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ABSTRACT 

This contribution presents development and trends of 
simulation software, from the simple structures for 
‘static’ explicit ODE models to modelling of structural 
dynamic systems with DAEs. Simulation emerged in the 
1960’ in order to be able to analyse nonlinear dynamic 
system and to synthesize nonlinear control systems. 
Since that time simulation as problem solving tool has 
been developed towards the third pillar of science (be-
neath theory and experiment), and simultaneously simu-
lation software has been developed further on.  
The paper first follows roots in the CSSL standard for 
simulation languages, from simple ODE modelling 
structures to discrete elements in ODE modelling, using 
the classical state space approach. Next, the extensions 
from explicit state space description to implicit model 
descriptions and their consequences for numerical algo-
rithms and for structure of simulators are discussed, like 
DAE solvers and implicit model translation. Besides 
DAE modelling, state event description and state event 
handling has become a key feature for simulators – 
sketched by a state event classification and options for 
implementation.  
In the following, the last major steps of the development 
are presented: a-causal physical modelling, the new 
Modelica standard for ODE and DAE modelling, state 
chart and structural dynamic systems. Physical model-
ling and Modelica is outlined by examples, and for 
structural dynamic systems a new approach by means of 
internal and external events is presented – together com-
fortable state chart descriptions based on UML-RT. 
The last section reviews state-of-the-art simulators for 
availability of extended and structural features neces-
sary for these last developments: DAE modelling, a-
causal physical modelling, state events, Modelica mod-
elling, state chart modelling, structural decomposition 
for structural dynamic systems, and related features. At 
the end, a table summarises and compares the availabil-
ity of structural approaches and features. 

CSSL STRUCTURE IN CONTINUOUS 
SIMULATION 

Simulation supported various developments in engi-
neering and other areas, and simulation groups and so-
cieties were founded. One main effort of such groups 
was to standardise digital simulation programs and to 
work with a new basis: not any longer simulating the 
analog computer, but a self-standing structure for simu-
lation systems. There were some unsuccessful attempts, 
but in 1968, the CSSL Standard became the milestone 
in the development: it unified the concepts and language 
structures of the available simulation programs, it de-
fined a structure for the model, and it describes minimal 
features for a runtime environment. 
 
The CSSL standard suggests structures and features for 
a model frame and for an experimental frame. This dis-
tinction is based on Zeigler’s concept of a strict separa-
tion of these two frames. Model frame and experimental 
frame are the user interfaces for the heart of the simula-
tion system, for the simulator kernel or simulation en-
gine. A translator maps the model description of the 
model frame into state space notation, which is used by 
the simulation engine solving the system governing 
ODEs. This basic structure of a simulator is illustrated 
in Figure 1; an extended structure with service of dis-
crete elements is given in Figure 3. 
 
In principle, in CSSL’s model frame, a system can be 
described in three different ways, as an interconnection 
of blocks, by mathematical expressions, and by conven-
tional programming constructs as in FORTRAN or C.  
Mathematical basis is for the simulation engine is the 
state space description 
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which is used by the ODE solvers of the simulation en-
gine. Any kind of textual model formulation, of graphi-
cal blocks or structured mathematical description or 
host languages constructs must be transformed to an 
internal state equation of the structure given above, so 
that the vector of derivatives ),,,( ptuxf rrrr

can be calcu-
lated for a certain time instant ),),(),(( pttutxff iiiii

rrrrr
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This vector of derivates is fed into an ODE solver in 
order to calculate a state update  ),.(1 hfxx iii

rrr Φ=+ , h 
stepsize (all controlled by the simulation engine). 
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Essential is CSSL’s concept of SECTIONs or RE-
GIONs, giving a certain structure to the model descrip-
tion. First, CSSL defines a set of operators like INTEG, 
which formulates parts of the state space description for 
the system governing ODEs. Other memory operators 
like DELAY for time delays, TABLE functions for gen-
erating (technical) tables, and transfer functions com-
plete dynamic modelling parts. The dynamic model de-
scription builds up the DYNAMIC or DERIVATIVE 
section of the model description. Mapping the model 
description onto state space description, requires auto-
matic sorting of the equations (blocks) to proper order 
of the calculation – an essential feature of the translator. 
 
Sometimes together with the state space equations we 
also meet parameter equations, parameter dependent 
initial values, and calculations with the terminal values 
(e.g. for cost functions in an optimisation). In principle, 
all this calculations could be done in the dynamic model 
description, but then they are calculated at each evalua-
tion of the derivative vector of the ODE solver – al-
though they have to be calculated only once. 
 
As example, we consider the model description for a 
pendulum. The well-known equations (length l, mass m, 
and damping coefficient d) and initial values, parameter 
and static relations and dependencies are given by 
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A structured model description, e.g. in ACSL (Table 1), 
generates more efficient code: only the DERIVATIVE 
section is translated into the derivative vector function, 
while INITIAL and TERMINAL section are translated 
into functions called evaluated separately only once. 
 

It is task of the translator, to recognise the 
static elements, and to sort them separately 
from the dynamic equations, so that for the 
simulation engine dynamic equations (deriva-
tive), initial and parameter equations (initial), 
and terminal equations (terminal), are pro-
vided in separate modules. 
 
With graphical window systems, graphical 
model descriptions became important. Here 
the roots go back on the one side to analog 
computation using patching diagrams, and 
on the other side to control techniques with 
signal flow diagrams. Consequently, simu-
lation systems offered this kind of model 
description, either as stand-alone model 
frame, or as extension.  
 
 

Table 1: ACSL Structured Textual  
          Model Description 

 
 
PROGRAM math_pendulum 
! --- structured CSSL model -------------------- 
! --- model parameters ------------------------- 
  CONSTANT m=1, l=1, d=0.3 ! kg, m, N*s/m  
CONSTANT g=9.81, pi=3.141592653; dphi0=0 
CONSTANT pintel=2 

INITIAL ! calculation with parameters----------- 
    phi0 = pi/pintel; a = g/l; b = d/m 
END ! of INITIAL ------------------------------- 
  DERIVATIVE ! ODE model -------------------- 
    phi = integ ( dphi,        phi0) 
    dphi = integ (-gdl*sin(phi)-ddm*dphi, dphi0) 
  END ! of DERIVATIVE -------------------------- 
TERMINAL ! calculations with final states ------ 
    phi_grad = phi*180/pi 
END ! of TERMINAL ------------------------------ 
END ! of Program ------------------------------- 
 

 

 
However, in a graphical modelling system one disadvan-
tage appears: the graphical structure consisting of directed 
dynamic signal flow allows almost no structure for dy-
namic calculations and static calculations. Calculation of 
static parameter equations are modelled by dynamic 
blocks – consequently evaluated at each evaluation call of 
the ODE solver. Figure 2 shows the SIMULINK model 
for Pendulum example; where one finds the static calcula-
tion of  d/m as dynamic block in the block-oriented signal 
flow.  
 
From 2000 on, SIMULINK’s graphical model frames 
were enriched by structures - triggered subsystems can 
be used for such purposes (Figure 2, triggered subsys-
tems for static calculation of g/l shown in subwindow). 
 
In general, the experimental frame has to set parame-
ters, it has to control and perform the “simulation” of 
the model, and it should support documentation of the 
results. In the CSSL standard, minimal requirements are 
availability of certain ODE Solvers (Euler, RK4, RK-
Fehlberg, and Gear or BDF algorithms for stiff sys-
tems), change of parameters, and documentation of re-
sults in a plotting system. 

Figure 1: Basic Structure of a Simulation Language  
due to CSSL Standard 



 

 

 
 

Figure 2: Graphical Model Description of  
Pendulum in SIMULINK 

 
From 1980 on all simulation languages tried to meet the 
CSSL standard. But the implementations were and are 
different. First, the structure with sections or regions 
can be given explicitly by definition of these sections, 
semi-implicitly by type declarations of all variables, and 
full implicitly – depending on the translator. For in-
stance, SIMNON defines parameters, states, and deriva-
tives, so that for sorting no explicit model structure is 
necessary; in case of pendulum these definitions are: 

 
    parameter m, l, g, ……. 
    state      phi,  phidot 
    derivative dphi, ddphi 
 

There are many different ways to implement a simula-
tion system. One meets various mixtures of compiled 
and interpreted implementations, as well as on the one 
side strict distinctions of model frame and experimental 
frame, and on the other hand definitions of model frame 
and experimental frame in a common deck for compila-
tion. Clearly, there are advantages and disadvantages in 
all kinds of implementation. Generally holds: the more 
compiled, the faster, but the more inflexible for 
changes, and the more interpreted, the slower, but the 
more flexible for changes.  
 
IMPLICIT MODELS –  
DIFFERENTIAL-ALGEBRAIC EQUATIONS 

For a long time the explicit state space description  
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played the dominant role; additional constraints and 
implicit models had to be transformed ‘manually’. From 
the 1990s on, the simulators started to take care on these 
very natural phenomena of implicit structures. Conse-
quently, they started to deal with implicit state space 
descriptions and constraints, in general with so-called 
DAE models (differential algebraic equations): 
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The so-called extended state vector )(tyr  can be splitted 
into the differential state vectors )(txr  and into the alge-
braic state vector )(tzr : 
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DAE Solvers – DAE Index 

The above given DAEs can be solved by extended ODE 
solvers and by implicit DAE solvers. Three different 
approaches may be used: 
 

i) Nested Approach, using classical ODE solver 
a. given xn , solving first numerically 
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e. g. by modified Newton iteration, and  
b. applying ODE method, evolving 

)),(,(1 nnnnEn txzxx Φ=+ . 
ii) Simultaneous Approach, using an implicit 

DAE solver; 
given xn , solving 0),( 11 =++ nn zxg  and 

0),,,( 111 =Φ +++ nnnnI tzxx simultaneously. 
iii) Symbolic Approach, determining in advance 

the explicit form solving  
)(ˆ)(0),( 1 xgxzzzxg −==⇒=  by symbolic 

computations e.g. within the model translator, 
and using classical ODE solvers. 
  

The Symbolic Approach requires a symbolic inversion 
of the algebraic equations, which in many cases is not 
possible or not adequate; furthermore the model transla-
tor must not only sort equations, it must be able to per-
form symbolic manipulations on the equations.  
 
The Nested Approach – up to now most commonly used 
– requires a numerical inversion of the algebraic equa-
tions: each evaluation of the vector of derivatives 
(called by the ODE solver) has to start an iterative pro-
cedure to solve the algebraic equation. This approach can 
be very expensive and time-consuming due to these inner 
iterations. Here classical ODE solvers can be used. 
 
The Simultaneous Approach requires an implicit ODE 
solver – usually an implicit stiff equation solver. Although 
also working with iterations, these solvers show much 
more efficiency and provide more flexibility for modelling 
(DASSL, IDA-DASSL, and LSODE – solvers). 
 
However, hidden is another problem: the ‘DAE index’ 
problem. Roughly speaking, a DAE model is of index n, 
if n differentiations of the DAE result in an ODE system 
(with an increased state space). The implicit ODE 
solvers for the Simultaneous Approach guarantee con-
vergence only in case of DAE index n = 1. Models with 
higher DAE index must / should be transformed to 
models with DAE index n = 1 . This transformation is 
based on symbolic differentiation and symbolic manipu-
lation of the high index DAE system, and there is no 
unique solution to this index reduction. The perhaps 
most efficient procedure is the so-called Pantelides Al-
gorithm.  



 

 

Unfortunately, in case of mechanical systems modelling 
and in case of process technology modelling indeed 
DAE models with DAE index n = 3 may occur, so that 
index reduction may be necessary. Index reduction is a 
new challenge for the translator of simulators, and still 
point of discussion. 
 
In graphical model descriptions, implicit model struc-
tures are known since long time as algebraic loops: the 
directed graph of signals has one or more signal feed-
back loops without any memory operator (integrator, 
delay, etc). Again, in evaluating the problem of sorting 
occurs, and the model translator cannot build up the 
sequence for calculating the derivative vector. Some 
simulators, e.g. SIMULINK, recognise algebraic loops 
and treat them as implicit models. When a graphical 
model contains an algebraic loop, SIMULINK calls a 
loop solving routine at each time step - SIMULINK 
makes use of the Nested Approach described before. 
This procedure works well in case of models with DAE 
index n = 1, for higher index problems may occur. 
 
In object-oriented simulation systems, like in Dymola, 
physical a-causal modelling plays an important role, 
which results in DAEs with sometimes higher index. 
These systems put emphasis on index reduction (in the 
translator) to DAEs with index n = 1 in order to apply 
implicit ODE solvers (Simultaneous Approach 
 
DISCRETE ELEMENTS IN CONTINUOUS 
SIMULATION 

The CSSL standard also defines segments for discrete 
actions, first mainly used for modelling discrete control. 
So-called DISCRETE regions or sec-
tions manage the communication be-
tween discrete and continuous world 
and compute the discrete model parts.  
 
In graphical model description, dis-
crete controllers and the time delay 
could be modelled by a z-transfer 
block. New versions of e.g. 
SIMULINK and Scicos offer for more 
complex discrete model parts trig-
gered submodels, which can be exe-
cuted only at one time instant, con-
trolled by a logical trigger signal.  
 
For incorporating discrete actions, the 
simulation engine must interrupt the 
ODE solver and handle the event. For 
generality, efficient implementations 
set up and handle event lists, repre-
senting the time instants of discrete 
actions and the calculations associated 
with the action, where in-between 
consecutive discrete actions the ODE 
solver is to be called. 

In order to incorporate DAEs and discrete elements, the 
simulator’s translator must now extract from the model 
description the dynamic differential equations (deriva-
tive), the dynamic algebraic equations (algebraic), and 
the events (event i) with static algebraic equations and 
event time, as given in Figure 3 (extended structure of a 
simulation language due to CSSL standard). In princi-
ple, initial equations, parameter equations and terminal 
equations (initial, terminal) are special cases of events at 
time t = 0 and terminal time. Some simulators make use 
of a modified structure, which puts all discrete actions 
into one event module, where CASE - constructs distin-
guish between the different events. 
 
State Events in Continuous Models 

Much more complicated, but defined in CSSL, are the 
so-called state events. Here, a discrete action takes place 
at a time instant, which is not known in advance, it is 
only known as a function of the states.  
 

As example, we consider the pendulum with constraints 
(Constrained Pendulum). If the pendulum is swinging, 
it may hit a pin positioned at angle  ϕp  with distance lp 
from the point of suspension. In this case, the pendulum 
swings on with the position of the pin as the point of 
rotation. The shortened length is ls = l - lp.  and the an-
gular velocity  ϕ&   is changed at position  ϕp  from   ϕ&   
to   sll /ϕ&   , etc. These discontinuous changes are state 
events, not known in advance.  
 
For such state events, the classical state space descrip-
tion is extended by the so-called state event function 

)),(),(( ptutxh rrr , the zero of which determines the event: 

Figure 3: Extended Structure of a Simulation System due to Extensions of  
the CSSL Standard with Discrete Elements and with DAE Models. 
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In this notation, the model for Constrained Pendulum is 
given by 
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The example involves two different events: change of 
length parameter (SE-P), and change of state (SE-S), 
i.e. angle velocity).  
Generally, state events (SE) can be classified in four 
types:  

Type 1 – parameters change discontinuously (SE-P), 
Type 2 - inputs change discontinuously (SE-I), 
Type 3 - states change discontinuously (SE-S), and 
Type 4 - state vector dimension changes (SE-D), 

           including total change of model equations. 
 
State events type 1 (SE-P) could also be formulated by 
means of IF-THEN-ELSE constructs and by switches in 
graphical model descriptions, without synchronisation 
with the ODE solver. The necessity of a state event for-
mulation depends on the accuracy wanted. Big changes 
in parameters may cause problems for ODE solvers 
with stepsize control. 
State events of type 3 (SE-S) are essential state events. 
They must be located, transformed into a time event, 
and modelled in discrete model parts.  
State events of type 4 (SE-D) are also essential ones. In 
principle, they are associated with hybrid modelling: 
models following each other in consecutive order build 
up a sequence of dynamic processes. And consequently, 
the structure of the model itself is dynamic; these so-
called structural dynamic systems are at present (2008) 
discussion of extensions to Modelica, see next chapters. 
 
State Event Handling 

The handling of a state event requires four steps:  
i. Detection of the event, usually by checking the 

change of the sign of h(x) within the solver 
step over [ti, ti+1]  

ii. Localisation of the event by a proper algorithm 
determining the time t* when the event occurs  
and performing the last solver step over [ti, t*] 

iii. Service of the event: calculating / setting new 
parameters, inputs and states; switching to new 
equations 

iv. Restart of the ODE solver at time t* with 
solver step over [ t*= ti+1, ti+2] 

 
State events are facing simulators with severe problems. 
Up to now, the simulation engine had to call independent 
algorithms, now a root finder for the state event function 
h needs results from the ODE solver, and the ODE solver 
calls the root finder by checking the sign of h.  

For finding the root of the state event function h(x), ei-
ther interpolative algorithms (MATLAB/Simulink) or 
iterative algorithms are used (ACSL, Dymola).  
 
Figure 3 (extended structure of a simulation language 
due to CSSL standard) also shows the necessary exten-
sions for incorporating state events. The simulator’s 
translator must extract from the model description addi-
tionally the state event functions (state event j) with the 
associated event action – only one state event shown in 
the figure). In the simulator kernel, the static event man-
agement must be made dynamically: state events are 
dynamically handled and transformed to time events. In 
principle, the kernel of the simulation engine has be-
come an event handler, managing a complex event list 
with feedbacks. It is to be noted, that different state 
events may influence each other, if they are close in time 
– in worst case, the event finders run in a deadlock. 
Again, modified implementations are found. It makes 
sense to separate the module for state event function 
and the module for the associated event – which may be 
a single module, or which may be put into a common 
time event module. 
 
In case of a structural change of the system equations 
(state event of type 4 – SE-D), simulators usually can 
manage only fixed structures of the state space. The 
technique used is to ‘freeze’ the states that are bound by 
conditions causing the event. In case of a complete 
change of equations, both systems are calculated to-
gether, freezing one according to the event. 
One way around is to make use of the experimental 
frame: the simulation engine only detects and localises 
the event, and updates the system until the event time. 
Then control is given back to the experimental frame. 
The state event is now serviced in the experimental 
frame, using features of the environment. Then a new 
simulation run is restarted (modelling of the structural 
changes in the experimental frame).  
 

Table 2: Constrained Pendulum: Continuous 
Model with State Events (ACSL) 

 
 
PROGRAM constrained pendulum 
CONSTANT m = 1.02, g = 9.81, d =0.2 
CONSTANT lf=1, lp=0.7 
DERIVATIVE dynamics 
  ddphi = -g*sin(phi)/l – d*dphi/m 
  dphi  = integ ( ddphi, dphi0) 
  phi   = integ ( dphi, phi0) 
  SCHEDULE hit   .XN. (phi-phip) 
  SCHEDULE leave .XP. (phi-phip) 
END ! of dynamics 
 
DISCRETE hit 
  l = ls; dphi = dphi*lf/ls 
END ! of hit 
 
DISCRETE leave 
  l = lf; dphi = dphi*ls/lf 
END ! of leave 
 
END ! of constrained pendulum 
 



 

 

The Constrained Pendulum example involves a state 
event of type 1 (SE-P) and type 3 (SE-S). A classical 
ACSL model description works with two discrete sec-
tions hit and leave, representing the two different 
modes, both called from the dynamic equations in the 
derivative section (Table 2). 
 
Dymola defines events and their scheduling implicitly 
by WHEN – or IF - constructs in the dynamic model 
description, in case of the discussed example e.g. by 
 

 

   WHEN phi-phip=0 AND phi>phip  
   THEN l = ls; dphi = dphi*lf/ls 
 

 
In case of more complex event descriptions, the WHEN 
– or IF – clauses are put into an ALGORITHM section 
similar to ACSL’s DISCRETE section. 
 
In graphical model descriptions, we again are faced 
with the problem that calculations at discrete time in-
stants are difficult to formulate. For the detection of the 
event, SIMULINK provides the HIT CROSSING 
block (in new Simulink version implicitly defined). This 
block starts state event detection (interpolation method) 
depending on the input, the state event function, and 
outputs a trigger signal, which may call a triggered sub-
system servicing the event. 
 
Extended Features of Simulators 

Discrete elements with time events and state events and 
DAEs may change the structure of the model. Explicit 
type-4 state events (SE-D) and implicit algebraic condi-
tions in DAEs may change the model essentially or may 
make a need for a different model. In mechanical sys-
tems, these changes are equivalent to a change in the 
degree of mechanical or physical freedom.  
Event description (ED), state event handling (SEH) and 
DAE support (DAE) with or without index reduction 
(IR) became desirable structural features of simulators, 
supported directly or indirectly. Table 3 compares the 
availability of these features in the MATLAB / Simu-
link System, in ACSL and in Dymola. 
 
Table 3: Comparison of Simulators’ Extended Features  

(Event Handling and DAE Modelling) 
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MATLAB no no (yes) (yes) no 
Simulink yes (yes) (yes) (yes) no 
MATLAB / 
Simulink yes yes yes (yes) no 

ACSL yes yes yes yes no 

Dymola yes yes yes yes yes 

In Table 3, the availability of features is indicated by 
‘yes’ and ‘no’; a ‘yes’ in parenthesis ‘(yes)’ means, that 
the feature is complex to use. MS - ‘Model Sorting’, is a 
standard feature of a simulator – but missing in MAT-
LAB (in principle, MATLAB cannot be called a simula-
tor). On the other hand, MATLAB’s ODE solvers offer 
limited features for DAEs (systems with mass matrix) 
and an integration stop on event condition, so that SHE 
and DAE get a (‘yes’). In Simulink, event descriptions 
are possible by means of triggered subsystems, so that 
ED gets a ‘(yes)’ because of complexity. A combination 
of MATLAB and Simulink suggest putting the event 
description and handling at MATLAB level, so that ED 
and SHE get both a ‘yes’. DAE solving is based on 
modified ODE solvers, using the nested approach (see 
before), so DE gets only a ‘(yes)’ for all 
MATLAB/Simulink combinations. 
 

ACSL is a classical simulator with sophisticated state 
event handling, and since version 10 (2001) DAEs can 
be modelled directly by the residuum construct, and 
they are solved by the DASSL algorithm (a well-known 
direct DAE solver, based on the simultaneous ap-
proach), or by modified ODE solvers (nested approach) 
– so ‘yes’ for ED, SHE, and DAE. In case of DAE in-
dex n = 1, the DASSL algorithm guarantees conver-
gence, in case of higher index integration may fail. 
ACSL does not perform index reduction (IR ‘no’). 
 

Dymola is a modern simulator, implemented in C, and 
based on physical modelling. Model description may be 
given by implicit laws, symbolic manipulations extract a 
proper ODE or DAE state space system, with index re-
duction for high index DAE systems – all extended fea-
tures are available. Dymola started a new area in model-
ling and simulation of continuous and hybrid systems. 
 
FROM CSSL TO MODELICA AND VHDL-AMS 

In the 1990s, many attempts have been made to improve 
and to extend the CSSL structure, especially for the task 
of mathematical modelling. The basic problem was the 
state space description, which limited the construction 
of modular and flexible modelling libraries. Two devel-
opments helped to overcome this problem. On model-
ling level, the idea of physical modelling gave new in-
put, and on implementation level, the object-oriented 
view helped to leave the constraints of input/output re-
lations. 
 
In physical modelling, a typical procedure for modelling 
is to cut a system into subsystems and to account for the 
behaviour at the interfaces. Balances of mass, energy 
and momentum and material equations model each sub-
system. The complete model is obtained by combining 
the descriptions of the subsystems and the interfaces. 
This approach requires a modelling paradigm different 
to classical input/output modelling. A model is consid-
ered as a constraint between system variables, which 
leads naturally to DAE descriptions. The approach is very 
convenient for building reusable model libraries. 



 

 

In 1996, the situation was thus similar to the mid 1960s 
when CSSL was defined as a unification of the tech-
niques and ideas of many different simulation programs. 
An international effort was initiated in September 1996 
for bringing together expertise in object-oriented physi-
cal modelling (port based modelling) and defining a 
modern uniform modelling language – mainly driven by 
the developers of Dymola.  
 
The new modelling language is called Modelica. Mode-
lica is intended for modelling within many application 
domains such as electrical circuits, multibody systems, 
drive trains, hydraulics, thermodynamical systems, and 
chemical processes etc. It supports several modelling 
formalisms: ordinary differential equations, differential-
algebraic equations, bond graphs, finite state automata, 
and Petri nets etc. Modelica is intended to serve as a 
standard format so that models arising in different do-
mains can be exchanged between tools and users.  
 
Modelica is a not a simulator, Modelica is a modelling 
language, supporting and generating mathematical mo-
dels in physical domains. When the development of 
Modelica started, also a competitive development, the 
extension of VHDL towards VHDL-AMS was initiated.  
Both modelling languages aimed for general-purpose 
use, but VHDL-AMS mainly addresses circuit design, 
and Modelica covers the broader area of physical mod-
elling; modelling constructs such as Petri nets and finite 
automata could broaden the application area, as soon as 
suitable simulators can read the model definitions.  
Modelica offers a textual and graphical modelling con-
cept, where the connections of physical blocks are bidi-
rectional physical couplings, and not directed flow.  
An example demonstrates how drive trains are mod-
elled. The drive train consists of four inertias and three 
clutches, where the clutches are controlled by input sig-
nals (Figure 4). The graphical model layout corresponds 
with a textual model representation, shown in Table 4 
(abbreviated, simplified). 
 

 
 

Figure 4: Graphical Modelica Model for Coupled Clutches 
 

Table 4: Textual Modelica Model for Coupled Clutches 
 

 
encapsulated model CoupledClutches; "Drive train" 
  parameter SI.Frequency freqHz=0.2; …. 
  Rotational.Inertia J1(J=1,phi(ic=0),w(ic=10)); 
  Rotational.Torque torque; 
  Rotational.Clutch clutch1(peak=1.1, fn_max=20); 
  Rotational.Inertia J3(J=1); …………………………………… 
equation  
  connect(sin1.outPort, torque.inPort); 
  connect(torque.flange_b, J1.flange_a); 
  connect(J1.flange_b, clutch1.flange_a); 
      …………………………………….. 
  connect(step2.outPort, clutch3.inPort); 
end CoupledClutches; 
 

The translator from Modelica into the target simulator 
must not only be able to sort equations, it must be able 
to process the implicit equations symbolically and to 
perform DAE index reduction (or a way around).  
 
Up to now – similar to VHDL-AMS – some simulation 
systems understand Modelica (2008; generic – new 
simulator with Modelica modelling, extension - Mode-
lica modelling interface for existing simulator): 
 

• Dymola from Dynasim (generic),  
• MathModelica from MathCore  

Engineering (generic) 
• SimulationX from ISI (generic/extension) 
• Scilab/Scicos (extension) 
• MapleSim (extension, announced) 
• Open Modelica -  since 2004 the University of 

Lyngby develops an  provides an open Modelica 
simulation environment (generic), 

• Mosilab - Fraunhofer Gesellschaft develops a  
generic Modelica simulator, which supports  
dynamic variable structures (generic) 

• Dymola / Modelica blocks in Simulink  
 
As Modelica also incorporates graphical model ele-
ments, the user may choose between textual modelling, 
graphical modelling, and modelling using elements 
from an application library. Furthermore, graphical and 
textual modelling may be mixed in various kinds. The 
minimal modelling environment is a text editor; a com-
fortable modelling environment offers a graphical mod-
elling editor.  
 
The Constrained Pendulum example can be formulated 
in Modelica textually as a physical law for angular ac-
celeration. The event with parameter change is put into 
an algorithm section, defining and scheduling the 
parameter event SE-P (Table 5). As instead of angular 
velocity, the tangential velocity is used as state variable, 
the second state event SE-S ‘vanishes’.  
 

Table 5: Textual Modelica Model for  
Constrained Pendulum 

 
 
   equation /*pendulum*/ 
     v = length*der(phi); 
     vdot = der(v); 
     mass*vdot/length + mass*g*sin(phi) 
     +damping*v = 0; 
   algorithm 
    if (phi<=phipin) then length:=ls; end if; 
    if (phi>phipin) then length:=l1; end if; 
 

 
Modelica allows combining textual and graphical mod-
elling. For the Constrained Pendulum example, the ba-
sic physical dynamics could be modelled graphically 
with joint and mass elements, and the event of length 
change is described in an algorithm section, with 
variables interfacing to the predefined variables in the 
graphical model part (Figure 5). 



 

 

 

 

algorithm 
if (revolute1.phi 
     <= phipin then 
    revolute1.length:=ls; 
end if;  
if (revolute1.phi 
     < phipin then 
    revolute1.length:=ll; 
end if; 
  

 
Figure 5: Mixed Graphical and Textual Dymola  

Model for Constrained Pendulum 
 
MODELLING WITH STATE CHARTS  

In the end of the 1990s, computer science initiated a 
new development for modelling discontinuous changes. 
The Unified Modelling Language (UML) is one of the 
most important standards for specification and design of 
object oriented systems. This standard was tuned for 
real time applications in the form of a new proposal, 
UML Real-Time (UML-RT). By means of UML-RT, 
objects can hold the dynamic behaviour of an ODE.  
 
In 1999, a simulation research group at the Technical 
University of St. Petersburg used this approach in com-
bination with a hybrid state machine for the develop-
ment of a hybrid simulator (MVS), from 2000 on avail-
able commercially as simulator AnyLogic. The model-
ling language of AnyLogic is an extension of UML-RT; 
the main building block is the Active Object. Active 
objects have internal structure and behaviour, and allow 
encapsulating of other objects to any desired depth. Rela-
tionships between active objects set up the hybrid model. 
 
Active objects interact with their surroundings solely 
through boundary objects: ports for discrete communi-
cation, and variables for continuous communication 
(Figure 6). The activities within an object are usually de-
fined by state charts (extended state machine). While dis-
crete model parts are described by means of state charts, 
events, timers and messages, the continuous model parts 
are described by means of ODEs and DAEs in CSSL-
type notation and with state charts within an object. 
 
An AnyLogic implementation of the well-known Bounc-
ing Ball example shows a simple use of state chart model-
ling (Figure 7). The model equations are defined in the 
active object ball, together with the state chart ball.main. 
This state chart describes the interruption of the state 
flight (without any equations) by the event bounce (SE-P 
and SE-S event) defined by condition and action. 
 

 
Figure 6: Active Objects with Connectors - Discrete  

Messages (Rectangles) and Continuous Signals (Triangles 

 
 

Figure 7: AnyLogic Model for the Bouncing Ball 
 
AnyLogic influenced further developments for hybrid 
and structural dynamic systems, and led to a discussion 
in the Modelica community with respect to a proper 
implementation of state charts in Modelica. The princi-
ple question is, whether state charts are to be seen as 
comfortable way to describe complex WHEN – and IF 
– constructs, being part of the model, or whether state 
charts control different models from a higher level. At 
present (2008) a free Modelica state chart library ‘emu-
lates’ state charts by Boolean variables and IF – THEN 
– ELSE constructs. A further problem is the fact, that 
the state chart notation is not really standardised; Any-
Logic makes use of the Harel state chart type. 
 
An AnyLogic implementation for the Constrained Pen-
dulum may follow the implementation for the bouncing 
ball (Figure 8). An primary active object (Constrained 
Pendulum)‘holds’ the equations for the pendulum, to-
gether with a state chart (main) switching between short 
and long pendulum. The state chart nodes are empty; 
the arcs define the events (Figure 8). Internally, Any-
Logic restarts at each hit the same pendulum model 
(trivial hybrid decomposition). 
 

 
Figure 8: AnyLogic model for Constrained  

Pendulum, Simple Implementation 
 
HYBRID AND STRUCTURAL-DYNAMIC SYSTEMS 

Continuous simulation and discrete simulation have 
different roots, but they are using the same method, the 
analysis in the time domain. During the last decades a 
broad variety of model frames (model descriptions) has 
been developed.  



 

 

In continuous and hybrid simulation, the explicit or im-
plicit state space description is used as common de-
nominator. This state space may be described textually, 
or by signal-oriented graphic blocks (e.g. SIMULINK), 
or by physically based block descriptions (Modelica, 
VHDL-AMS).  
 
In discrete simulation, we meet very different tech-
niques for the model frame. Application-oriented flow 
diagrams, network diagrams, state diagrams, etc. allow 
describing complex behaviour of event-driven dynam-
ics. Usually these descriptions are mapped to an event-
based description. On the other side, the simulator ker-
nel is similar for discrete and continuous simulators. 
The model description is mapped to an event list with 
adequate update functions of the states within state up-
date events. In discrete simulation, the states are usually 
the status variables of servers and queues in the model, 
and state update is simple increase or decrease by in-
crements; complex logic conditions may accompany the 
scheduling of events. In continuous simulation the state 
space is based of various laws used in the application 
area, and usually defined by differential-algebraic equa-
tions. DAE solvers generate a grid for the approximation 
of the solutions. This grid drives an event list with state 
update events using complex formula depending on the 
chosen DAE solver and on the defined DAE. Additional 
time events and state events are inserted into the global 
event list. 
 
Hybrid systems often come together with a change of 
the dimension of the state space, then called structural-
dynamic systems. The dynamic change of the state 
space is caused by a state event of type SE-D. In con-
trary to state events SE-P and SE-S, states and deriva-
tives may change continuously and differentiable in 
case of structural change. In principle, structural-
dynamic systems can be seen from two extreme view-
points. The one says, in a maximal state space, state 
events switch on and off algebraic conditions, which 
freeze certain states for certain periods. The other one 
says that a global discrete state space controls local 
models with fixed state spaces, whereby the local mod-
els may be also discrete or static.  
 

These viewpoints derive two different approaches for 
structural dynamic systems modelling, the  

• maximal state space, and the  
• hybrid decomposition. 

 
Maximal State Space for Structural-Dynamic  
Systems – Internal Events 

Most implementations of physically based model de-
scriptions support a big monolithic model description, 
derived from laws, ODEs, DAEs, state event functions 
and internal events. The state space is maximal and 
static, index reduction in combination with constraints 
keep a consistent state space. For instance, Dymola, 
OpenModelica, and VHDL-AMS follow this approach.  

This approach can be classified with respect to event 
implementation. The approach handles all events of any 
kind (SE-P, SE-S, and SE-D) within the ODE solver 
frame, also events which change the state space dimen-
sion (change of degree of freedoms) – consequently 
called internal events. 
 

 

Using the classical state 
chart notation, internal 
state events I-SE caused by 
the model schedule the 
model itself, with usually 
different re-initialisations 
(depending on the event 
type I-SE-P, I-SES, I-SE-
D; Figure 9). For instance, 
VHDL-AMS and Dymola 
follow this approach, han-
dling also DAE models 
with index higher than 1;  

 
Figure 9: State Chart 
Control for Internal 
Events of one Model 

discrete model parts are only supported at event level. 
ACSL and MATLAB / Simulink generate also a maxi-
mal state space. 
 
Hybrid Decomposition for Structural-Dynamic  
Systems – External Events 

The hybrid decomposition approach makes use of ex-
ternal events (E-SE), which control the sequence and 
the serial coupling of one model or of more models. A 
convenient tool for switching between models is a state 
chart, driven by the external events – which itself are 
generated by the models. Following e.g. the UML-RT 
notation, control for continuous models and for discrete 
actions can by modelled by state charts. Figure 10 
shows the hybrid coupling of two models, which may 
be extended to an arbitrary number of models, with pos-
sible events E-SE-P, E-SE-S, and ESE-D. As special 
case, this technique may be also used for serial condi-
tional ‘execution’ of one model – Figure 11 (only for 
SE-P and SE-S). 
This approach additionally allows not only dynamically 
changing state spaces, but also different model types, 
like ODEs, linear ODEs (to be analysed by linear the-
ory), PDEs, etc. to be processed in serial or also in par-
allel, so that also co-simulation can be formulated based 
on external events.  

 
Figure 11: State Chart 
Control for External 

Events for two Models 

Figure 12: State Chart 
Control for External 
Events for one Model 



 

 

The approach allows handling all events also outside 
the ODE solver frame. After an event, a very new 
model can be started. This procedure may make sense 
especially in case of events of type SE-D and SE-S. As 
consequence, consecutive models of different state 
spaces may be used. 
 
Figure 12 shows a structure for a simulator supporting 
structural dynamic modelling and simulation. The figure 
summarises the outlined ideas by extending the CSSL 
structure by control model, external events and multiple 
models. The main extension is that the translator gener-
ates not only one DAE model; he generates several 
DAE models from the (sub)model descriptions, and 
external events from the connection model, controlling 
the model execution sequence in the highest level of the 
dynamic event list.  

There, all (sub)models may be precompiled, or the new 
recent state space may be determined and translated to a 
DAE system in case of the external event (interpretative 
technique). 
Clearly, not only ODE solver can make use of the 
model descriptions (derivatives), but also eigenvalue 
analysis and steady state calculation may be used and 
other analysis algorithms. Furthermore, complex ex-
periments can be controlled by external events schedul-
ing the same model in a loop. 
 
Mixed Approach with Internal and External Events 

A simulator structure as proposed in Figure 12 is a very 
general one, because it allows as well external as ell as 
internal events, so that hybrid coupling with variable state 
models of any kind with internal and external events is 

possible (Figure 13). 
 

Both approaches have 
advantages and disadvan-
tages. The classical Dy-
mola approach generates 
a fast simulation, because 
of the monolithic pro-
gram. However, the state 
space is static. Further-
more, Modelica centres 
on physical modelling. A 
hybrid approach handles 
separate model parts and 
must control the external 
events.  
 
Consequently, two levels 
of programs have to be 
generated: dynamic mod-
els, and a control program 
– today’s implementations 
are interpretative and not 
compiling, so that simula-
tion times increase - but 
the overall state space is 
indeed dynamic. 
 
A challenge for the future 
lies in the combination of 
both approaches. The 
main ideas are: 
 

• Moderate hybrid 
decomposition 

• External and in-
ternal events 

• Efficient imple-
mentation of 
models and con-
trol 

 
Figure 12: Structure for a Simulation System with External State Events E-SE and  

Classical Internal State Events I-SE for Controlling Different Models 



 

 

 
 

Figure13: State Chart Control for Different Models  
with Internal and External Events 

 
For instance, for parameter state events (SE-P) an im-
plementation with an internal event may be sufficient (I-
SE-P), for an event of SE-S type implementation with 
an external event may be advantageous because of eas-
ier state re-initialisation (E-SE-S), and for a structural 
model change (SE-D) an implementation with an exter-
nal event may be preferred (E-SE-D), because of much 
easier handling of the dynamic state change – and less 
necessity for index reduction. 
 
An efficient control of the sequence of models can be 
made by state charts, but also by a well-defined defini-
tions and distinction of IF - and WHEN - constructs, 
like discussed in extensions of Scilab/Scicos for Mode-
lica models. 
 
STRUCTURAL FEATURES OF SIMULATORS  

While the extended features discussed before address 
the CSSL-standard, structural features characterise fea-
tures for physical modelling and for structural dynamic 
systems. This section investigates the availability or of 
structural features in some simulators, and summarises 
the results in table xx. Furthermore, is should be dis-
cussed, which software structure these simulators use 
(compared to Figure 3 and Figure 12). The extended 
features may be classified as follows: 
 

• Support of a-causal physical modelling  
(sometimes called port-based modelling) at  
textual (PM-T) or graphical level (PM-G), 

• Modelica standard (MOD) for a-causal physical 
modelling , 

• Decomposition of structural dynamic systems  
with dynamic features (SD) – features for  
external events, and 

• Support of state chart modelling or a of a similar  
construct, by means of textual (SC-T) or  
graphical (SC-G) constructs. 

 
In principle, each combination of the above features is 
possible. By means of the maximal state space ap-
proach, each classic simulator can handle structural dy-
namic systems, but a-causal modelling may be sup-
ported or not, and state chart modelling may be avail-
able or not. Simulators with a-causal modelling may 

support hybrid decomposition or not, and state chart 
modelling may be available or not. Simulators with fea-
tures for state chart modelling may support hybrid de-
composition or not, and a-causal modelling may be of-
fered or not. In general, interpreter-oriented simulators 
offer more structural flexibility, but modern software 
structures would allow also flexibility with precompiled 
models or with models compiled ‘on the fly’. 
 
In addition, of interest are also structural features as 
• simulation-driven visualisation (with visualisation 

objects defined with the model objects; VIS), 
• frequency domain analysis and linearization for 

steady state analysis (FA), and 
• extended environment for complex experiments 

and data pre- and postprocessing (ENV). 
 
In the following sections, simulators and simulation 
systems are investigated in order to check the availabil-
ity of these structural features. For some of the simula-
tors, implementation templates with the Constrained 
Pendulum are discussed. 
 
MATLAB / Simulink / Stateflow 

The mainly interpretative systems MATLAB / Simulink 
offer different approaches. First, MATLAB itself allows 
any kind of static and dynamic decomposition (SD 
‘yes’), but MATLAB is not a simulator, because the 
model equations have to be provided in a sorted man-
ner, to be called from an ODE solver (MS ‘no’).  
Second, MATLAB allows hybrid decomposition at 
MATLAB level with Simulink models. There, from 
MATLAB different Simulink models are called condi-
tionally, and in Simulink, a state event is determined by 
the hit-crossing block (terminating the simulation). For 
control, in MATLAB only IF – THEN constructs are 
available. Table 6 – MATLAB control model, and Fig-
ure 15– graphical Simulink model, show a hybrid de-
composition of this type for the Constrained Pendulum. 
MATLAB is a very powerful environment with various 
modules. Simulink is MATLAB’s simulation module 
for block-oriented dynamic models (directed signal 
graphs), which can be combined with Stateflow, 
MATLAB’s module for event-driven state changes de-
scribed by state charts (SC-T and SC-G ‘yes’).  
 

Table 6: MATLAB Control Model for Constrained  
Pendulum with External Events  

Switching between Long and Short Pendulum 
 

 

  if ((phi_p-phi0)*phi_p<0 | 
               (phi0==phi_p & phi_p*v>0)) 
     dphi0=v/ls; 
     sim('pendulum_short',[t(length(t)),10]); 
     v=dphi(length(dphi))*ls; 
  else 
     dphi0=v/l; 
     sim('pendulum_long',[t(length(t)),10]); 
     v=dphi(length(dphi))*l; 
  end 
 



 

 

 
Figure 14: Simulink Model for Constrained Pendulum 
with External Event detected by Hit-Crossing Block 

 
At Simulink level, Stateflow, Simulink’s state chart 
modelling tool, may control different submodels. These 
submodels may be dynamic models based on ODEs 
(DAEs), or static models describing discrete actions 
(events). Consequently, Stateflow can be used for im-
plementation of the Constrained Pendulum, where the 
state charts control length and change of velocities in 
case of hit by triggering the static changes (Figure 15). 
This implementation makes use of notations from ana-
log circuits: the integrator, the 1/s – block, has not only 
continuous signal inputs, but also an reset control input 
and a static IC input, which toggle the velocity at hit. A 
solely Simulink implementation would make use of a 
triggered submodels describing the events by AND – 
and OR – blocks, or by a MATLAB function. 
Alternatively, for Constrained Pendulum Stateflow could 
control two different submodels representing long and 
short pendulum enabled and disabled by the state chart 
control. Internally Simulink generates a state space with 
‘double’ dimension, because Simulink can only work 
with a maximal state space and does not allow hybrid 
decomposition (SD ‘no). As advantage, this implementa-
tion would not need the old-fashioned integrator control. 
 

 
 

Figure15: Simulink Model for Constrained Pendulum 
with External Event detected by Hit-Crossing  

Block and controlled by Stateflow 

Neither MATLAB nor Simulink support a-causal mod-
elling. New MATLAB modules for physical modelling 
(e.g. Hydraulic Blockset) are precompiled to a classical 
state space (PM-T and PM-G ‘no’), and furthermore 
Modelica modelling is not supported (MOD ‘no’) – 
Mathworks developers are working hard on some kind 
of real physical modelling and on Modelica modelling. 
For DAEs, MATLAB and Simulink offer modified 
LSODE solvers (implicit solvers) for the nested DAE 
solving approach. In MATLAB any kind of simulation 
– driven visualisation can be programmed and used in 
MATLAB or Simulink or in both, but not based on the 
model definition blocks (VIS ‘(yes)’). From the begin-
ning on, MATLAB and Simulink offered frequency 
analysis (FA ‘yes’), and clearly, MATLAB is a very 
powerful environment for Simulink, Stateflow, for all 
other Toolboxes, and for MATLAB itself (ENV ‘yes’). 
 
ACSL 

ACSL – Advanced Continuous Simulation Language – 
has been developed since more than 25 years. ACSL 
was strongly influenced by the CSSL standard. ACSL’ 
software structure is a direct mapping of the structure in 
Figure 3. Implementations of the Constrained Pendu-
lum have been shown in the previous sections, as exam-
ple for modelling due to CSSL standard. 
 
ACSL’ development as simulator seems to have ended, 
as the new developers (Aegis Technologies) concentrate 
on application-oriented simulation solutions, with mod-
els are tailor-made for the specific application. Last ex-
tensions were a change to C as basic language (instead 
of FORTRAN), and DAE features using the nested ap-
proach with classical solvers, or direct implicit DAE 
solving with DASSL Code (DAE ‘yes’, IR ‘no’). From 
the beginning on, steady state calculation, linearization 
and frequency analysis was a standard feature of 
ACSL’s simulator kernel (FA ‘yes’).  
Since 2000, the environment has been enriched by mod-
ules for modelling and environment modules. The first 
module was a graphical modeller. Figure 16 shows a 
graphical friction model (‘block on a rough surface’) in 
ACSL’s graphic modeller, which seems to make use of 
physical modelling, but in behind classical state spaces 
as with Simulink’s blocksets for physical modelling is 
used – PM-T and PM-G ‘no’). Furthermore, a simula-
tion-driven visualisation system (third party) is offered 
(but hard to use) – VIS ‘(yes)’. 
 

 
 

Figure 16: ACSL Graphic Model for Friction System 



 

 

A very interesting module is an extended environment 
called ACSLMath. ACSLMath was intended to have 
same features as MATLAB; available is only a subset, 
but powerful enough for an extended environment 
(ENV ‘yes’), which can be used for hybrid decomposi-
tion of a structural dynamic model in almost the same 
way than MATLAB does (SD ‘yes’). Unfortunately the 
development of ACSLMath has been stopped. In gen-
eral, there is no intention to make a-causal physical 
modelling available, also Modelica is not found in the 
developers’ plans (PM-T, PM-G, and MOD ‘no’). 
 
Dymola 

Dymola has partly been discussed in a section before, 
together with an implementation for the Constrained Pen-
dulum example (Dymola standard implementation, Fig-
ure 5, Table 5). Dymola, introduced by F. E. Cellier as a-
causal modelling language, and developed to a simulator 
by H. Elmquist, can be called the mother of Modelica. 
 
Dymola is based on a-causal physical modelling and ini-
tiated Modelica; consequently, it fully supports Modelica 
these structural features (PM-T, PM-G, and MOD ‘yes’). 
Together with the model objects, also graphical objects 
may be defined, so that simulation based pseudo-3D visu-
alisation is available (VIS ‘yes’). A key feature of Dy-
mola is the very sophisticated index reduction by the 
modified Pantelides algorithm, so Dymola handles any 
DAE system, also with higher index, with bravura (DAE 
and IR ‘yes’). For DAE solving, modified DASSL algo-
rithms are used. In software structure, Dymola is similar 
to ACSL, using an extended CSSL structure as given in 
Figure 3 – with the modification that all discrete actions 
are put into one event module, where CASE - constructs 
distinguish between the different events (this structure is 
based on the first simulator engine Dymola used, the DS-
Block System of DLR Oberpfaffenhofen). 
 
Dymola comes with a graphical modelling and basic 
simulation environment, and provides a simple script 
language as extended environment; new releases offer 
also optimisation, as built-in function of the simulator. 
Furthermore, based on Modelica’s matrix functions 
some task of an environment can be performed – so 
ENV (‘yes’) – available, but complex/uncomfortable.  
 
Dymola offers also a Modelica – compatible state chart 
library, which allows to model complex conditions (in-
ternally translated into IF – THEN – ELSE or WHEN 
constructs - SC-T and SC-G ‘(yes)’). Figure 17 shows 
an implementation of the Constrained Pendulum using 
this library. 
Up to now (2008) the Modelica definition says nothing 
about structural dynamic systems, and Dymola builds 
up a maximal state space. And up to now, Modelica 
does not directly define state charts, and in Dymola a 
state chart library in basic Modelica notation is avail-
able, but working only with internal events within the 
maximal state space (SD ‘no’).  

 
 

Figure17: Graphical Dymola Model for Constrained 
Pendulum with Internal Events Managed by  
Elements of Dymola’s State Chart Library 

 
For Modelica extension, a working group on hybrid 
systems has been implemented, in order to discuss and 
standardise hybrid constructs like state charts, and hy-
brid decompositions (independent submodels). 
 
Another interesting and remarkable development started 
in 2006 – Modelica’s basic static calculation features be-
come notable. These basic features include any kind of 
vector and matrix operations, and they can be extended 
by Modelica’s generic extension mechanism. In principle, 
‘static’ Modelica defines a MATLAB-like language. 
Simulators being capable of understanding Modelica, 
must consequently also support these static calculations 
(without any DAE around) – so that each Modelica simu-
lator becomes a ‘Mini-MATLAB’. In Dymola, such cal-
culations may be performed in a textual Dymola consist-
ing only of an algorithmic section, without any time ad-
vance from the simulator kernel. 
 
MathModelica 

MathModelica, developed by MathCoreAB, was the 
second simulation system, which understood Modelica 
modelling. MathModelica is an integrated interactive 
development, from modelling via simulation to analysis 
and code integration. As furthermore the MathModelica 
translator is very similar to Dymola’s model translator, 
clearly all related features are available, including index 
reduction and use of implicit solvers like DASSL (all 
DAE, IR, PM-T, PM-G and MOD ‘yes’). 
 
Figure 18 shows a drive train model set up with Math-
Modelica’s Mechanics Package (Modelica modelling) – 
due to the Modelica standard this model looks almost 
exactly like the model in Dymola, SimulationX, etc. 
 

Figure 18: MathModelica Model for a Drive Train 



 

 

MathModelica follows a software model different to 
CSSL standard. The user interface consists of a graphical 
model editor and notebooks. There, a simulation center 
controls and documents experiments in the time domain. 
Documentation, mathematical type setting, and symbolic 
formula manipulation are provided via Mathematica, as 
well as Mathematica acts as extended environment for 
MathModelica (ENV ‘yes’) – performing any kind of 
analysis and visualisation (FA and VIS ‘yes’). By means 
of the Mathematica environment, also a hybrid decompo-
sition of structural dynamic systems is possible, with the 
same technique like in MATLAB (SD – ‘yes’).  
 
Mosilab 
Since 2004, Fraunhofer Gesellschaft Dresden develops a 
generic simulator Mosilab, which also initiates an exten-
sion to Modelica: multiple models controlled by state 
automata, coupled in serial and in parallel. Furthermore, 
Mosilab puts emphasis on co-simulation and simulator 
coupling, whereby for interfacing the same constructs are 
used than for hybrid decomposition. Mosilab is a generic 
Modelica simulator, so all basic features are met (ED, 
SEH, DAE, PM-T, and PM-G ‘yes’, and MOD ‘(yes)’ – 
because of subset implementation at present, 2008). For 
DAE solving, variants of  IDA-DASSL solver are used. 
 
Mosilab implements extended state chart modelling, 
which may be translated directly due to Modelica stan-
dard into equivalent IF – THEN constructs, or which can 
control different models and model executions (SC-T, 
SC-G, and SD ‘yes’). At state chart level, state events of 
type SE-D control the switching between different mod-
els and service the events (E-SE-D). State events affect-
ing a state variable (SE-S type) can be modelled at this 
external level (E-SE-S type), or also as classic internal 
event (I-SE-S). Mosilab translates each model separately, 
and generates a main simulation program out of state 
charts, controlling the call of the precompiled models and 
passing data between the models, so that the software 
model of Mosilab follows the structure in Figure 12. The 
textual and graphical constructs for the state charts are 
modifications of state chart modelling in AnyLogic. 
Mosilab is in developing, so it supports only a subset of 
Modelica, and index reduction has not been implemented 
yet, so that MOD gets a ‘(yes)’ in parenthesis, and IR gets 
a  ‘(no)’ – indicating that the feature is not available at 
present (2008), but is scheduled for the future. Index re-
duction at present not available in Mosilab, but planned  
(IR ‘(no)’) - has become topic of discussion: case studies 
show, that hybrid decomposition of structural dynamic 
systems results mainly in DAE systems of index n = 1, so 
that index reduction may be bypassed (except models 
with contact problems). 
 
Mosilab allows very different approaches for modelling 
and simulation tasks, to be discussed with the Con-
strained Pendulum example. Three different modelling 
approaches reflect the distinction between internal and 
external events as discussed before. 

Mosilab Standard Modelica Model. In a standard Mode-
lica approach, the Constrained Pendulum is defined in the 
MOSILAB equation layer as implicit law; the state event, 
which appears every time when the rope of the pendulum 
hits or ‘leaves’ the pin, is modelled in an algorithm 
section with if (or when) – conditions (Table 7). 
 

Table 7: Mosilab Model for Constrained  
Pendulum – Standard Modelica Approach  

with Internal Events (I-SE-P) 
 

 
 equation /*pendulum*/ 
  v = l1*der(phi); vdot = der(v); 
  mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0; 
 algorithm 
  if (phi<=phipin) then length:=ls; end if; 
  if (phi>phipin) then length:=l1; end if; 
 end 
 

 
Mosilab I-SE-P Model with State Charts. MOSILAB’s 
state chart approach models discrete elements by state 
charts, which may be used instead of IF - or WHEN - 
clauses, with much higher flexibility and readability in 
case of complex conditions. There, Boolean variables 
define the status of the system and are managed by the 
state chart. Table 8 shows a Mosilab implementation of 
the Constrained Pendulum: the state charts initialise the 
system (initial state) and manage switching between 
long and short pendulum, by changing the length ap-
propriately. 
 

Table 8: Mosilab Model for Constrained Pendulum – 
State Chart Model with Internal Events (I-SE-P) 

 
 

event Boolean lengthen(start=false), 
 shorten(start = false); 
equation 
lengthen=(phi>phipin); shorten=(phi<=phipin); 
equation /*pendulum*/ 
 v = l1*der(phi); vdot = der(v); 
 mass*vdot/l1 + mass*g*sin(phi)+damping*v= 0; 
statechart 
 state LengthSwitch extends State; 
 State Short,Long,Initial(isInitial=true); 
transition Initial -> Long end transition; 
transition Long -> Short event shorten action 
 length := ls; 
end transition; 
transition Short -> Long event lengthen action 
 length := l1; 
end transition; end LengthSwitch; 
 

 
From the modelling point of view, this description is 
equivalent to the aforementioned description with IF - 
clauses. The Mosilab translator clearly generates there 
an implementation with different internal equations.  
 
Mosilab E-SE-P Model. Mosilab’s state chart construct 
is not only a good alternative to IF - or WHEN - clauses 
within one model, it offers also the possibility to switch 
between structural different models. This very powerful 
feature allows any kind of hybrid composition of mod-
els with different state spaces and of different type 
(from ODEs to PDEs, etc.). Table 9 shows a Mosilab 
implementation of the Constrained Pendulum making 
use of two different pendulum models, controlled exter-
nally by a state chart. Clearly, in case of this simple 
model, different models would not be necessary. 



 

 

Here, the system is decomposed into two different mod-
els, Short pendulum model, and Long pendulum 
model, controlled by a state chart. The model descrip-
tion (Table 9) defines now first the two pendulum mod-
els, and then the event as before. The state chart creates 
first instances of both pendulum models during the ini-
tial state (new). The transitions organise the switching 
between the pendulums (remove, add). The connect 
statements are used for mapping local to global state. 
 

Table 9: Mosilab Model for Constrained Pendulum – 
State Chart Switching between Different Pendulums 

Models by External Events (E-SE-P) 
 

 

model Long 
equation 
 mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0; 
end Long; 
 

model Short 
equation 
 mass*vdot/ls + mass*g*sin(phi)+damping*v = 0; 
end Short; 
 

event discrete Boolean lengthen(start=true), 
 shorten(start = false); 
equation 
 lengthen = 
 (phi>phipin);shorten=(phi<=phipin); 
 

statechart 
state ChangePendulum extends State; 
 State Short,Long,startState(isInitial=true); 
 

transition startState -> Long action 
 L:=new Long(); K:=new Short(); add(L); 
end transition; 
 

transition Long->Short event shorten action 
 disconnect ….; remove(L); add(K); connect … 
end transition; 
 

transition Short -> Long event lengthen 
 action 
 disconnect …;  
 remove(K); add(L);  
 connect …… 
end transition; end ChangePendulum; 
 

 
Mosilab offers also strong support for simulator cou-
pling (e.g. MATLAB) and time-synchronised coupling 
of external programs. This feature may be used for any 
kind of visualisation not based the model definition 
(VIS ‘(yes)’).  
 
External events driven by external states charts open pos-
sibilities, which were not planned at begin of Mosilab 
development, but which became obvious during devel-
opment. It turned out, that complex experiments can be 
defined and performed by means of external state charts - 
as well as a simple parameter loop, which makes use of 
the same model in each state change (change of parameter 
value). Furthermore, at level of the ‘main’ model, any 
kind of static calculations due to Modelica standard 
should be possible. There, Mosilab mixes model frame 
and experimental frame and sets up a common extended 
environment (ENV ‘yes’), where also frequency analysis 
can be implemented (FA ‘(no)’). 
 
Open Modelica 
The goal of the Open Modelica project is to create a 
complete Modelica modelling, compilation and simula-
tion environment based on free software distributed in 
binary and source code form.  

 
 

Figure 19: Software Modules of Open Modelica. 
 
The whole OpenModelica environment consists of open 
software (Figure 19): OMC – the Open Modelica Com-
piler translates Modelica models (with index reduction); 
OMShell as interactive session handler is a minimal ex-
periment frame; Modelica models may be set up by a 
simple text editor or by a graphical model editor (here, 
for teaching purposes the model editor of MathMode-
lica is allowed to be used!); the purpose of OMNote-
book is to provide an advanced Modelica environment 
and teaching tool; the DrModelica notebook provides 
all the examples from P.  Fritzson's book on Modelica; 
the other modules support environment interfacing and 
Open Modelica development. 
 

Open Modelica is a generic Modelica simulator, so all 
basic features are met (ED, SEH, DAE, PM-T, PM-G, IR 
and MOD ‘yes’; for DAE solving, variants of DASSL 
solver are used). P. Fritzson, the initiator of Open Mode-
lica puts emphasis on discrete events and hybrid model-
ling, so documentation comes with clear advice for use of 
IF – and WHEN – clauses in Modelica, and with state 
chart modules in DrModelica – so SC-T gets ‘yes’. Fig-
ure 20 shows the equivalence of a state chart and the cor-
rect definition as Modelica submodel. For graphical state 
chart modelling the experimental Modelica state chart 
library can be used – so SC-G ‘(yes)’.  
The notebook features allow interfaces and extensions of 
any kind, e.g. for data visualisation and frequency analysis 
– FA and VIS ‘(yes)’; they allow also for controlled ex-
ecutive of different models, so that hybrid decomposition 
of structural dynamic systems is possible – SD ‘(yes)’. 
 

 
 

partial model SimpleBacklash 
Boolean backward, slack, forward;  
parameter …… 
equation 
phi_dev = phi_rel - phi_rel0; 
 backward = phi_rel < -b/2;  
 forward = phi_rel > b/2;  
 slack = not (backward or forward);  
 tau = if forward then  
             c*(phi_dev – b/2)  
       else (if backward then  
                c*(phi_dev + b/2)  
             else 0);  
end SimpleBacklash 

  

 

Figure 20: OpenModelica State Chart Modelling 



 

 

SimulationX 

SimulationX is a new Modelica simulator developed by 
ITI simulation, Dresden. This almost generic Modelica 
simulator is based on ITI’s simulation system ITI-SIM, 
where the generic IT-SIM modelling frame has been re-
placed by Modelica modelling. From the very beginning 
on, ITI-SIM concentrated on physical modelling, with a 
theoretical background from power graphs and bond 
graphs. Figure 21 shows graphical physical modelling in 
ITI-SIM – very similar to Modelica graphical modelling. 
The simulation engine from ITI-SIM drives also Simula-
tionX, using a sophisticated implicit integration scheme, 
with state event handling. Consequently, all features f 
related to physical modelling are available: (ED, SEH, 
DAE, PM-T, PM-G, and MOD ‘yes’; index reduction is 
not really implemented – IR ‘(no)’.  
State chart constructs are not directly supported (SC-T 
‘no’), but due to Modelica compatibility the Modelica 
state chart library can be used (SC-G – ‘(yes)’. Simula-
tionX (and ITI-SIM) put emphasis on physical applica-
tion – oriented modelling and simulation, so frequency 
analysis is directly supported in the simulation  environ-
ment (FA – ‘yes’), which offers via additional modules 
(e.g. interfaces to multibody systems) connectivity to ex-
ternal systems (ENV – ‘(yes)’). The simulation engine 
drives also pseudo-3D visualisation (VIS – ‘yes’). 
 

 
Figure 21: Physical Modelling in ITI-SIM / SimulationX 
 
AnyLogic 

AnyLogic – already discussed in a previous section) is 
based on hybrid automata (SC-T and SC-G - ‘yes’). 
Consequently, hybrid decomposition and control by 
external events is possible (ED, SD ‘yes’). AnyLogic 
can deal partly with implicit systems (only nested ap-
proach, DAE ‘(yes)’), but does not support a-causal 
modelling (PM-T, PM-G - ‘no’) and does not support 
Modelica (MOD - ‘no’). Furthermore, new versions of 
AnyLogic concentrate more on discrete modelling and 
modelling with System Dynamics, whereby state event 
detection has been sorted out (SEH ‘(no)’. On the other 
hand, AnyLogic offers many other modelling para-
digms, as System Dynamics, Agent-based Simulation, 
DEVS modelling and simulation. AnyLogic is Java-
based and provides simulation-driven visualisation and 
animation of model objects (VIS ‘yes’) and can also 
generate Java web applets.  
 
In AnyLogic, various implementations for the Con-
strained Pendulum are possible. A classical implementa-
tion is given in Figure 8, following classical textual ODE 
modelling, whereby instead of IF – THEN clauses a state 
chart is used for switching (I-SE-P, I-SE-S). 

  
 

Equations Constrained Pendulum 
parameter … 
end Constrained pendulum 
Equations Short 
d(alpha)/dt = omega 
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ls 
Change eventLong; 
(alpha>=alphaN)||(alpha<=alphaN) 
Action; omega=omega*ls/ll; stop 
end Short 
Equations Long 
d(alpha)/dt = omega 
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ll 
Change eventShort 
(alpha>=alphaN)||(alpha<=alphaN) 
Action; omega=omega*ll/ls; stop 
end Long 
  

 

Figure 21: AnyLogic Model for Constrained  
Pendulum, Hybrid Model Decomposition with  

two Pendulum Models and External Events 
 
AnyLogic E-SE-P Model with State Charts. A hybrid de-
composed model may make use of two different models, 
each defined in substate / submodel Short and Long. – 
both part of a state chart switching between these sub-
models. The events defined at the arcs stop the actual 
model, set new initial conditions and start the alternative 
model (Figure 21). 
 

AnyLogic E-SE-P Model with Parallel Models.  Any-
Logic works interpretatively, after each external event 
state equations are tracked and sorted anew for the new 
state space. This makes it possible, to decompose model 
not only in serial, but also in parallel. In Constrained 
Pendulum example, the ODE for the angle, which is not 
effected by the events, may be put in the main model, 
together with transformation to Cartesian coordinates 
(Figure 22), which seems to run in parallel with differ-
ent velocity equations. 

 

  
 

Equations Constrained Pendulum 
d(alpha)/dt = omega 
x = l*sin(alpha); y = l*cos(alpha) 
end Constrained pendulum 
Equations Short 
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ls 
Change eventLong 
(alpha>=alphaN)||(alpha<=alphaN) 
Action; omega=omega*ls/ll; stop 
end Short 
Equations Long 
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ll 
Change eventShort 
(alpha>=alphaN)||(alpha<=alphaN) 
Action; omega=omega*ll/ls; stop 
end Long 
  

 

Figure 22 AnyLogic Model for Constrained Pendulum, 
Hybrid Model Decomposition with Two Models for 

Angular Velocity and Overall Model for Angle 



 

 

From software engineering view, AnyLogic is a pro-
gramming environment for Java, with special features 
for ODE simulation. At each level Java code can be 
entered, and Java modules linked and called. The main 
module may be arbitrarily extended by Java code, stat-
ing not only the (predefined) simulation engine, but also 
frequency analysis packages, etc., with programming 
effort – so ENV ‘(yes)’  
 
Model Vision Studium MVS 

Model Vision Studium (MVS) – is an integrated graphical 
environment for modelling and simulation of complex 
dynamical systems. Development of MVS started in the 
1990ies at Technical University of St. Petersburg; for end 
of 2008, an English version is announced. 
Basis of MVS are hybrid state charts (SC-T, SC-G - 
‘yes’), allowing any parallel, serial, and conditional com-
bination of continuous models, described by DAEs, and 
controlled and interrupted by state events (ED, SHE - 
‘yes’). State models itself are objects to be instantiated in 
various kinds, so that structural dynamic systems of any 
kind can be modelled (SD - ‘yes’). Textual physical and 
DAE modelling is supported by an editor capable of edit-
ing mathematical formula (DAE and PM-T ‘yes’, PM-G 
no), but no Modelica compatibility (MOD – ‘no’).  
For MVS, a subset of UML Real Time was chosen and 
extended to state chart activities (Java – based). Other 
modules (simulation kernel, environment) are linked 
modules (e.g. C-modules), e.g. Java-base simulation 
driven visualisation (VIS - ‘yes’). In principle, MVS and 
AnyLogic have been developed in parallel. The continu-
ous elements in AnyLogic have been taken from MVS, 
because AnyLogic started as pure discrete simulator. 
 
State charts are similar to AnyLogic, consisting of differ-
ent implicit state space descriptions – and also defining 
complex experiments (calling different models; ENV – 
‘yes), but without frequency analysis (FA – ‘no’). 
 
As example, two states pendulum and flight, and a state 
chart handling the external event of type E-SE-D (Fig-
ure 23) describe a breaking pendulum. 
 

 
 

Figure 23: MVS Model for Breaking Pendulum  
- Hybrid Model Decomposition into Pendulum  

and Flight Model 

SCILAB / SCICOS 

Scilab is a scientific software package for numerical 
computations with a powerful open computing envi-
ronment for engineering and scientific applications. 
Scilab is open source software. Scilab is now the re-
sponsibility of the Scilab Consortium, launched in May 
2003. Scicos is a graphical dynamical system modeller 
and simulator toolbox included in Scilab. 
Scilab / Scicos is an open source alternative to MAT-
LAB /  Simulink, developed in France. Consequently, 
Scilab as MATLAB – like tool has nearly the same fea-
tures than MATLAB: no equation sorting– MS – ‘no’!; 
DE, IR, PM-T, PM-G, MOD, SC-T, and SC-G – ‘no’; 
SEH, DAE, and VIS – ‘(yes)’, remarkably – SD, FA 
and ENV – ‘yes’. Similarly, Scicos has extended fea-
tures ED, SEH, and DAE – ‘yes’. 
 
The developers of Scicos started early with a kind of 
physical modelling – Figure 24 shows an electrical 
modelling palette of Scicos (PM-T, PM-G – yes). They 
are working on extensions in two directions: 
• extending the model description by full Modelica 

models (textually and graphically) –  
- so MOD and IR ‘(yes)’ (subset) 

• refining the IF-THEN-ELSE – and WHEN – clause 
introducing different classes of associated events, 
resulting ‘state chart clauses’ - so SC-T – ‘yes’ 

 
In Scicos, the Modelica state chart library allows graphical 
state chart modelling. Standalone Scicos has no features 
for frequency analysis, structural decomposition and ex-
tended environment (FA, SD, ENV – ‘no’), but limited 
visualisatisation (VIS – ‘(yes)’); Scicos controlled by 
Scilab has all these features (VIS, FA, SD, ENV – ‘yes’). 
 

 
 

Figure 24: Scicos Physical Modelling Palette for  
Electrical Applications 

 
Maple 

Maple – developed by Maplesoft, Canada, is working 
on a toolbox MapleSim, which will understand Mode-
lica models (PM-T, PM-G, and MOD – ‘yes’). Maple 
acts as environment and provides sophisticated DAE 
solvers, as well as symbolic algorithms for index reduc-
tion (DAE, IR, ENV, VIS, FA – ‘yes’).  
In development are constructs for events and event han-
dling (ED – ‘yes)’, SEH – ‘(no)’); textual state chart 
modelling has not been discussed yet, graphical state 
chat notation may com from the experimental Modelica 
state chart library (SC-T – ‘no’, SC-G – ‘(yes)’). 
 



 

 

Availability of Structural Features 

Table 10 provides an availability comparison of the dis-
cussed features within the presented simulators. Clearly 
such comparison must be incomplete, and using simple 
‘yes’ and ‘no’ might be too simple. Consequently, it 
should be a hint for further detailed feature comparison. 
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MATLAB no no (yes) (yes) no no no (yes) no no no yes yes yes 
Simulink yes (yes) (yes) (yes) no no (no) (yes) no no no no yes (yes) 
MATLAB / 
Simulink yes yes yes (yes) no no (no) (yes) no no no yes yes yes 

Simulink / 
Stateflow yes yes yes (yes) no no (no) (yes) no (yes) yes no yes (yes) 

ACSL yes yes yes yes no no (no) (yes) no no no no yes yes 
Dymola yes yes yes yes yes yes yes yes yes (yes) (yes) no (no) (yes) 
MathModelica yes yes yes yes yes yes yes (yes) yes (no) (yes) no (no) (no) 
MathModelica 
/ Mathematica yes yes yes yes yes yes yes yes yes (no) (yes) yes yes yes 

Mosilab yes yes yes yes (no) yes yes (no) (yes) yes yes yes no (yes) 
Open Modelica yes yes yes yes yes yes (no) (no) yes (no) (yes) no no no 
SimulationX yes yes yes yes yes yes yes yes yes (no) (yes) no yes (yes) 
AnyLogic yes yes (yes) (yes) no no no yes no yes yes yes no no 
Model Vision yes yes yes yes yes yes no yes no yes yes yes yes no 
Scilab no no (yes) (yes) no no no (yes) no no no yes yes yes 
Scicos yes (yes) yes yes (yes) yes yes (yes) (yes) yes (yes) no no no 
Scilab/ Scicos yes yes yes yes (yes) yes yes (yes) (yes) yes (yes) yes yes yes 
(MapleSim) yes (yes) (yes) yes yes yes yes yes yes no no (yes) (yes) yes 

 

Table 10: Availability of Structural Features in Simulators - DAEs, State Events, Modelica Notation,  
Structural Decomposition, and Related Features 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




