = 1.3 reported in the academic literature.

2) Heat transfer

Heat transfer is described by the equation for con-
servation of energy E, for which each battery cell ck
contributes as a local volumetric heat source Sck (W/m3):

ρ∇ · (uE) = ∇ ·
(
λ∇T + τeff · u

)
+ ΣSck (5)

where λ denotes thermal conductivity and τeff · u repre-
sents energy transfer by viscous dissipation.

II-B Design optimization

The approach for CFD-based design optimization con-
sidered herein has two stages. In the first stage, a large
batch of candidate designs, generated via statistical design
of experiments, is simulated. In the second stage, the
effect of each individual geometry modification on the
design objective is estimated from this simulation data.
The degree to which any given design variable improves
or worsens the objective is estimated by employing the
feature importance metric in the random forest machine
learning scheme. Monte Carlo simulations help address
the inherent stochasticity in the approach, as explained
below.

1) Design variables

We assume that there are N locations in the air-
cooled battery geometry model which can be blocked
by introducing a baffle plate. As planar walls, they are
easy to install, and their presence can be modeled as N
binary (on/off) design variables. In CFD simulations, such
baffle plates can be modeled as infinitely thin walls. This
facilitates using precisely the same computational mesh
for simulating baffled design candidates as for simulating
the present situation without baffles, i.e. the baseline case.
It is well-known, see e.g. (Immonen, 2017), that this is
important for drawing conclusions from the simulation



results: Even if the numerical values obtained from CFD
calculations may have limited accuracy, one can more
robustly infer which one of any two competing geometries
performs better than the other.

2) Fractional factorial designs

For N binary design variables, there are 2N different
combinations (the full factorial design), and evaluating
them all becomes quickly impossible as N increases.
Fractional factorial designs (FFDs) are statistical design
of experiments that are widely used for statistical cause-
effect analyses (Pham, 2006). They are well known to
efficiently exploit the fact that often many elements of the
full factorial design are redundant (the sparsity-of-effects
principle). Moreover, they facilitate controlling the degree
of variable confounding, i.e. attributing an effect to some
(combination of) design variables when in fact it is due
to others. By definition, an FFD of resolution R is one
in which no n-factor interaction is confounded with any
other effect containing less than R–n factors.

3) Feature importance by random forests

Random forests are an ensemble-based machine learn-
ing method for classification and regression that oper-
ate by constructing a number of decision trees. Each
tree attempts to model a subset of the full input-output
relationship, and ensemble averaging aims to correct
for decision trees’ typical overfitting of the training set
(Hastie, Tibshirani, & Friedman, 2009, pp. 587–588).
For the retrofit battery air cooling system optimization
problem, the inputs (or predictor variables) are the N
binary design variables, and the output (or response) is
the global maximum cell temperature within the battery.
Here, identification of a random forest model is carried
out on the FFD batch data described in Subsection II-B2.
For any given random forest, the predictor variable im-
portances (i.e. their relative significance for the response)
can be estimated by permuting out-of-bag observations
among the trees (Loh, 2002).

4) Monte Carlo simulation

The outcome of a feature importance analysis for a
given random forest, described in Subsection II-B3, not
only depends on tree-forest structure (e.g. the number
of trees, leaves etc.) but also on how the underlying
input-output relation was partitioned across the trees in
the random forest. Therefore, this outcome is stochastic.
To address this, we consider a Monte Carlo simulation
in which the feature importance analysis of Subsection
II-B3 is carried out for several different random forest
specifications. This yields a statistical description of the
feature importances, and one can more robustly infer
which (if any) of the design variables have the desired
effect on the output.

III APPLICATION: A DOWN-SCALED
ELECTRIC BUS CHARGING STATION

BATTERY SYSTEM

III-A The SeBNet battery system

During the SeBNet project (Smart Electric Bus Net-
work Integration, from 1.7.2017 to 31.12.2019), a student
team at Turku University of Applied Sciences developed

and built the initial down-scaled (1:10) version of an
electric bus charging station battery system shown in
Figure 2. It consists of a series connection of 16 LiFePO4
cells (GWL Power, 3.2 V, 20 Ah, 64 Wh, 0.65 kg),
which must be kept below 45◦C during charge and below
55◦C during discharge, according to the manufacturer’s
specification. Further, the maximal continuous charge and
discharge currents for the cells are 20A (1C) and 60A
(3C), respectively. The cell’s internal resistance is stated
by the manufacturer to be less than 0.002 Ω. These yield
an estimate of the maximum heat generation rate: 16×7.2
W = 115.2 W for the whole battery system. The two fans
(Arctic F14PWM, each rated at 126 m3/h) on the back
panel, operated at the maximum rpm, attempt to remove
this heat from the casing. In practical use, the air cooling
system utilizes dry air at room temperature 20◦C drawn
through the front panel only; the top and bottom sections
of the casing are sealed closed.

Fig. 2: The SeBNet Battery System

III-B Baseline CFD model development and simplifi-
cations

1) Geometry

The CFD geometry model for the SeBNet battery
system, adapted from the original SolidWorks design
drawings, is displayed in Figure 3.

The 16 cells (shown in blue color in Figure 3) were
modeled as 71 mm × 178 mm × 28 mm solid rectangular
regions, as in the cell specification document. The cells
are connected by rectangular solid busbars (shown in
brown color in Figure 3). The CFD geometry model in-
cludes the battery management system, capacitors, relays
and support structures as flow blocking objects. No wire
connections were included in the CFD model because
they only fill a relatively small part of the total battery
volume and their exact locations is may change or even
be unknown in practice.

2) Mesh

The computational mesh (i.e. spatial discretization)
chosen for the model consists of approximately 601000
cells. A mesh sensitivity analysis was carried out, for
meshes up to 5.2 million cells to ensure independence
of the results on mesh resolution.



Fig. 3: The SeBNet Battery System CFD Geometry

3) Casing

The casing walls were assumed to be adiabatic.

4) Fans

The fan blades were modeled by hand as accurately
as possible. To account for modeling errors, the fan speed
in the simulations was calibrated to match the specified
maximum volume flow rate of 126 m3/h in virtual wind
tunnel simulations (see Figure 4 for an example).

Fig. 4: Simulated Air Velocity in a Virtual Wind Tunnel
(Fan Speed 1200 RPM)

5) Front panel

The front panel with TURKU AMK branding (cf.
Figure 2) was modeled as a homogeneous inlet vent
boundary yielding a pressure drop ∆p = kL

1
2ρv

2. The
loss coefficient value kL = 21.5 was obtained from virtual
wind tunnel simulations, similar to the fans described in
Subsection III-B4 above.

6) Battery cells

The internal structure and thermo-electric behavior of
the cells was not modeled in detail. Instead, each battery
is treated as a homogeneous volumetric heat source of
7.2 W. This corresponds to the maximum continuous
discharge conditions with an infinite battery capacity, i.e.
extremal use conditions from the practical point of view.
The battery terminals were not included separately in the
simulation model, as they are covered by the busbars.

7) Materials

The incoming air is treated as dry at 20◦C, the busbars
are made of copper and the LiFePO4 cells’ thermal

properties were obtained from the academic literature
(Mathewson, 2014).

III-C Simulation environment and solver settings

For CFD simulations, we utilized ANSYS Fluent
2019 R3 with the Coupled pressure-velocity scheme and
second-order discretization everywhere except for turbu-
lence, which was specified as the First Order Upwind
scheme. All simulations were carried out on the “Puhti”
supercomputer at CSC – IT Center for Science Ltd,
Finland. Each case was simulated using 40 CPU cores
and 10000 iterations. Such a high iteration count is
necessary for reaching a steady state in the flow field,
as especially convergence of the energy equation solution
turned out to be slow. The simulation time for one case
was approximately 50 minutes.

III-D Baseline model simulation results

Figure 5 displays the simulated velocity magnitude
profile within the battery system on two artificial per-
pendicular planes. Note that there is significant air flow
through the opening above the cells, where there is little
cell area exposed to cooling. Also note that there are
higher and lower velocity regions between the cells,
which causes some cells to be less effectively cooled than
others.

Fig. 5: Flow Velocity Magnitude (Baseline CFD)

Figure 6 displays the simulated temperature profile at
an artificial midsection plane. Clearly there is significant
variation between the cell temperatures. Moreover, the
hottest cells are close to the low air velocity regions (cf.
Figure 5).

III-E Model validation

In order to validate the simulation model by measure-
ments, the SeBNet battery system was first charged from
0% to 100% in 60 minutes at 1C (20A), then left to
settle for 15 minutes, and finally discharged from 100%
to 0% in 20 minutes at 3C (60A). Cell temperatures
were continuously measured, with the temperature probes
placed at the center of the large side on each cell.

Table I displays the simulated maximum cell tem-
peratures (middle column) and the corresponding mea-
sured cell temperatures (right column). The average error



Fig. 6: Temperature (Baseline CFD)

between simulation results and measurements is 6%.
We consider this accuracy reasonably good especially
bearing in mind the differences between the simulation
and measured cases: First of all, the measurements were
not obtained from a steady state situation, but after a
transient cycle. Second, the cells’ internal resistances
were measured, and they ranged from 1.81 mΩ to 2.35
mΩ, which is grossly outside of the manufacturer’s spec-
ification (below 2 mΩ). Finally, a comparison is made
between the simulated maximum cell temperature and
temperature measurement at a specific location.

IV CFD OPTIMIZATION OF THE AIR
COOLING SYSTEM

IV-A Retrofit design optimization

1) Baffle plate placement options

In total 24 possible baffle plate placement locations,
shown in green color in Figure 7, were identified for the
SeBNet model. This set of possible baffle locations is a
compromise between computational simplicity and ability
to guide the flow in complex patterns through the casing.
In the optimum design, some of the 24 zones are walls
and the others are interior zones that are transparent to
flow and heat transfer in CFD simulations.

2) Design of experiments

We used the Franklin-Bailey algorithm (Franklin &
Bailey, 1977) implemented in MATLAB 2019b for con-
structing an FFD of resolution 4. The resulting design-
of-experiments was a binary 256× 24 matrix, for which
the elements of each row determined the subset of the
24 baffles that was to be included as walls in the CFD
simulation. This FFD is a compromise of simulation time
and case comprehension: At resolution 4, the design does
not confound either main effects or two-way interactions
but may confound two-way interactions (and beyond)
with each other.

Fig. 7: Possible Baffle Plate Locations (Green).

3) Effect of baffles 1-24 on cell temperatures

Figure 8 shows the individual effects of the baffle
plates 1 − 24 on the global maximum cell temperature
observed in the CFD simulations in the steady state.
The underlying data is from the 256 CFD simulation
cases of the FFD. The boxplot shows the importance of
the features across a Monte Carlo simulation of 2000
iterations, with the random forest tree count ranging
between 30 − 100 (uniform distribution). Each random
forest model was fitted using bootstrap aggregation in
MATLAB 2019b (Breiman, 2001).

By Figure 8, only baffles 7 and 8 contribute to lower-
ing the cell temperatures. These baffle plates are shown in
Figure 9. For all other baffle plates, the boxplot maxima
in Figure 8 extend above zero, indicating that they may
not help reducing the maximum cell temperatures.

Fig. 8: Effect of Baffle Plates 1−24 on Global Maximum
Cell Temperature

IV-B Optimal design: Results and analysis

1) Optimal design

In Subsection IV-A3, we concluded that only the
baffles 7 and 8 could be expected to reduce the maximum
cell temperature in the battery system. The optimal design



Fig. 9: Baffle Plate 7 (Two Vertical Sections on the
First Row of Cells) and Baffle Plate 8 (Single Section
Extending to the Top of the Second Row of Cells) Shown
in Green

is thus that presented in Figure 9. In the remainder of this
section, we show that it indeed displays a lower simulated
global maximum temperature than in the baseline model.
We also analytically study the fluid mechanics properties
of the CFD simulation results for the optimal case.

2) Optimal design simulation results

Figure 10 displays the velocity magnitude profile
within the battery system on the same two artificial
perpendicular planes as in Figure 5, with baffles 7 and
8 now included as walls. In comparison to the baseline
model (cf. Figure 5), there is no longer air flow through
the compartment above the cells. The modifications yield
higher flow speeds between the cells and potentially better
cooling of the hottest cells of the baseline model.

Fig. 10: Flow velocity magnitude (Optimal CFD)

The simulated maximum cell temperatures for the
optimal design are shown in Table I (left column). In
addition, Figure 11 displays the simulated temperature
profile at the same artificial midsection plane as in Figure
6. In comparison to the baseline model (cf. Figure, 6),
the highest simulated cell temperatures are indeed lower
in the optimal design: The maximum cell temperature is

reduced from 42.5◦C to 41.5◦C. The difference is clearly
not a large one, and, moreover, some cells are hotter in
the optimum design than in the baseline case. However,
the design objective utilised in Subsection IV-A3 was
specifically the reduction of the global maximum cell
temperature, which was thus achieved.

Fig. 11: Temperature (Optimal CFD)

TABLE I: Cell Temperatures in Simulations and Mea-
surements

Cell id Optimal
(CFD)

Baseline
(CFD)

Baseline
(measured)

#1 39.3 39.6 41.8
#2 39.4 40.1 42.1
#3 38.9 39.5 42.4
#4 36.7 37.2 37.9
#5 40.9 42.2 43.5
#6 41.5 42.5 41.9
#7 41.2 41.8 40.8
#8 39.9 40.4 41.6
#9 39.6 40.2 37.8
#10 39.7 40.8 37.5
#11 35.3 35.0 37.7
#12 36.2 36.5 37.2
#13 36.2 35.8 37.6
#14 36.9 36.1 34.8
#15 39.9 36.2 40.3
#16 40.1 38.2 40.5

3) Evaluation

From fundamental thermodynamics, the heat transfer
rate for an air-cooled battery system can be increased by
increasing the rate of cooling air. However, introduction
of baffles in the SeBNet battery system in fact reduces the
total mass flow rate through the front panel, because they
result in an additional pressure loss. This is seen in Figure
8: Most of the modifications yield an increase in the max-
imum cell temperature. Consequently, optimization of the
SeBNet battery system by any baffle plate arrangement is
challenging, which is reflected in the modest improvement
achieved here relative to the baseline model.



V CONCLUSIONS

In the present article, we have investigated a
simulation-based methodology for optimizing air cooling
in an existing battery system by passive components,
such as baffle plates. We utilized CFD for fluid flow
and heat transfer modeling and machine learning for
cause-effect assessment across binary design variables.
We demonstrated use of the methodology for a down-
scaled electric bus charging station battery system. In
this application, a simple combination of baffle plates
resulting in a lower global maximum cell temperature
was systematically extracted out of a vast set of 224

design alternatives. Although the temperature reduction
achieved was relatively small, the results indicate that
the approach considered herein may be beneficial for
retrofit design optimization. In future applications, one
should not only consider introduction of blockages, but
removing existing ones, for improved air circulation and
better cooling efficiency. Moreover, future research on
the methodology outlined in this article should focus on
accounting for both the global maximum cell temperature
and inter-cell temperature variation. The latter was not
considered here.
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