

DEVELOPMENT OF SIMULATION SOFTWARE - FROM SIMPLE
ODE MODELLING TO STRUCTURAL DYNAMIC SYSTEMS

Felix Breitenecker

Institute for Analysis and Scientific Computing, Dept. Mathematical Modelling and Simulation
Vienna University of Technology

1040 Vienna, Austria
E-mail: Felix.Breitenecker@tuwien.ac.at

KEYWORDS
Simulation software, simulation systems,
object-oriented simulation, CSSL standard,
Modelica standard, state space approach,
dynamic structures, UML, physical modelling,
structural dynamic systems

ABSTRACT

This contribution presents development and trends of
simulation software, from the simple structures for
‘static’ explicit ODE models to modelling of structural
dynamic systems with DAEs. Simulation emerged in the
1960’ in order to be able to analyse nonlinear dynamic
system and to synthesize nonlinear control systems.
Since that time simulation as problem solving tool has
been developed towards the third pillar of science (be-
neath theory and experiment), and simultaneously simu-
lation software has been developed further on.
The paper first follows roots in the CSSL standard for
simulation languages, from simple ODE modelling
structures to discrete elements in ODE modelling, using
the classical state space approach. Next, the extensions
from explicit state space description to implicit model
descriptions and their consequences for numerical algo-
rithms and for structure of simulators are discussed, like
DAE solvers and implicit model translation. Besides
DAE modelling, state event description and state event
handling has become a key feature for simulators –
sketched by a state event classification and options for
implementation.
In the following, the last major steps of the development
are presented: a-causal physical modelling, the new
Modelica standard for ODE and DAE modelling, state
chart and structural dynamic systems. Physical model-
ling and Modelica is outlined by examples, and for
structural dynamic systems a new approach by means of
internal and external events is presented – together com-
fortable state chart descriptions based on UML-RT.
The last section reviews state-of-the-art simulators for
availability of extended and structural features neces-
sary for these last developments: DAE modelling, a-
causal physical modelling, state events, Modelica mod-
elling, state chart modelling, structural decomposition
for structural dynamic systems, and related features. At
the end, a table summarises and compares the availabil-
ity of structural approaches and features.

CSSL STRUCTURE IN CONTINUOUS
SIMULATION

Simulation supported various developments in engi-
neering and other areas, and simulation groups and so-
cieties were founded. One main effort of such groups
was to standardise digital simulation programs and to
work with a new basis: not any longer simulating the
analog computer, but a self-standing structure for simu-
lation systems. There were some unsuccessful attempts,
but in 1968, the CSSL Standard became the milestone
in the development: it unified the concepts and language
structures of the available simulation programs, it de-
fined a structure for the model, and it describes minimal
features for a runtime environment.

The CSSL standard suggests structures and features for
a model frame and for an experimental frame. This dis-
tinction is based on Zeigler’s concept of a strict separa-
tion of these two frames. Model frame and experimental
frame are the user interfaces for the heart of the simula-
tion system, for the simulator kernel or simulation en-
gine. A translator maps the model description of the
model frame into state space notation, which is used by
the simulation engine solving the system governing
ODEs. This basic structure of a simulator is illustrated
in Figure 1; an extended structure with service of dis-
crete elements is given in Figure 3.

In principle, in CSSL’s model frame, a system can be
described in three different ways, as an interconnection
of blocks, by mathematical expressions, and by conven-
tional programming constructs as in FORTRAN or C.
Mathematical basis is for the simulation engine is the
state space description

00)(),,),(),(()(xtxpttutxftx rrrrrr
&r == ,

which is used by the ODE solvers of the simulation en-
gine. Any kind of textual model formulation, of graphi-
cal blocks or structured mathematical description or
host languages constructs must be transformed to an
internal state equation of the structure given above, so
that the vector of derivatives),,,(ptuxf rrrr

can be calcu-
lated for a certain time instant),),(),((pttutxff iiiii

rrrrr
= .

This vector of derivates is fed into an ODE solver in
order to calculate a state update),.(1 hfxx iii

rrr Φ=+ , h
stepsize (all controlled by the simulation engine).

Proceedings 22nd European Conference on Modelling and
Simulation ©ECMS Loucas S. Louca, Yiorgos Chrysanthou,
Zuzana Oplatková, Khalid Al-Begain (Editors)
ISBN: 978-0-9553018-5-8 / ISBN: 978-0-9553018-6-5 (CD)

Essential is CSSL’s concept of SECTIONs or RE-
GIONs, giving a certain structure to the model descrip-
tion. First, CSSL defines a set of operators like INTEG,
which formulates parts of the state space description for
the system governing ODEs. Other memory operators
like DELAY for time delays, TABLE functions for gen-
erating (technical) tables, and transfer functions com-
plete dynamic modelling parts. The dynamic model de-
scription builds up the DYNAMIC or DERIVATIVE
section of the model description. Mapping the model
description onto state space description, requires auto-
matic sorting of the equations (blocks) to proper order
of the calculation – an essential feature of the translator.

Sometimes together with the state space equations we
also meet parameter equations, parameter dependent
initial values, and calculations with the terminal values
(e.g. for cost functions in an optimisation). In principle,
all this calculations could be done in the dynamic model
description, but then they are calculated at each evalua-
tion of the derivative vector of the ODE solver – al-
though they have to be calculated only once.

As example, we consider the model description for a
pendulum. The well-known equations (length l, mass m,
and damping coefficient d) and initial values, parameter
and static relations and dependencies are given by

)(
180

)(,,,2

,0,,sin)(

deg

00

ff tφπtφ
m
db

l
gaDd

φ
n
πφφ

m
dφ

l
gtφ

====

==−−=

&

&&&&

A structured model description, e.g. in ACSL (Table 1),
generates more efficient code: only the DERIVATIVE
section is translated into the derivative vector function,
while INITIAL and TERMINAL section are translated
into functions called evaluated separately only once.

It is task of the translator, to recognise the
static elements, and to sort them separately
from the dynamic equations, so that for the
simulation engine dynamic equations (deriva-
tive), initial and parameter equations (initial),
and terminal equations (terminal), are pro-
vided in separate modules.

With graphical window systems, graphical
model descriptions became important. Here
the roots go back on the one side to analog
computation using patching diagrams, and
on the other side to control techniques with
signal flow diagrams. Consequently, simu-
lation systems offered this kind of model
description, either as stand-alone model
frame, or as extension.

Table 1: ACSL Structured Textual
 Model Description

PROGRAM math_pendulum
! --- structured CSSL model --------------------
! --- model parameters -------------------------
 CONSTANT m=1, l=1, d=0.3 ! kg, m, N*s/m
CONSTANT g=9.81, pi=3.141592653; dphi0=0
CONSTANT pintel=2

INITIAL ! calculation with parameters-----------
 phi0 = pi/pintel; a = g/l; b = d/m
END ! of INITIAL -------------------------------
 DERIVATIVE ! ODE model --------------------
 phi = integ (dphi, phi0)
 dphi = integ (-gdl*sin(phi)-ddm*dphi, dphi0)
 END ! of DERIVATIVE --------------------------
TERMINAL ! calculations with final states ------
 phi_grad = phi*180/pi
END ! of TERMINAL ------------------------------
END ! of Program -------------------------------

However, in a graphical modelling system one disadvan-
tage appears: the graphical structure consisting of directed
dynamic signal flow allows almost no structure for dy-
namic calculations and static calculations. Calculation of
static parameter equations are modelled by dynamic
blocks – consequently evaluated at each evaluation call of
the ODE solver. Figure 2 shows the SIMULINK model
for Pendulum example; where one finds the static calcula-
tion of d/m as dynamic block in the block-oriented signal
flow.

From 2000 on, SIMULINK’s graphical model frames
were enriched by structures - triggered subsystems can
be used for such purposes (Figure 2, triggered subsys-
tems for static calculation of g/l shown in subwindow).

In general, the experimental frame has to set parame-
ters, it has to control and perform the “simulation” of
the model, and it should support documentation of the
results. In the CSSL standard, minimal requirements are
availability of certain ODE Solvers (Euler, RK4, RK-
Fehlberg, and Gear or BDF algorithms for stiff sys-
tems), change of parameters, and documentation of re-
sults in a plotting system.

Figure 1: Basic Structure of a Simulation Language
due to CSSL Standard

Figure 2: Graphical Model Description of
Pendulum in SIMULINK

From 1980 on all simulation languages tried to meet the
CSSL standard. But the implementations were and are
different. First, the structure with sections or regions
can be given explicitly by definition of these sections,
semi-implicitly by type declarations of all variables, and
full implicitly – depending on the translator. For in-
stance, SIMNON defines parameters, states, and deriva-
tives, so that for sorting no explicit model structure is
necessary; in case of pendulum these definitions are:

 parameter m, l, g, …….
 state phi, phidot
 derivative dphi, ddphi

There are many different ways to implement a simula-
tion system. One meets various mixtures of compiled
and interpreted implementations, as well as on the one
side strict distinctions of model frame and experimental
frame, and on the other hand definitions of model frame
and experimental frame in a common deck for compila-
tion. Clearly, there are advantages and disadvantages in
all kinds of implementation. Generally holds: the more
compiled, the faster, but the more inflexible for
changes, and the more interpreted, the slower, but the
more flexible for changes.

IMPLICIT MODELS –
DIFFERENTIAL-ALGEBRAIC EQUATIONS

For a long time the explicit state space description
00)(),,),(),(()(xtxpttutxftx rrrrrr

&r ==

played the dominant role; additional constraints and
implicit models had to be transformed ‘manually’. From
the 1990s on, the simulators started to take care on these
very natural phenomena of implicit structures. Conse-
quently, they started to deal with implicit state space
descriptions and constraints, in general with so-called
DAE models (differential algebraic equations):

00)(0),),(),(),((ytypttutytyF rrrrrr&r ==

The so-called extended state vector)(tyr can be splitted
into the differential state vectors)(txr and into the alge-
braic state vector)(tzr :

0),),(),(),((
,)(,0),),(),(),(()(00

=
===

pttutztxg
xtxpttutztxftx

rrrr

rrrrrr
&r

DAE Solvers – DAE Index

The above given DAEs can be solved by extended ODE
solvers and by implicit DAE solvers. Three different
approaches may be used:

i) Nested Approach, using classical ODE solver
a. given xn , solving first numerically

)(ˆ)(0),(1
nnnnnn xgxzzzxg −==⇒= ,

e. g. by modified Newton iteration, and
b. applying ODE method, evolving

)),(,(1 nnnnEn txzxx Φ=+ .
ii) Simultaneous Approach, using an implicit

DAE solver;
given xn , solving 0),(11 =++ nn zxg and

0),,,(111 =Φ +++ nnnnI tzxx simultaneously.
iii) Symbolic Approach, determining in advance

the explicit form solving
)(ˆ)(0),(1 xgxzzzxg −==⇒= by symbolic

computations e.g. within the model translator,
and using classical ODE solvers.

The Symbolic Approach requires a symbolic inversion
of the algebraic equations, which in many cases is not
possible or not adequate; furthermore the model transla-
tor must not only sort equations, it must be able to per-
form symbolic manipulations on the equations.

The Nested Approach – up to now most commonly used
– requires a numerical inversion of the algebraic equa-
tions: each evaluation of the vector of derivatives
(called by the ODE solver) has to start an iterative pro-
cedure to solve the algebraic equation. This approach can
be very expensive and time-consuming due to these inner
iterations. Here classical ODE solvers can be used.

The Simultaneous Approach requires an implicit ODE
solver – usually an implicit stiff equation solver. Although
also working with iterations, these solvers show much
more efficiency and provide more flexibility for modelling
(DASSL, IDA-DASSL, and LSODE – solvers).

However, hidden is another problem: the ‘DAE index’
problem. Roughly speaking, a DAE model is of index n,
if n differentiations of the DAE result in an ODE system
(with an increased state space). The implicit ODE
solvers for the Simultaneous Approach guarantee con-
vergence only in case of DAE index n = 1. Models with
higher DAE index must / should be transformed to
models with DAE index n = 1 . This transformation is
based on symbolic differentiation and symbolic manipu-
lation of the high index DAE system, and there is no
unique solution to this index reduction. The perhaps
most efficient procedure is the so-called Pantelides Al-
gorithm.

Unfortunately, in case of mechanical systems modelling
and in case of process technology modelling indeed
DAE models with DAE index n = 3 may occur, so that
index reduction may be necessary. Index reduction is a
new challenge for the translator of simulators, and still
point of discussion.

In graphical model descriptions, implicit model struc-
tures are known since long time as algebraic loops: the
directed graph of signals has one or more signal feed-
back loops without any memory operator (integrator,
delay, etc). Again, in evaluating the problem of sorting
occurs, and the model translator cannot build up the
sequence for calculating the derivative vector. Some
simulators, e.g. SIMULINK, recognise algebraic loops
and treat them as implicit models. When a graphical
model contains an algebraic loop, SIMULINK calls a
loop solving routine at each time step - SIMULINK
makes use of the Nested Approach described before.
This procedure works well in case of models with DAE
index n = 1, for higher index problems may occur.

In object-oriented simulation systems, like in Dymola,
physical a-causal modelling plays an important role,
which results in DAEs with sometimes higher index.
These systems put emphasis on index reduction (in the
translator) to DAEs with index n = 1 in order to apply
implicit ODE solvers (Simultaneous Approach

DISCRETE ELEMENTS IN CONTINUOUS
SIMULATION

The CSSL standard also defines segments for discrete
actions, first mainly used for modelling discrete control.
So-called DISCRETE regions or sec-
tions manage the communication be-
tween discrete and continuous world
and compute the discrete model parts.

In graphical model description, dis-
crete controllers and the time delay
could be modelled by a z-transfer
block. New versions of e.g.
SIMULINK and Scicos offer for more
complex discrete model parts trig-
gered submodels, which can be exe-
cuted only at one time instant, con-
trolled by a logical trigger signal.

For incorporating discrete actions, the
simulation engine must interrupt the
ODE solver and handle the event. For
generality, efficient implementations
set up and handle event lists, repre-
senting the time instants of discrete
actions and the calculations associated
with the action, where in-between
consecutive discrete actions the ODE
solver is to be called.

In order to incorporate DAEs and discrete elements, the
simulator’s translator must now extract from the model
description the dynamic differential equations (deriva-
tive), the dynamic algebraic equations (algebraic), and
the events (event i) with static algebraic equations and
event time, as given in Figure 3 (extended structure of a
simulation language due to CSSL standard). In princi-
ple, initial equations, parameter equations and terminal
equations (initial, terminal) are special cases of events at
time t = 0 and terminal time. Some simulators make use
of a modified structure, which puts all discrete actions
into one event module, where CASE - constructs distin-
guish between the different events.

State Events in Continuous Models

Much more complicated, but defined in CSSL, are the
so-called state events. Here, a discrete action takes place
at a time instant, which is not known in advance, it is
only known as a function of the states.

As example, we consider the pendulum with constraints
(Constrained Pendulum). If the pendulum is swinging,
it may hit a pin positioned at angle ϕp with distance lp
from the point of suspension. In this case, the pendulum
swings on with the position of the pin as the point of
rotation. The shortened length is ls = l - lp. and the an-
gular velocity ϕ& is changed at position ϕp from ϕ&
to sll /ϕ& , etc. These discontinuous changes are state
events, not known in advance.

For such state events, the classical state space descrip-
tion is extended by the so-called state event function

)),(),((ptutxh rrr , the zero of which determines the event:

Figure 3: Extended Structure of a Simulation System due to Extensions of
the CSSL Standard with Discrete Elements and with DAE Models.

0),),(),((
),,),(),(()(

=
=

tptutxh
tptutxftx

rrr

rrrrr

In this notation, the model for Constrained Pendulum is
given by

0),(

,sin,

121

21221

=−=

−−==

ph
m
d

l
g

ϕϕϕϕ

ϕϕϕϕϕ &&

The example involves two different events: change of
length parameter (SE-P), and change of state (SE-S),
i.e. angle velocity).
Generally, state events (SE) can be classified in four
types:

Type 1 – parameters change discontinuously (SE-P),
Type 2 - inputs change discontinuously (SE-I),
Type 3 - states change discontinuously (SE-S), and
Type 4 - state vector dimension changes (SE-D),

 including total change of model equations.

State events type 1 (SE-P) could also be formulated by
means of IF-THEN-ELSE constructs and by switches in
graphical model descriptions, without synchronisation
with the ODE solver. The necessity of a state event for-
mulation depends on the accuracy wanted. Big changes
in parameters may cause problems for ODE solvers
with stepsize control.
State events of type 3 (SE-S) are essential state events.
They must be located, transformed into a time event,
and modelled in discrete model parts.
State events of type 4 (SE-D) are also essential ones. In
principle, they are associated with hybrid modelling:
models following each other in consecutive order build
up a sequence of dynamic processes. And consequently,
the structure of the model itself is dynamic; these so-
called structural dynamic systems are at present (2008)
discussion of extensions to Modelica, see next chapters.

State Event Handling

The handling of a state event requires four steps:
i. Detection of the event, usually by checking the

change of the sign of h(x) within the solver
step over [ti, ti+1]

ii. Localisation of the event by a proper algorithm
determining the time t* when the event occurs
and performing the last solver step over [ti, t*]

iii. Service of the event: calculating / setting new
parameters, inputs and states; switching to new
equations

iv. Restart of the ODE solver at time t* with
solver step over [t*= ti+1, ti+2]

State events are facing simulators with severe problems.
Up to now, the simulation engine had to call independent
algorithms, now a root finder for the state event function
h needs results from the ODE solver, and the ODE solver
calls the root finder by checking the sign of h.

For finding the root of the state event function h(x), ei-
ther interpolative algorithms (MATLAB/Simulink) or
iterative algorithms are used (ACSL, Dymola).

Figure 3 (extended structure of a simulation language
due to CSSL standard) also shows the necessary exten-
sions for incorporating state events. The simulator’s
translator must extract from the model description addi-
tionally the state event functions (state event j) with the
associated event action – only one state event shown in
the figure). In the simulator kernel, the static event man-
agement must be made dynamically: state events are
dynamically handled and transformed to time events. In
principle, the kernel of the simulation engine has be-
come an event handler, managing a complex event list
with feedbacks. It is to be noted, that different state
events may influence each other, if they are close in time
– in worst case, the event finders run in a deadlock.
Again, modified implementations are found. It makes
sense to separate the module for state event function
and the module for the associated event – which may be
a single module, or which may be put into a common
time event module.

In case of a structural change of the system equations
(state event of type 4 – SE-D), simulators usually can
manage only fixed structures of the state space. The
technique used is to ‘freeze’ the states that are bound by
conditions causing the event. In case of a complete
change of equations, both systems are calculated to-
gether, freezing one according to the event.
One way around is to make use of the experimental
frame: the simulation engine only detects and localises
the event, and updates the system until the event time.
Then control is given back to the experimental frame.
The state event is now serviced in the experimental
frame, using features of the environment. Then a new
simulation run is restarted (modelling of the structural
changes in the experimental frame).

Table 2: Constrained Pendulum: Continuous
Model with State Events (ACSL)

PROGRAM constrained pendulum
CONSTANT m = 1.02, g = 9.81, d =0.2
CONSTANT lf=1, lp=0.7
DERIVATIVE dynamics
 ddphi = -g*sin(phi)/l – d*dphi/m
 dphi = integ (ddphi, dphi0)
 phi = integ (dphi, phi0)
 SCHEDULE hit .XN. (phi-phip)
 SCHEDULE leave .XP. (phi-phip)
END ! of dynamics

DISCRETE hit
 l = ls; dphi = dphi*lf/ls
END ! of hit

DISCRETE leave
 l = lf; dphi = dphi*ls/lf
END ! of leave

END ! of constrained pendulum

The Constrained Pendulum example involves a state
event of type 1 (SE-P) and type 3 (SE-S). A classical
ACSL model description works with two discrete sec-
tions hit and leave, representing the two different
modes, both called from the dynamic equations in the
derivative section (Table 2).

Dymola defines events and their scheduling implicitly
by WHEN – or IF - constructs in the dynamic model
description, in case of the discussed example e.g. by

 WHEN phi-phip=0 AND phi>phip
 THEN l = ls; dphi = dphi*lf/ls

In case of more complex event descriptions, the WHEN
– or IF – clauses are put into an ALGORITHM section
similar to ACSL’s DISCRETE section.

In graphical model descriptions, we again are faced
with the problem that calculations at discrete time in-
stants are difficult to formulate. For the detection of the
event, SIMULINK provides the HIT CROSSING
block (in new Simulink version implicitly defined). This
block starts state event detection (interpolation method)
depending on the input, the state event function, and
outputs a trigger signal, which may call a triggered sub-
system servicing the event.

Extended Features of Simulators

Discrete elements with time events and state events and
DAEs may change the structure of the model. Explicit
type-4 state events (SE-D) and implicit algebraic condi-
tions in DAEs may change the model essentially or may
make a need for a different model. In mechanical sys-
tems, these changes are equivalent to a change in the
degree of mechanical or physical freedom.
Event description (ED), state event handling (SEH) and
DAE support (DAE) with or without index reduction
(IR) became desirable structural features of simulators,
supported directly or indirectly. Table 3 compares the
availability of these features in the MATLAB / Simu-
link System, in ACSL and in Dymola.

Table 3: Comparison of Simulators’ Extended Features

(Event Handling and DAE Modelling)

M
S

- M
od

el

So
rti

ng

ED
 -E

ve
nt

D

es
cr

ip
tio

n
SH

E
- S

ta
te

Ev

en
t H

an
-

dl
in

g
D

A
E

- D
A

E

So
lv

er

IR
 -

In
de

x

R
ed

uc
tio

n

MATLAB no no (yes) (yes) no
Simulink yes (yes) (yes) (yes) no
MATLAB /
Simulink yes yes yes (yes) no

ACSL yes yes yes yes no

Dymola yes yes yes yes yes

In Table 3, the availability of features is indicated by
‘yes’ and ‘no’; a ‘yes’ in parenthesis ‘(yes)’ means, that
the feature is complex to use. MS - ‘Model Sorting’, is a
standard feature of a simulator – but missing in MAT-
LAB (in principle, MATLAB cannot be called a simula-
tor). On the other hand, MATLAB’s ODE solvers offer
limited features for DAEs (systems with mass matrix)
and an integration stop on event condition, so that SHE
and DAE get a (‘yes’). In Simulink, event descriptions
are possible by means of triggered subsystems, so that
ED gets a ‘(yes)’ because of complexity. A combination
of MATLAB and Simulink suggest putting the event
description and handling at MATLAB level, so that ED
and SHE get both a ‘yes’. DAE solving is based on
modified ODE solvers, using the nested approach (see
before), so DE gets only a ‘(yes)’ for all
MATLAB/Simulink combinations.

ACSL is a classical simulator with sophisticated state
event handling, and since version 10 (2001) DAEs can
be modelled directly by the residuum construct, and
they are solved by the DASSL algorithm (a well-known
direct DAE solver, based on the simultaneous ap-
proach), or by modified ODE solvers (nested approach)
– so ‘yes’ for ED, SHE, and DAE. In case of DAE in-
dex n = 1, the DASSL algorithm guarantees conver-
gence, in case of higher index integration may fail.
ACSL does not perform index reduction (IR ‘no’).

Dymola is a modern simulator, implemented in C, and
based on physical modelling. Model description may be
given by implicit laws, symbolic manipulations extract a
proper ODE or DAE state space system, with index re-
duction for high index DAE systems – all extended fea-
tures are available. Dymola started a new area in model-
ling and simulation of continuous and hybrid systems.

FROM CSSL TO MODELICA AND VHDL-AMS

In the 1990s, many attempts have been made to improve
and to extend the CSSL structure, especially for the task
of mathematical modelling. The basic problem was the
state space description, which limited the construction
of modular and flexible modelling libraries. Two devel-
opments helped to overcome this problem. On model-
ling level, the idea of physical modelling gave new in-
put, and on implementation level, the object-oriented
view helped to leave the constraints of input/output re-
lations.

In physical modelling, a typical procedure for modelling
is to cut a system into subsystems and to account for the
behaviour at the interfaces. Balances of mass, energy
and momentum and material equations model each sub-
system. The complete model is obtained by combining
the descriptions of the subsystems and the interfaces.
This approach requires a modelling paradigm different
to classical input/output modelling. A model is consid-
ered as a constraint between system variables, which
leads naturally to DAE descriptions. The approach is very
convenient for building reusable model libraries.

In 1996, the situation was thus similar to the mid 1960s
when CSSL was defined as a unification of the tech-
niques and ideas of many different simulation programs.
An international effort was initiated in September 1996
for bringing together expertise in object-oriented physi-
cal modelling (port based modelling) and defining a
modern uniform modelling language – mainly driven by
the developers of Dymola.

The new modelling language is called Modelica. Mode-
lica is intended for modelling within many application
domains such as electrical circuits, multibody systems,
drive trains, hydraulics, thermodynamical systems, and
chemical processes etc. It supports several modelling
formalisms: ordinary differential equations, differential-
algebraic equations, bond graphs, finite state automata,
and Petri nets etc. Modelica is intended to serve as a
standard format so that models arising in different do-
mains can be exchanged between tools and users.

Modelica is a not a simulator, Modelica is a modelling
language, supporting and generating mathematical mo-
dels in physical domains. When the development of
Modelica started, also a competitive development, the
extension of VHDL towards VHDL-AMS was initiated.
Both modelling languages aimed for general-purpose
use, but VHDL-AMS mainly addresses circuit design,
and Modelica covers the broader area of physical mod-
elling; modelling constructs such as Petri nets and finite
automata could broaden the application area, as soon as
suitable simulators can read the model definitions.
Modelica offers a textual and graphical modelling con-
cept, where the connections of physical blocks are bidi-
rectional physical couplings, and not directed flow.
An example demonstrates how drive trains are mod-
elled. The drive train consists of four inertias and three
clutches, where the clutches are controlled by input sig-
nals (Figure 4). The graphical model layout corresponds
with a textual model representation, shown in Table 4
(abbreviated, simplified).

Figure 4: Graphical Modelica Model for Coupled Clutches

Table 4: Textual Modelica Model for Coupled Clutches

encapsulated model CoupledClutches; "Drive train"
 parameter SI.Frequency freqHz=0.2; ….
 Rotational.Inertia J1(J=1,phi(ic=0),w(ic=10));
 Rotational.Torque torque;
 Rotational.Clutch clutch1(peak=1.1, fn_max=20);
 Rotational.Inertia J3(J=1); ……………………………………
equation
 connect(sin1.outPort, torque.inPort);
 connect(torque.flange_b, J1.flange_a);
 connect(J1.flange_b, clutch1.flange_a);
 ……………………………………..
 connect(step2.outPort, clutch3.inPort);
end CoupledClutches;

The translator from Modelica into the target simulator
must not only be able to sort equations, it must be able
to process the implicit equations symbolically and to
perform DAE index reduction (or a way around).

Up to now – similar to VHDL-AMS – some simulation
systems understand Modelica (2008; generic – new
simulator with Modelica modelling, extension - Mode-
lica modelling interface for existing simulator):

• Dymola from Dynasim (generic),
• MathModelica from MathCore

Engineering (generic)
• SimulationX from ISI (generic/extension)
• Scilab/Scicos (extension)
• MapleSim (extension, announced)
• Open Modelica - since 2004 the University of

Lyngby develops an provides an open Modelica
simulation environment (generic),

• Mosilab - Fraunhofer Gesellschaft develops a
generic Modelica simulator, which supports
dynamic variable structures (generic)

• Dymola / Modelica blocks in Simulink

As Modelica also incorporates graphical model ele-
ments, the user may choose between textual modelling,
graphical modelling, and modelling using elements
from an application library. Furthermore, graphical and
textual modelling may be mixed in various kinds. The
minimal modelling environment is a text editor; a com-
fortable modelling environment offers a graphical mod-
elling editor.

The Constrained Pendulum example can be formulated
in Modelica textually as a physical law for angular ac-
celeration. The event with parameter change is put into
an algorithm section, defining and scheduling the
parameter event SE-P (Table 5). As instead of angular
velocity, the tangential velocity is used as state variable,
the second state event SE-S ‘vanishes’.

Table 5: Textual Modelica Model for
Constrained Pendulum

 equation /*pendulum*/
 v = length*der(phi);
 vdot = der(v);
 mass*vdot/length + mass*g*sin(phi)
 +damping*v = 0;
 algorithm
 if (phi<=phipin) then length:=ls; end if;
 if (phi>phipin) then length:=l1; end if;

Modelica allows combining textual and graphical mod-
elling. For the Constrained Pendulum example, the ba-
sic physical dynamics could be modelled graphically
with joint and mass elements, and the event of length
change is described in an algorithm section, with
variables interfacing to the predefined variables in the
graphical model part (Figure 5).

algorithm
if (revolute1.phi
 <= phipin then
 revolute1.length:=ls;
end if;
if (revolute1.phi
 < phipin then
 revolute1.length:=ll;
end if;

Figure 5: Mixed Graphical and Textual Dymola

Model for Constrained Pendulum

MODELLING WITH STATE CHARTS

In the end of the 1990s, computer science initiated a
new development for modelling discontinuous changes.
The Unified Modelling Language (UML) is one of the
most important standards for specification and design of
object oriented systems. This standard was tuned for
real time applications in the form of a new proposal,
UML Real-Time (UML-RT). By means of UML-RT,
objects can hold the dynamic behaviour of an ODE.

In 1999, a simulation research group at the Technical
University of St. Petersburg used this approach in com-
bination with a hybrid state machine for the develop-
ment of a hybrid simulator (MVS), from 2000 on avail-
able commercially as simulator AnyLogic. The model-
ling language of AnyLogic is an extension of UML-RT;
the main building block is the Active Object. Active
objects have internal structure and behaviour, and allow
encapsulating of other objects to any desired depth. Rela-
tionships between active objects set up the hybrid model.

Active objects interact with their surroundings solely
through boundary objects: ports for discrete communi-
cation, and variables for continuous communication
(Figure 6). The activities within an object are usually de-
fined by state charts (extended state machine). While dis-
crete model parts are described by means of state charts,
events, timers and messages, the continuous model parts
are described by means of ODEs and DAEs in CSSL-
type notation and with state charts within an object.

An AnyLogic implementation of the well-known Bounc-
ing Ball example shows a simple use of state chart model-
ling (Figure 7). The model equations are defined in the
active object ball, together with the state chart ball.main.
This state chart describes the interruption of the state
flight (without any equations) by the event bounce (SE-P
and SE-S event) defined by condition and action.

Figure 6: Active Objects with Connectors - Discrete

Messages (Rectangles) and Continuous Signals (Triangles

Figure 7: AnyLogic Model for the Bouncing Ball

AnyLogic influenced further developments for hybrid
and structural dynamic systems, and led to a discussion
in the Modelica community with respect to a proper
implementation of state charts in Modelica. The princi-
ple question is, whether state charts are to be seen as
comfortable way to describe complex WHEN – and IF
– constructs, being part of the model, or whether state
charts control different models from a higher level. At
present (2008) a free Modelica state chart library ‘emu-
lates’ state charts by Boolean variables and IF – THEN
– ELSE constructs. A further problem is the fact, that
the state chart notation is not really standardised; Any-
Logic makes use of the Harel state chart type.

An AnyLogic implementation for the Constrained Pen-
dulum may follow the implementation for the bouncing
ball (Figure 8). An primary active object (Constrained
Pendulum)‘holds’ the equations for the pendulum, to-
gether with a state chart (main) switching between short
and long pendulum. The state chart nodes are empty;
the arcs define the events (Figure 8). Internally, Any-
Logic restarts at each hit the same pendulum model
(trivial hybrid decomposition).

Figure 8: AnyLogic model for Constrained

Pendulum, Simple Implementation

HYBRID AND STRUCTURAL-DYNAMIC SYSTEMS

Continuous simulation and discrete simulation have
different roots, but they are using the same method, the
analysis in the time domain. During the last decades a
broad variety of model frames (model descriptions) has
been developed.

In continuous and hybrid simulation, the explicit or im-
plicit state space description is used as common de-
nominator. This state space may be described textually,
or by signal-oriented graphic blocks (e.g. SIMULINK),
or by physically based block descriptions (Modelica,
VHDL-AMS).

In discrete simulation, we meet very different tech-
niques for the model frame. Application-oriented flow
diagrams, network diagrams, state diagrams, etc. allow
describing complex behaviour of event-driven dynam-
ics. Usually these descriptions are mapped to an event-
based description. On the other side, the simulator ker-
nel is similar for discrete and continuous simulators.
The model description is mapped to an event list with
adequate update functions of the states within state up-
date events. In discrete simulation, the states are usually
the status variables of servers and queues in the model,
and state update is simple increase or decrease by in-
crements; complex logic conditions may accompany the
scheduling of events. In continuous simulation the state
space is based of various laws used in the application
area, and usually defined by differential-algebraic equa-
tions. DAE solvers generate a grid for the approximation
of the solutions. This grid drives an event list with state
update events using complex formula depending on the
chosen DAE solver and on the defined DAE. Additional
time events and state events are inserted into the global
event list.

Hybrid systems often come together with a change of
the dimension of the state space, then called structural-
dynamic systems. The dynamic change of the state
space is caused by a state event of type SE-D. In con-
trary to state events SE-P and SE-S, states and deriva-
tives may change continuously and differentiable in
case of structural change. In principle, structural-
dynamic systems can be seen from two extreme view-
points. The one says, in a maximal state space, state
events switch on and off algebraic conditions, which
freeze certain states for certain periods. The other one
says that a global discrete state space controls local
models with fixed state spaces, whereby the local mod-
els may be also discrete or static.

These viewpoints derive two different approaches for
structural dynamic systems modelling, the

• maximal state space, and the
• hybrid decomposition.

Maximal State Space for Structural-Dynamic
Systems – Internal Events

Most implementations of physically based model de-
scriptions support a big monolithic model description,
derived from laws, ODEs, DAEs, state event functions
and internal events. The state space is maximal and
static, index reduction in combination with constraints
keep a consistent state space. For instance, Dymola,
OpenModelica, and VHDL-AMS follow this approach.

This approach can be classified with respect to event
implementation. The approach handles all events of any
kind (SE-P, SE-S, and SE-D) within the ODE solver
frame, also events which change the state space dimen-
sion (change of degree of freedoms) – consequently
called internal events.

Using the classical state
chart notation, internal
state events I-SE caused by
the model schedule the
model itself, with usually
different re-initialisations
(depending on the event
type I-SE-P, I-SES, I-SE-
D; Figure 9). For instance,
VHDL-AMS and Dymola
follow this approach, han-
dling also DAE models
with index higher than 1;

Figure 9: State Chart
Control for Internal
Events of one Model

discrete model parts are only supported at event level.
ACSL and MATLAB / Simulink generate also a maxi-
mal state space.

Hybrid Decomposition for Structural-Dynamic
Systems – External Events

The hybrid decomposition approach makes use of ex-
ternal events (E-SE), which control the sequence and
the serial coupling of one model or of more models. A
convenient tool for switching between models is a state
chart, driven by the external events – which itself are
generated by the models. Following e.g. the UML-RT
notation, control for continuous models and for discrete
actions can by modelled by state charts. Figure 10
shows the hybrid coupling of two models, which may
be extended to an arbitrary number of models, with pos-
sible events E-SE-P, E-SE-S, and ESE-D. As special
case, this technique may be also used for serial condi-
tional ‘execution’ of one model – Figure 11 (only for
SE-P and SE-S).
This approach additionally allows not only dynamically
changing state spaces, but also different model types,
like ODEs, linear ODEs (to be analysed by linear the-
ory), PDEs, etc. to be processed in serial or also in par-
allel, so that also co-simulation can be formulated based
on external events.

Figure 11: State Chart
Control for External

Events for two Models

Figure 12: State Chart
Control for External
Events for one Model

The approach allows handling all events also outside
the ODE solver frame. After an event, a very new
model can be started. This procedure may make sense
especially in case of events of type SE-D and SE-S. As
consequence, consecutive models of different state
spaces may be used.

Figure 12 shows a structure for a simulator supporting
structural dynamic modelling and simulation. The figure
summarises the outlined ideas by extending the CSSL
structure by control model, external events and multiple
models. The main extension is that the translator gener-
ates not only one DAE model; he generates several
DAE models from the (sub)model descriptions, and
external events from the connection model, controlling
the model execution sequence in the highest level of the
dynamic event list.

There, all (sub)models may be precompiled, or the new
recent state space may be determined and translated to a
DAE system in case of the external event (interpretative
technique).
Clearly, not only ODE solver can make use of the
model descriptions (derivatives), but also eigenvalue
analysis and steady state calculation may be used and
other analysis algorithms. Furthermore, complex ex-
periments can be controlled by external events schedul-
ing the same model in a loop.

Mixed Approach with Internal and External Events

A simulator structure as proposed in Figure 12 is a very
general one, because it allows as well external as ell as
internal events, so that hybrid coupling with variable state
models of any kind with internal and external events is

possible (Figure 13).

Both approaches have
advantages and disadvan-
tages. The classical Dy-
mola approach generates
a fast simulation, because
of the monolithic pro-
gram. However, the state
space is static. Further-
more, Modelica centres
on physical modelling. A
hybrid approach handles
separate model parts and
must control the external
events.

Consequently, two levels
of programs have to be
generated: dynamic mod-
els, and a control program
– today’s implementations
are interpretative and not
compiling, so that simula-
tion times increase - but
the overall state space is
indeed dynamic.

A challenge for the future
lies in the combination of
both approaches. The
main ideas are:

• Moderate hybrid
decomposition

• External and in-
ternal events

• Efficient imple-
mentation of
models and con-
trol

Figure 12: Structure for a Simulation System with External State Events E-SE and

Classical Internal State Events I-SE for Controlling Different Models

Figure13: State Chart Control for Different Models
with Internal and External Events

For instance, for parameter state events (SE-P) an im-
plementation with an internal event may be sufficient (I-
SE-P), for an event of SE-S type implementation with
an external event may be advantageous because of eas-
ier state re-initialisation (E-SE-S), and for a structural
model change (SE-D) an implementation with an exter-
nal event may be preferred (E-SE-D), because of much
easier handling of the dynamic state change – and less
necessity for index reduction.

An efficient control of the sequence of models can be
made by state charts, but also by a well-defined defini-
tions and distinction of IF - and WHEN - constructs,
like discussed in extensions of Scilab/Scicos for Mode-
lica models.

STRUCTURAL FEATURES OF SIMULATORS

While the extended features discussed before address
the CSSL-standard, structural features characterise fea-
tures for physical modelling and for structural dynamic
systems. This section investigates the availability or of
structural features in some simulators, and summarises
the results in table xx. Furthermore, is should be dis-
cussed, which software structure these simulators use
(compared to Figure 3 and Figure 12). The extended
features may be classified as follows:

• Support of a-causal physical modelling
(sometimes called port-based modelling) at
textual (PM-T) or graphical level (PM-G),

• Modelica standard (MOD) for a-causal physical
modelling ,

• Decomposition of structural dynamic systems
with dynamic features (SD) – features for
external events, and

• Support of state chart modelling or a of a similar
construct, by means of textual (SC-T) or
graphical (SC-G) constructs.

In principle, each combination of the above features is
possible. By means of the maximal state space ap-
proach, each classic simulator can handle structural dy-
namic systems, but a-causal modelling may be sup-
ported or not, and state chart modelling may be avail-
able or not. Simulators with a-causal modelling may

support hybrid decomposition or not, and state chart
modelling may be available or not. Simulators with fea-
tures for state chart modelling may support hybrid de-
composition or not, and a-causal modelling may be of-
fered or not. In general, interpreter-oriented simulators
offer more structural flexibility, but modern software
structures would allow also flexibility with precompiled
models or with models compiled ‘on the fly’.

In addition, of interest are also structural features as
• simulation-driven visualisation (with visualisation

objects defined with the model objects; VIS),
• frequency domain analysis and linearization for

steady state analysis (FA), and
• extended environment for complex experiments

and data pre- and postprocessing (ENV).

In the following sections, simulators and simulation
systems are investigated in order to check the availabil-
ity of these structural features. For some of the simula-
tors, implementation templates with the Constrained
Pendulum are discussed.

MATLAB / Simulink / Stateflow

The mainly interpretative systems MATLAB / Simulink
offer different approaches. First, MATLAB itself allows
any kind of static and dynamic decomposition (SD
‘yes’), but MATLAB is not a simulator, because the
model equations have to be provided in a sorted man-
ner, to be called from an ODE solver (MS ‘no’).
Second, MATLAB allows hybrid decomposition at
MATLAB level with Simulink models. There, from
MATLAB different Simulink models are called condi-
tionally, and in Simulink, a state event is determined by
the hit-crossing block (terminating the simulation). For
control, in MATLAB only IF – THEN constructs are
available. Table 6 – MATLAB control model, and Fig-
ure 15– graphical Simulink model, show a hybrid de-
composition of this type for the Constrained Pendulum.
MATLAB is a very powerful environment with various
modules. Simulink is MATLAB’s simulation module
for block-oriented dynamic models (directed signal
graphs), which can be combined with Stateflow,
MATLAB’s module for event-driven state changes de-
scribed by state charts (SC-T and SC-G ‘yes’).

Table 6: MATLAB Control Model for Constrained
Pendulum with External Events

Switching between Long and Short Pendulum

 if ((phi_p-phi0)*phi_p<0 |
 (phi0==phi_p & phi_p*v>0))
 dphi0=v/ls;
 sim('pendulum_short',[t(length(t)),10]);
 v=dphi(length(dphi))*ls;
 else
 dphi0=v/l;
 sim('pendulum_long',[t(length(t)),10]);
 v=dphi(length(dphi))*l;
 end

Figure 14: Simulink Model for Constrained Pendulum
with External Event detected by Hit-Crossing Block

At Simulink level, Stateflow, Simulink’s state chart
modelling tool, may control different submodels. These
submodels may be dynamic models based on ODEs
(DAEs), or static models describing discrete actions
(events). Consequently, Stateflow can be used for im-
plementation of the Constrained Pendulum, where the
state charts control length and change of velocities in
case of hit by triggering the static changes (Figure 15).
This implementation makes use of notations from ana-
log circuits: the integrator, the 1/s – block, has not only
continuous signal inputs, but also an reset control input
and a static IC input, which toggle the velocity at hit. A
solely Simulink implementation would make use of a
triggered submodels describing the events by AND –
and OR – blocks, or by a MATLAB function.
Alternatively, for Constrained Pendulum Stateflow could
control two different submodels representing long and
short pendulum enabled and disabled by the state chart
control. Internally Simulink generates a state space with
‘double’ dimension, because Simulink can only work
with a maximal state space and does not allow hybrid
decomposition (SD ‘no). As advantage, this implementa-
tion would not need the old-fashioned integrator control.

Figure15: Simulink Model for Constrained Pendulum
with External Event detected by Hit-Crossing

Block and controlled by Stateflow

Neither MATLAB nor Simulink support a-causal mod-
elling. New MATLAB modules for physical modelling
(e.g. Hydraulic Blockset) are precompiled to a classical
state space (PM-T and PM-G ‘no’), and furthermore
Modelica modelling is not supported (MOD ‘no’) –
Mathworks developers are working hard on some kind
of real physical modelling and on Modelica modelling.
For DAEs, MATLAB and Simulink offer modified
LSODE solvers (implicit solvers) for the nested DAE
solving approach. In MATLAB any kind of simulation
– driven visualisation can be programmed and used in
MATLAB or Simulink or in both, but not based on the
model definition blocks (VIS ‘(yes)’). From the begin-
ning on, MATLAB and Simulink offered frequency
analysis (FA ‘yes’), and clearly, MATLAB is a very
powerful environment for Simulink, Stateflow, for all
other Toolboxes, and for MATLAB itself (ENV ‘yes’).

ACSL

ACSL – Advanced Continuous Simulation Language –
has been developed since more than 25 years. ACSL
was strongly influenced by the CSSL standard. ACSL’
software structure is a direct mapping of the structure in
Figure 3. Implementations of the Constrained Pendu-
lum have been shown in the previous sections, as exam-
ple for modelling due to CSSL standard.

ACSL’ development as simulator seems to have ended,
as the new developers (Aegis Technologies) concentrate
on application-oriented simulation solutions, with mod-
els are tailor-made for the specific application. Last ex-
tensions were a change to C as basic language (instead
of FORTRAN), and DAE features using the nested ap-
proach with classical solvers, or direct implicit DAE
solving with DASSL Code (DAE ‘yes’, IR ‘no’). From
the beginning on, steady state calculation, linearization
and frequency analysis was a standard feature of
ACSL’s simulator kernel (FA ‘yes’).
Since 2000, the environment has been enriched by mod-
ules for modelling and environment modules. The first
module was a graphical modeller. Figure 16 shows a
graphical friction model (‘block on a rough surface’) in
ACSL’s graphic modeller, which seems to make use of
physical modelling, but in behind classical state spaces
as with Simulink’s blocksets for physical modelling is
used – PM-T and PM-G ‘no’). Furthermore, a simula-
tion-driven visualisation system (third party) is offered
(but hard to use) – VIS ‘(yes)’.

Figure 16: ACSL Graphic Model for Friction System

A very interesting module is an extended environment
called ACSLMath. ACSLMath was intended to have
same features as MATLAB; available is only a subset,
but powerful enough for an extended environment
(ENV ‘yes’), which can be used for hybrid decomposi-
tion of a structural dynamic model in almost the same
way than MATLAB does (SD ‘yes’). Unfortunately the
development of ACSLMath has been stopped. In gen-
eral, there is no intention to make a-causal physical
modelling available, also Modelica is not found in the
developers’ plans (PM-T, PM-G, and MOD ‘no’).

Dymola

Dymola has partly been discussed in a section before,
together with an implementation for the Constrained Pen-
dulum example (Dymola standard implementation, Fig-
ure 5, Table 5). Dymola, introduced by F. E. Cellier as a-
causal modelling language, and developed to a simulator
by H. Elmquist, can be called the mother of Modelica.

Dymola is based on a-causal physical modelling and ini-
tiated Modelica; consequently, it fully supports Modelica
these structural features (PM-T, PM-G, and MOD ‘yes’).
Together with the model objects, also graphical objects
may be defined, so that simulation based pseudo-3D visu-
alisation is available (VIS ‘yes’). A key feature of Dy-
mola is the very sophisticated index reduction by the
modified Pantelides algorithm, so Dymola handles any
DAE system, also with higher index, with bravura (DAE
and IR ‘yes’). For DAE solving, modified DASSL algo-
rithms are used. In software structure, Dymola is similar
to ACSL, using an extended CSSL structure as given in
Figure 3 – with the modification that all discrete actions
are put into one event module, where CASE - constructs
distinguish between the different events (this structure is
based on the first simulator engine Dymola used, the DS-
Block System of DLR Oberpfaffenhofen).

Dymola comes with a graphical modelling and basic
simulation environment, and provides a simple script
language as extended environment; new releases offer
also optimisation, as built-in function of the simulator.
Furthermore, based on Modelica’s matrix functions
some task of an environment can be performed – so
ENV (‘yes’) – available, but complex/uncomfortable.

Dymola offers also a Modelica – compatible state chart
library, which allows to model complex conditions (in-
ternally translated into IF – THEN – ELSE or WHEN
constructs - SC-T and SC-G ‘(yes)’). Figure 17 shows
an implementation of the Constrained Pendulum using
this library.
Up to now (2008) the Modelica definition says nothing
about structural dynamic systems, and Dymola builds
up a maximal state space. And up to now, Modelica
does not directly define state charts, and in Dymola a
state chart library in basic Modelica notation is avail-
able, but working only with internal events within the
maximal state space (SD ‘no’).

Figure17: Graphical Dymola Model for Constrained
Pendulum with Internal Events Managed by
Elements of Dymola’s State Chart Library

For Modelica extension, a working group on hybrid
systems has been implemented, in order to discuss and
standardise hybrid constructs like state charts, and hy-
brid decompositions (independent submodels).

Another interesting and remarkable development started
in 2006 – Modelica’s basic static calculation features be-
come notable. These basic features include any kind of
vector and matrix operations, and they can be extended
by Modelica’s generic extension mechanism. In principle,
‘static’ Modelica defines a MATLAB-like language.
Simulators being capable of understanding Modelica,
must consequently also support these static calculations
(without any DAE around) – so that each Modelica simu-
lator becomes a ‘Mini-MATLAB’. In Dymola, such cal-
culations may be performed in a textual Dymola consist-
ing only of an algorithmic section, without any time ad-
vance from the simulator kernel.

MathModelica

MathModelica, developed by MathCoreAB, was the
second simulation system, which understood Modelica
modelling. MathModelica is an integrated interactive
development, from modelling via simulation to analysis
and code integration. As furthermore the MathModelica
translator is very similar to Dymola’s model translator,
clearly all related features are available, including index
reduction and use of implicit solvers like DASSL (all
DAE, IR, PM-T, PM-G and MOD ‘yes’).

Figure 18 shows a drive train model set up with Math-
Modelica’s Mechanics Package (Modelica modelling) –
due to the Modelica standard this model looks almost
exactly like the model in Dymola, SimulationX, etc.

Figure 18: MathModelica Model for a Drive Train

MathModelica follows a software model different to
CSSL standard. The user interface consists of a graphical
model editor and notebooks. There, a simulation center
controls and documents experiments in the time domain.
Documentation, mathematical type setting, and symbolic
formula manipulation are provided via Mathematica, as
well as Mathematica acts as extended environment for
MathModelica (ENV ‘yes’) – performing any kind of
analysis and visualisation (FA and VIS ‘yes’). By means
of the Mathematica environment, also a hybrid decompo-
sition of structural dynamic systems is possible, with the
same technique like in MATLAB (SD – ‘yes’).

Mosilab
Since 2004, Fraunhofer Gesellschaft Dresden develops a
generic simulator Mosilab, which also initiates an exten-
sion to Modelica: multiple models controlled by state
automata, coupled in serial and in parallel. Furthermore,
Mosilab puts emphasis on co-simulation and simulator
coupling, whereby for interfacing the same constructs are
used than for hybrid decomposition. Mosilab is a generic
Modelica simulator, so all basic features are met (ED,
SEH, DAE, PM-T, and PM-G ‘yes’, and MOD ‘(yes)’ –
because of subset implementation at present, 2008). For
DAE solving, variants of IDA-DASSL solver are used.

Mosilab implements extended state chart modelling,
which may be translated directly due to Modelica stan-
dard into equivalent IF – THEN constructs, or which can
control different models and model executions (SC-T,
SC-G, and SD ‘yes’). At state chart level, state events of
type SE-D control the switching between different mod-
els and service the events (E-SE-D). State events affect-
ing a state variable (SE-S type) can be modelled at this
external level (E-SE-S type), or also as classic internal
event (I-SE-S). Mosilab translates each model separately,
and generates a main simulation program out of state
charts, controlling the call of the precompiled models and
passing data between the models, so that the software
model of Mosilab follows the structure in Figure 12. The
textual and graphical constructs for the state charts are
modifications of state chart modelling in AnyLogic.
Mosilab is in developing, so it supports only a subset of
Modelica, and index reduction has not been implemented
yet, so that MOD gets a ‘(yes)’ in parenthesis, and IR gets
a ‘(no)’ – indicating that the feature is not available at
present (2008), but is scheduled for the future. Index re-
duction at present not available in Mosilab, but planned
(IR ‘(no)’) - has become topic of discussion: case studies
show, that hybrid decomposition of structural dynamic
systems results mainly in DAE systems of index n = 1, so
that index reduction may be bypassed (except models
with contact problems).

Mosilab allows very different approaches for modelling
and simulation tasks, to be discussed with the Con-
strained Pendulum example. Three different modelling
approaches reflect the distinction between internal and
external events as discussed before.

Mosilab Standard Modelica Model. In a standard Mode-
lica approach, the Constrained Pendulum is defined in the
MOSILAB equation layer as implicit law; the state event,
which appears every time when the rope of the pendulum
hits or ‘leaves’ the pin, is modelled in an algorithm
section with if (or when) – conditions (Table 7).

Table 7: Mosilab Model for Constrained
Pendulum – Standard Modelica Approach

with Internal Events (I-SE-P)

 equation /*pendulum*/
 v = l1*der(phi); vdot = der(v);
 mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0;
 algorithm
 if (phi<=phipin) then length:=ls; end if;
 if (phi>phipin) then length:=l1; end if;
 end

Mosilab I-SE-P Model with State Charts. MOSILAB’s
state chart approach models discrete elements by state
charts, which may be used instead of IF - or WHEN -
clauses, with much higher flexibility and readability in
case of complex conditions. There, Boolean variables
define the status of the system and are managed by the
state chart. Table 8 shows a Mosilab implementation of
the Constrained Pendulum: the state charts initialise the
system (initial state) and manage switching between
long and short pendulum, by changing the length ap-
propriately.

Table 8: Mosilab Model for Constrained Pendulum –
State Chart Model with Internal Events (I-SE-P)

event Boolean lengthen(start=false),
 shorten(start = false);
equation
lengthen=(phi>phipin); shorten=(phi<=phipin);
equation /*pendulum*/
 v = l1*der(phi); vdot = der(v);
 mass*vdot/l1 + mass*g*sin(phi)+damping*v= 0;
statechart
 state LengthSwitch extends State;
 State Short,Long,Initial(isInitial=true);
transition Initial -> Long end transition;
transition Long -> Short event shorten action
 length := ls;
end transition;
transition Short -> Long event lengthen action
 length := l1;
end transition; end LengthSwitch;

From the modelling point of view, this description is
equivalent to the aforementioned description with IF -
clauses. The Mosilab translator clearly generates there
an implementation with different internal equations.

Mosilab E-SE-P Model. Mosilab’s state chart construct
is not only a good alternative to IF - or WHEN - clauses
within one model, it offers also the possibility to switch
between structural different models. This very powerful
feature allows any kind of hybrid composition of mod-
els with different state spaces and of different type
(from ODEs to PDEs, etc.). Table 9 shows a Mosilab
implementation of the Constrained Pendulum making
use of two different pendulum models, controlled exter-
nally by a state chart. Clearly, in case of this simple
model, different models would not be necessary.

Here, the system is decomposed into two different mod-
els, Short pendulum model, and Long pendulum
model, controlled by a state chart. The model descrip-
tion (Table 9) defines now first the two pendulum mod-
els, and then the event as before. The state chart creates
first instances of both pendulum models during the ini-
tial state (new). The transitions organise the switching
between the pendulums (remove, add). The connect
statements are used for mapping local to global state.

Table 9: Mosilab Model for Constrained Pendulum –
State Chart Switching between Different Pendulums

Models by External Events (E-SE-P)

model Long
equation
 mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0;
end Long;

model Short
equation
 mass*vdot/ls + mass*g*sin(phi)+damping*v = 0;
end Short;

event discrete Boolean lengthen(start=true),
 shorten(start = false);
equation
 lengthen =
 (phi>phipin);shorten=(phi<=phipin);

statechart
state ChangePendulum extends State;
 State Short,Long,startState(isInitial=true);

transition startState -> Long action
 L:=new Long(); K:=new Short(); add(L);
end transition;

transition Long->Short event shorten action
 disconnect ….; remove(L); add(K); connect …
end transition;

transition Short -> Long event lengthen
 action
 disconnect …;
 remove(K); add(L);
 connect ……
end transition; end ChangePendulum;

Mosilab offers also strong support for simulator cou-
pling (e.g. MATLAB) and time-synchronised coupling
of external programs. This feature may be used for any
kind of visualisation not based the model definition
(VIS ‘(yes)’).

External events driven by external states charts open pos-
sibilities, which were not planned at begin of Mosilab
development, but which became obvious during devel-
opment. It turned out, that complex experiments can be
defined and performed by means of external state charts -
as well as a simple parameter loop, which makes use of
the same model in each state change (change of parameter
value). Furthermore, at level of the ‘main’ model, any
kind of static calculations due to Modelica standard
should be possible. There, Mosilab mixes model frame
and experimental frame and sets up a common extended
environment (ENV ‘yes’), where also frequency analysis
can be implemented (FA ‘(no)’).

Open Modelica
The goal of the Open Modelica project is to create a
complete Modelica modelling, compilation and simula-
tion environment based on free software distributed in
binary and source code form.

Figure 19: Software Modules of Open Modelica.

The whole OpenModelica environment consists of open
software (Figure 19): OMC – the Open Modelica Com-
piler translates Modelica models (with index reduction);
OMShell as interactive session handler is a minimal ex-
periment frame; Modelica models may be set up by a
simple text editor or by a graphical model editor (here,
for teaching purposes the model editor of MathMode-
lica is allowed to be used!); the purpose of OMNote-
book is to provide an advanced Modelica environment
and teaching tool; the DrModelica notebook provides
all the examples from P. Fritzson's book on Modelica;
the other modules support environment interfacing and
Open Modelica development.

Open Modelica is a generic Modelica simulator, so all
basic features are met (ED, SEH, DAE, PM-T, PM-G, IR
and MOD ‘yes’; for DAE solving, variants of DASSL
solver are used). P. Fritzson, the initiator of Open Mode-
lica puts emphasis on discrete events and hybrid model-
ling, so documentation comes with clear advice for use of
IF – and WHEN – clauses in Modelica, and with state
chart modules in DrModelica – so SC-T gets ‘yes’. Fig-
ure 20 shows the equivalence of a state chart and the cor-
rect definition as Modelica submodel. For graphical state
chart modelling the experimental Modelica state chart
library can be used – so SC-G ‘(yes)’.
The notebook features allow interfaces and extensions of
any kind, e.g. for data visualisation and frequency analysis
– FA and VIS ‘(yes)’; they allow also for controlled ex-
ecutive of different models, so that hybrid decomposition
of structural dynamic systems is possible – SD ‘(yes)’.

partial model SimpleBacklash
Boolean backward, slack, forward;
parameter ……
equation
phi_dev = phi_rel - phi_rel0;
 backward = phi_rel < -b/2;
 forward = phi_rel > b/2;
 slack = not (backward or forward);
 tau = if forward then
 c*(phi_dev – b/2)
 else (if backward then
 c*(phi_dev + b/2)
 else 0);
end SimpleBacklash

Figure 20: OpenModelica State Chart Modelling

SimulationX

SimulationX is a new Modelica simulator developed by
ITI simulation, Dresden. This almost generic Modelica
simulator is based on ITI’s simulation system ITI-SIM,
where the generic IT-SIM modelling frame has been re-
placed by Modelica modelling. From the very beginning
on, ITI-SIM concentrated on physical modelling, with a
theoretical background from power graphs and bond
graphs. Figure 21 shows graphical physical modelling in
ITI-SIM – very similar to Modelica graphical modelling.
The simulation engine from ITI-SIM drives also Simula-
tionX, using a sophisticated implicit integration scheme,
with state event handling. Consequently, all features f
related to physical modelling are available: (ED, SEH,
DAE, PM-T, PM-G, and MOD ‘yes’; index reduction is
not really implemented – IR ‘(no)’.
State chart constructs are not directly supported (SC-T
‘no’), but due to Modelica compatibility the Modelica
state chart library can be used (SC-G – ‘(yes)’. Simula-
tionX (and ITI-SIM) put emphasis on physical applica-
tion – oriented modelling and simulation, so frequency
analysis is directly supported in the simulation environ-
ment (FA – ‘yes’), which offers via additional modules
(e.g. interfaces to multibody systems) connectivity to ex-
ternal systems (ENV – ‘(yes)’). The simulation engine
drives also pseudo-3D visualisation (VIS – ‘yes’).

Figure 21: Physical Modelling in ITI-SIM / SimulationX

AnyLogic

AnyLogic – already discussed in a previous section) is
based on hybrid automata (SC-T and SC-G - ‘yes’).
Consequently, hybrid decomposition and control by
external events is possible (ED, SD ‘yes’). AnyLogic
can deal partly with implicit systems (only nested ap-
proach, DAE ‘(yes)’), but does not support a-causal
modelling (PM-T, PM-G - ‘no’) and does not support
Modelica (MOD - ‘no’). Furthermore, new versions of
AnyLogic concentrate more on discrete modelling and
modelling with System Dynamics, whereby state event
detection has been sorted out (SEH ‘(no)’. On the other
hand, AnyLogic offers many other modelling para-
digms, as System Dynamics, Agent-based Simulation,
DEVS modelling and simulation. AnyLogic is Java-
based and provides simulation-driven visualisation and
animation of model objects (VIS ‘yes’) and can also
generate Java web applets.

In AnyLogic, various implementations for the Con-
strained Pendulum are possible. A classical implementa-
tion is given in Figure 8, following classical textual ODE
modelling, whereby instead of IF – THEN clauses a state
chart is used for switching (I-SE-P, I-SE-S).

Equations Constrained Pendulum
parameter …
end Constrained pendulum
Equations Short
d(alpha)/dt = omega
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ls
Change eventLong;
(alpha>=alphaN)||(alpha<=alphaN)
Action; omega=omega*ls/ll; stop
end Short
Equations Long
d(alpha)/dt = omega
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ll
Change eventShort
(alpha>=alphaN)||(alpha<=alphaN)
Action; omega=omega*ll/ls; stop
end Long

Figure 21: AnyLogic Model for Constrained
Pendulum, Hybrid Model Decomposition with

two Pendulum Models and External Events

AnyLogic E-SE-P Model with State Charts. A hybrid de-
composed model may make use of two different models,
each defined in substate / submodel Short and Long. –
both part of a state chart switching between these sub-
models. The events defined at the arcs stop the actual
model, set new initial conditions and start the alternative
model (Figure 21).

AnyLogic E-SE-P Model with Parallel Models. Any-
Logic works interpretatively, after each external event
state equations are tracked and sorted anew for the new
state space. This makes it possible, to decompose model
not only in serial, but also in parallel. In Constrained
Pendulum example, the ODE for the angle, which is not
effected by the events, may be put in the main model,
together with transformation to Cartesian coordinates
(Figure 22), which seems to run in parallel with differ-
ent velocity equations.

Equations Constrained Pendulum
d(alpha)/dt = omega
x = l*sin(alpha); y = l*cos(alpha)
end Constrained pendulum
Equations Short
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ls
Change eventLong
(alpha>=alphaN)||(alpha<=alphaN)
Action; omega=omega*ls/ll; stop
end Short
Equations Long
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ll
Change eventShort
(alpha>=alphaN)||(alpha<=alphaN)
Action; omega=omega*ll/ls; stop
end Long

Figure 22 AnyLogic Model for Constrained Pendulum,
Hybrid Model Decomposition with Two Models for

Angular Velocity and Overall Model for Angle

From software engineering view, AnyLogic is a pro-
gramming environment for Java, with special features
for ODE simulation. At each level Java code can be
entered, and Java modules linked and called. The main
module may be arbitrarily extended by Java code, stat-
ing not only the (predefined) simulation engine, but also
frequency analysis packages, etc., with programming
effort – so ENV ‘(yes)’

Model Vision Studium MVS

Model Vision Studium (MVS) – is an integrated graphical
environment for modelling and simulation of complex
dynamical systems. Development of MVS started in the
1990ies at Technical University of St. Petersburg; for end
of 2008, an English version is announced.
Basis of MVS are hybrid state charts (SC-T, SC-G -
‘yes’), allowing any parallel, serial, and conditional com-
bination of continuous models, described by DAEs, and
controlled and interrupted by state events (ED, SHE -
‘yes’). State models itself are objects to be instantiated in
various kinds, so that structural dynamic systems of any
kind can be modelled (SD - ‘yes’). Textual physical and
DAE modelling is supported by an editor capable of edit-
ing mathematical formula (DAE and PM-T ‘yes’, PM-G
no), but no Modelica compatibility (MOD – ‘no’).
For MVS, a subset of UML Real Time was chosen and
extended to state chart activities (Java – based). Other
modules (simulation kernel, environment) are linked
modules (e.g. C-modules), e.g. Java-base simulation
driven visualisation (VIS - ‘yes’). In principle, MVS and
AnyLogic have been developed in parallel. The continu-
ous elements in AnyLogic have been taken from MVS,
because AnyLogic started as pure discrete simulator.

State charts are similar to AnyLogic, consisting of differ-
ent implicit state space descriptions – and also defining
complex experiments (calling different models; ENV –
‘yes), but without frequency analysis (FA – ‘no’).

As example, two states pendulum and flight, and a state
chart handling the external event of type E-SE-D (Fig-
ure 23) describe a breaking pendulum.

Figure 23: MVS Model for Breaking Pendulum
- Hybrid Model Decomposition into Pendulum

and Flight Model

SCILAB / SCICOS

Scilab is a scientific software package for numerical
computations with a powerful open computing envi-
ronment for engineering and scientific applications.
Scilab is open source software. Scilab is now the re-
sponsibility of the Scilab Consortium, launched in May
2003. Scicos is a graphical dynamical system modeller
and simulator toolbox included in Scilab.
Scilab / Scicos is an open source alternative to MAT-
LAB / Simulink, developed in France. Consequently,
Scilab as MATLAB – like tool has nearly the same fea-
tures than MATLAB: no equation sorting– MS – ‘no’!;
DE, IR, PM-T, PM-G, MOD, SC-T, and SC-G – ‘no’;
SEH, DAE, and VIS – ‘(yes)’, remarkably – SD, FA
and ENV – ‘yes’. Similarly, Scicos has extended fea-
tures ED, SEH, and DAE – ‘yes’.

The developers of Scicos started early with a kind of
physical modelling – Figure 24 shows an electrical
modelling palette of Scicos (PM-T, PM-G – yes). They
are working on extensions in two directions:
• extending the model description by full Modelica

models (textually and graphically) –
- so MOD and IR ‘(yes)’ (subset)

• refining the IF-THEN-ELSE – and WHEN – clause
introducing different classes of associated events,
resulting ‘state chart clauses’ - so SC-T – ‘yes’

In Scicos, the Modelica state chart library allows graphical
state chart modelling. Standalone Scicos has no features
for frequency analysis, structural decomposition and ex-
tended environment (FA, SD, ENV – ‘no’), but limited
visualisatisation (VIS – ‘(yes)’); Scicos controlled by
Scilab has all these features (VIS, FA, SD, ENV – ‘yes’).

Figure 24: Scicos Physical Modelling Palette for
Electrical Applications

Maple

Maple – developed by Maplesoft, Canada, is working
on a toolbox MapleSim, which will understand Mode-
lica models (PM-T, PM-G, and MOD – ‘yes’). Maple
acts as environment and provides sophisticated DAE
solvers, as well as symbolic algorithms for index reduc-
tion (DAE, IR, ENV, VIS, FA – ‘yes’).
In development are constructs for events and event han-
dling (ED – ‘yes)’, SEH – ‘(no)’); textual state chart
modelling has not been discussed yet, graphical state
chat notation may com from the experimental Modelica
state chart library (SC-T – ‘no’, SC-G – ‘(yes)’).

Availability of Structural Features

Table 10 provides an availability comparison of the dis-
cussed features within the presented simulators. Clearly
such comparison must be incomplete, and using simple
‘yes’ and ‘no’ might be too simple. Consequently, it
should be a hint for further detailed feature comparison.

REFERENCES

As a really adequate reference list, with details on structures,
features, and detailed developments and background would
cover again 10 pages, alternatively the list is restricted to only
few main sources. For information modelling approaches, it is
referred to the journal SNE – Simulation News, where regularly
benchmarks, also for Modelica modelling, are published (http:
sne.argesim.org, ww.argesim.org). For simulator information,
see webpages of distributors / developers.

F. Breitenecker F., and I. Troch. 2004. ‘Simulation Software –
Development and Trends’. In Modelling and Simulation of
Dynamic Systems / Control Systems, Robotics, and Auto-
mation. H. Unbehauen, I. Troch, and F. Breitenecker
(Eds.). Encyclopedia of Life Support Systems (EOLSS),
UNESCO, Eolss Publishers, Oxford ,UK, www.eolss.net.

Cellier, F.E. (1991). Continuous System Modeling.
Springer, New York.

Cellier, F.E., and E. Kofman. 2006. Continuous System
Simulation. Springer, New York.

Fritzson, P. 2005. Principles of Object-Oriented Modeling and
Simulation with Modelica. Wiley IEEE Press.

Fritzson, P., F.E.Cellier, C. Nytsch-Geusen, D. Broman, and
M. Cebulla, Eds. 2007. EOOLT'2007 - Proc. 1st Intl.
Workshop on Equation-based Object-oriented Languages
and Tools. TU Berlin Forschungsberichte, Vol. 2007-11.

Nytsch-Geusen C., and P. Schwarz. 2005. ‘MOSILAB:
Development of a Modelica based generic simulation tool
supporting model structural dynamics’. In Proc. 4th
Intern. Modelica Conference, G. Schmitz (Ed.),
Modelica Association - www.modelica.org, 527 – 535.

Strauss J. C. 1967. ‘The SCi continuous system simulation
language (CSSL)’. Simulation 9, SCS Publ. 281-303.

AUTHOR BIOGRAPHIES

Felix Breitenecker studied ‘Applied
Mathematics’ and acts as professor for
Mathematical Modelling and Simulation
at Vienna University of Technology. He
covers a broad research area, from
mathematical modelling to simulator
development, from DES via numerical
mathematics to symbolic computation,
from biomedical and mechanical simula-

tion to process simulation. He is active in various simulation
societies: president and past president of EUROSIM since
1992, board member and president of the German Simulation
Society ASIM, member of INFORMS, SCS, etc. He has pub-
lished about 250 scientific publications, and he is author of
two books and editor of 22 books. Since 1995, he is Editor in
Chief of the journal Simulation News Europe.

M
S

- M
od

el

So
rti

ng

ED
 -E

ve
nt

D

es
cr

ip
tio

n

SE
H

 -S
ta

te
 E

ve
nt

H

an
dl

in
g

D
A

E
- D

A
E

So

lv
er

IR
 -

In
de

x

R
ed

uc
tio

n

PM
-T

 -
Ph

ys
ic

al

M
od

el
lin

g
-T

ex
t

PM
-G

 -
Ph

ys
ic

al

M
od

el
lin

g
-G

ra
ph

ic
s

V
IS

 –
 ‘O

nl
ie

’ -

V
is

ua
lis

at
io

n

M
O

D
 –

 M
od

el
ic

a
M

od
el

lin
g

SC
-T

 –
 S

ta
te

 C
ha

rt
–

M
od

el
lin

g
- T

ex
t

SC
-G

 –
 S

ta
te

 C
ha

rt

M
od

el
lin

g
- G

ra
ph

ic
s

SD
 –

 S
tru

ct
ur

al
 D

y-
na

m
ic

 S
ys

te
m

s

FA
 –

 F
re

qu
en

cy

A
na

ly
si

s

EN
V

 –
 E

xt
en

de
d

En
-

vi
ro

nm
en

t

MATLAB no no (yes) (yes) no no no (yes) no no no yes yes yes
Simulink yes (yes) (yes) (yes) no no (no) (yes) no no no no yes (yes)
MATLAB /
Simulink yes yes yes (yes) no no (no) (yes) no no no yes yes yes

Simulink /
Stateflow yes yes yes (yes) no no (no) (yes) no (yes) yes no yes (yes)

ACSL yes yes yes yes no no (no) (yes) no no no no yes yes
Dymola yes yes yes yes yes yes yes yes yes (yes) (yes) no (no) (yes)
MathModelica yes yes yes yes yes yes yes (yes) yes (no) (yes) no (no) (no)
MathModelica
/ Mathematica yes yes yes yes yes yes yes yes yes (no) (yes) yes yes yes

Mosilab yes yes yes yes (no) yes yes (no) (yes) yes yes yes no (yes)
Open Modelica yes yes yes yes yes yes (no) (no) yes (no) (yes) no no no
SimulationX yes yes yes yes yes yes yes yes yes (no) (yes) no yes (yes)
AnyLogic yes yes (yes) (yes) no no no yes no yes yes yes no no
Model Vision yes yes yes yes yes yes no yes no yes yes yes yes no
Scilab no no (yes) (yes) no no no (yes) no no no yes yes yes
Scicos yes (yes) yes yes (yes) yes yes (yes) (yes) yes (yes) no no no
Scilab/ Scicos yes yes yes yes (yes) yes yes (yes) (yes) yes (yes) yes yes yes
(MapleSim) yes (yes) (yes) yes yes yes yes yes yes no no (yes) (yes) yes

Table 10: Availability of Structural Features in Simulators - DAEs, State Events, Modelica Notation,
Structural Decomposition, and Related Features

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

