

Copyright © ECMS2008

Printed: ISBN: 0-9553018-7-4 2008 International Conference

 978-0-9553018-7-2 on High Performance Computing

 & Simulation (HPCS 2008)

CD: ISBN: 0-9553018-6-6 joint CD – ECMS 2008 &

 978-0-9553018-6-5 HPCS 2008

Cover picture provided by Loucas S. Louca

Printed by Digitaldruck Pirrot GmbH

 66125 Sbr.-Dudweiler, Germany

 II

PROCEEDINGS OF THE
2008 INTERNATIONAL CONFERENCE ON

HIGH PERFORMANCE COMPUTING &
SIMULATION
(HPCS 2008)

June 3rd – 6th, 2008

Nicosia, Cyprus

Edited by: Waleed W. Smari

Organized by: The European Council for Modelling and Simulation [ECMS]

Technically Co-sponsored by:

Co-Sponsored by IEEE Germany, ASIM, EUROSIM, CASS, JSST, LSS, PTSK,
TSS, [IEEE] Institute of Electrical and Electronics Engineers UKRI, The
University of Cyprus

Hosted by:

University of Cyprus, Nicosia, Cyprus

 III

 IV

 The 2008 International Conference on High Performance Computing
& Simulation
(HPCS 2008)

June 3 - 6, 2008
Nicosia, Cyprus

Co-Sponsored by IEEE Germany, ASIM, EUROSIM, CASS, JSST, LSS, PTSK, TSS, The
University of Cyprus

__

ADVISORY COMMITTEE

David, Bader, Georgia Institute of Technology, Atlanta, GA, USA
Rosa Badia, Universitat Politècnica de Catalunya, Barcelona, Spain

Rajkumar Buyya, The University of Melbourne, Australia
Jose C. Cunha, Universidade Nova de Lisboa, Monte de Caparica, Portugal

Wolfgang Gentzsch, D-Grid, Germany
Hai Jin, Huazhong University of Science and Technology, China

Domenico Talia, DEIS, Universita' della Calabria, Italy

ORGANIZING COMMITTEE

Honorary General Chair:
 Geoffrey C. Fox, Indiana University, Indiana, USA

General Co-Chairs:
 Vladimir Getov, University of Westminster, Westminster, U.K.
 Gaetan Hains, LACL, Université Paris-12, Paris, France
 Mads Nygård, Norwegian University of Science and Technology, Trondheim, Norway

Program Chair:
 Waleed W. Smari, University of Dayton, Ohio, USA

Tutorials Chair:
 Claudia Leopold, University of Kassel, Kassel, Germany

Workshops & Special Sessions Co-Chairs:
 Salvatore Orlando, University of Venice, Venice, Italy
 Carsten Trinitis, Technische Universität München, München, Germany

Panels Chair:
 Yudith Cardinale, Universidad Simón Bolívar, Venezuela

Posters Co-Chairs:

George Pallis, University of Cyprus, Nicosia, CYPRUS
Christophe Rosenberger, GREYC-ENSI de Caen, Caen, France

 V

Publicity Co-Chairs:
Toni Cortes, Universitat Politecnica de Catalunya, Spain
Christian Pérez, IRISA, Universitaire de Beaulieu, Rennes, France
Gudula Rünger, Technical University of Chemnitz, Germany

Awards Chair:
 Ratan Guha, University of Central Florida, USA

Registration & Publications Chair:
 Martina-Maria Seidel, ECMS, Germany

Conference Web Master & Conference Software Systems Manager:
 Abdul Habra, Technology Exponent LLC, Ohio, USA

Local Arrangements:

Loucas S. Louca, University of Cyprus, Nicosia, Cyprus
Yiorgos Chrysanthou, University of Cyprus, Nicosia, Cyprus

Committee Members at Large and International Liaisons:

David Abramson, Monash University, Australia
Gabriela Barrantes, U. de Costa Rica, Costa Rica
Simon Dobson, UCD School of Computer Science and Informatics, Dublin, Ireland
Yezid Donoso, Universidad de Los Andes, Bogotá, Colombia
Chung-Ta King, National Tsing Hua University, Taiwan
Jacek Kitowski, AGH University of Science and Technology, Poland
Victor Malyshkin, Russian Academy of Sciences, Novosibirsk, Russia
Oznur Ozkasap, Koc University, Istanbul, Turkey
Rafael P. Saldaña, Ateneo de Manila University (ADMU), Quezon City, Philippines
R. K. Subramanian, University of Mauritius, Reduit, Mauritius
Nam Thoai, Ho Chi Minh City University of Technology, Vietnam
Cho-Li Wang, The University of Hong Kong, Hong Kong
Jasmy Yunus, Universiti Teknologi Malaysia, Malaysia

INTERNATIONAL TECHNICAL PROGRAM COMMITTEE -
HPCS 2008

Chairperson
 Waleed W. Smari, University of Dayton, Ohio, USA

ITPC Members

Hamid Abachi, Monash University, Australia
Marcos Athanasoulis, Harvard Medical School, Massachusetts, USA
Marta Barría, Universidad de Valparaíso, Chile
Françoise Baude, INRIA, Université de Nice - Sophia Antipolis, France
Lars R. Bengtsson, Chalmers University of Technology, Sweden
Arndt Bode, Technical University of Munich, Germany
Helmar Burkhart, Informatik University of Basel, Switzerland
Edson Norberto Cáceres, Federal University of Mato Grosso do Sul, Brazil
Hector Cancela, Universidad de la República, Uruguay
Mario Cannataro, University of Catanzaro, Italy
Ghulam M. Chaudhry, Univ of Missouri at Kansas City, USA

 VI

Sorin Dan Cotofana, Delft University of Technology, The Netherlands
Michel Dayde, Institute of Research in Computer Science of Toulouse (IRIT) - INPT, France
Hassan B. Diab, American University of Beirut, Lebanon
Robert Elsässer, University of Paderborn, Germany
Bertil Folliot, University of Pierre and Marie Curie, Paris VI - CNRS, France
Ratan Guha, University of Central Florida, USA
Attila Gursoy, Koc University, Turkey
Kenneth A. Hawick, Massey University - Albany, New Zealand
Gongzhu Hu, Central Michigan University, Mount Pleasant, Michigan, USA
Hai Jin, Huazhong University of Science and Technology, China
Harald Kosch, University of Passau, Germany
Dieter A. Kranzlmueller, GUP, Joh. Kepler University Linz, Austria
Soo-Young Lee, Auburn University, Alabama, USA
Keqin Li, State University of New York at New Paltz, New York, USA
Antonio A.F. Loureiro, Federal University of Minas Gerais, Brazil
Edmundo R. M. Madeira, UNICAMP - University of Campinas, Brazil
Beniamino Di Martino, Seconda Universita de Napoli, Italy
Nouredine Melab, LIFL - Université de Lille 1, France
Francisco José Monaco, Universidade de São Paulo, Brazil
Jean-Frederic Myoupo, University of Picardie-Jules Verne, France
Maria S. Perez, Universidad Politecnica de Madrid, Spain
Dana Petcu, Western University of Timisoara, Romania
Thomas Rauber, University of Bayreuth, Germany
Claudio Righetti, Universidad de Buenos Aires, Argentina
Christophe Rosenberger, GREYC laboratory, ENSI-Caen, France
Gudula Rünger, Chemnitz University of Technology, Germany
Erich Schikuta, University of Vienna, Austria
Stanislav G. Sedukhin, University of Aizu, Japan
Leonel Sousa, Superior Institute of Technology (IST), Technical University of Lisbon, Portugal
Heinz Stockinger , Swiss Institute of Bioinfomatics - CERN, Switzerland
Przemyslaw Stpiczynski, Maria Curie-Sklodowska University, Poland
Jacob Sukhodolsky, Saint Louis University, Missouri, USA
Georgios K. Theodoropoulos, University of Birmingham, UK
Ventzeslav Valev, Bulgarian Academy of Sciences, Sofia, Bulgaria
Junaid A. Zubairi, SUNY at Fredonia, USA

WORKSHOP ON SECURITY AND HIGH PERFORMANCE
COMPUTING SYSTEMS (SHPCS 08)

Organizers: Luca Spalazzi and Ratan Kumar Guha
Dipartimento di Ingegneria Informatica, Gestionale e dell'Automazione
Università Politecnica delle Marche, Ancona, Italy
School of Electrical Engineering and Computer Science,
University of Central Florida, Orlando, Florida, USA

SHPCS 08 Technical Program Committee:
Jemal H. Abawajy, Deakin University, Australia
Akshai Aggarwal, University of Windsor, Canada
Bharat Bhargava, Purdue University, USA
Mathieu Blanc, Commissariat à l'Energie Atomique (CEA), France
Gianluca Capuzzi, Universita Politecnica delle Marche, Italy
Egidio Cardinale, Universita Politecnica delle Marche, Italy
Bernard Cousin, IRISA, Université de Rennes, France
Stephen Farrell, Trinity College, Dublin, Ireland
Dieter Hutter, DFKI GmbH, Germany

 VII

Martin G. Jaatun, SINTEF ICT, Norway
Jean-Francois Lalande, LIFO, Université d'Orleans, France
Pil Joong Lee, Chungnam National University, South Korea
Mark Manulis, Université Catholique de Louvain, Belgium
Jose Antonio Onieva González, Universidad de Málaga, Spain
Alexander Pretschner, ETH Zürich, Switzerland
Waleed W. Smari, University of Dayton, USA
Willy Susilo, University of Wollongong, Australia
Toshihiro Tabata, Okayama University, Japan
Simone Tacconi, Polizia di Stato, Italy
Carolyn Talcott, SRI International, USA
Soon Tee Teoh, University of California, Davis, USA
Christian Toinard, LIFO, Universite d'Orleans, France
Luis Javier Garcia Villalba, Universidad Complutense de Madrid, Spain
Zonghua Zhang, INRIA, IRCICA, Villeneuve d'Ascq, France

WORKSHOP ON OPTIMIZATION ISSUES IN GRID AND PARALLEL
COMPUTING ENVIRONMENTS (OPTIM 08)

Organizers: Pascal Bouvry, Girma Berhe, Bernabé Dorronsoro, Sébastien Varrette
University of Luxembourg, Luxembourg

OPTIM 08 Technical Program Committee:

Enrique Alba, University of Malaga, Spain
Farhad Arbab, CWI, Amsterdam, The Netherlands
Jacek Blazewicz, Technical University of Poznan, Poland
Azzedine Boukerche, University of Ottawa, Canada
Serge Chaumette, University of Bordeaux, France
Frédéric Guinand, University of Le Havre, France
Luc Hogie, INRIA Sophia-Antipolis, France
Djamel Khadraoui, CRP-Tudor, Luxembourg
Ricky Kwok, Colorado State University, Fort Collins, USA
Kittichai Lavangnananda, KMUTT, School of Information Technology, Bangkok, Thailand
An Le Thi Hoai, University of Metz, France
Anthony A. Maciejewski, Colorado State University, Fort Collins, USA
Carlos H.C. Ribeiro, Instituto Tecnológico de Aeronáutica, São José dos Campos – SP, Brazil
Jean-Louis Roch, INRIA Rhônes-Alpes, France
Steffen Rothkugel, University of Luxembourg, Luxembourg
Franciszek Seredynski, Polish Academy of Sciences, Warsaw, Poland
H.J. Siegel, Colorado State University, Fort Collins, USA
Peter Sturm, University of Trier, Germany
Michel Syska, I3S, University of Nice Sophia Antipolis, CNRS and INRIA, France
El-Ghazali Talbi, INRIA-Futurs, Lille, France
Nikos Vlassis, Technical University of Crete, Greece
Albert Y. Zomaya, University of Sydney, Australia

 VIII

SPECIAL SESSION ON WEB SERVICES AND THE SEMANTIC GRID
(WSSG 2008)

Organizer: Taha Osman
School of Computing & Informatics
Nottingham Trent University, Nottingham, U.K.

WSSG 08 Technical Program Committee:

David Al-Dabass, Nottingham Trent University, UK
Christophe Claramount, French Naval Academy, France
Jeff Pan, University of Aberdeen, UK
Evtim Peytchev, Nottingham Trent University, UK
Omer Rana, Cardiff University, UK
S. Reiff-Marganiec, Leicester University, UK
Gerald Schaefer, Aston University, UK
Vlad Tanasescu, Knowledge Media Institute (KMi), Open University, UK

SPECIAL SESSION ON PATTERN ANALYSIS AND RECOGNITION
(PAR 08)

Organizer: Ventzeslav Valev, IAPR Fellow
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences, Sofia, Bulgaria

PAR 08 Technical Program Committee:
Mayer Aladjem, Ben-Gurion University of the Negev, Israel
Asai Asaithambi, University of South Dakota, USA
Jan-Olof Eklundh, Royal Institute of Technology, Sweden
Tin Kam Ho, Bell Laboratories, USA
Joachim Hornegger, Friedrich-Alexander University Erlangen-Nuremberg, Germany
Marek Kurzynski, Wroclaw University of Technology, Poland
Mariofanna Milanova, University of Arkansas at Little Rock, USA
Petia Radeva, Autonomous University of Barcelona, Spain
Bulent Sankur, Bogazici University, Turkey
Jose Ruiz Shulcloper, Advanced Technologies Applications Center, Cuba

HPCS 2008 ADDITIONAL REVIEWERS:
Mike McMahon, University of Nevada, Reno, Nevada, USA

 IX

 X

HPCS 2008 PREFACE

Welcome to Cyprus, welcome to Nicosia, and welcome to HPCS 2008. This is the 6th edition
of the HPCS conference since 2003. As it has matured into an esteemed venue for
publication and discussion of knowledge in the corresponding areas, we are very happy and
honoured to serve as General Co-Chairs of HPCS 2008. The conference program covers a
wide spectrum of issues in modelling and simulation of high performance and large scale
computing systems that play a key role in science and industry today.

Very hearty thanks go to the Program Chair, Professor Waleed W. Smari, and his colleagues
for putting together such a broad, well designed and interesting program. A big thanks also
goes to those who have set up all the related tutorials, special sessions, workshops and panels.
We would also like to thank the HPCS 2008 local organizers from the University of Cyprus as
well as ECMS.

We sincerely hope that you will enjoy the presentations and discussions; use the opportunity
to meet interesting researchers, and appreciate the wonderful setting that the city of Nicosia
offers to this conference. Last but not least, welcome back to HPCS 2009 next year.

Vladimir Getov Gaetan Hains Mads Nygård
London, United Kingdom Paris, France Trondheim, Norway

April 2008

 XI

 XII

HPCS 2008 PROGRAM

On behalf of the organizers and International Program Committee, I would like to welcome
you to the 2008 International Conference on High Performance Computing and Simulation
(HPCS 2008) held in Nicosia, Cyprus, June 3-6, 2008, in conjunction with ECMS 2008. This
conference will provide a dynamic forum to address, explore, and exchange information,
knowledge, and experiences in the state-of-the-art in high performance computing systems,
their modelling and simulation, design and use, and impact. HPCS brings together
researchers, scientists, engineers, practitioners, educators, and students from many nations
and backgrounds to exchange their insights, breakthroughs, and research results about aspects
of these systems and their technologies; to discuss challenges encountered in government,
industry, and academe; and to seek new and innovative solutions. Additionally, we hope that
the conference will present opportunities for many open technical interchanges in individual
and group settings on key technology issues, during the conference and the potential for
future collaborations among the participants, afterwards.

Current research in university, industry and research laboratories provides a new generation
of HPC systems that rely on grid concepts, reconfigurability, autonomicity and pervasiveness
to create fully interconnected communities of interest and practice with decision quality
information in compressed time cycles. Through modelling and simulation, knowledge
sharing and discovery, and just-in-time global grid-based information processing, individuals
and groups will work together and make better, not just faster, decisions, services and
products. It is hoped that the technologies and research presented in HPCS meetings will
address the foundations and developments upon which these next generation systems will be
built.

The conference this year consists of three keynote speeches, one plenary speech, three
tutorials, one panel session, one posters session, 13 technical sessions, six breaks, three
luncheons, and social events. For the first time, HPCS 2008 has its own proceedings volume.
It contains 42 out of a total of 75 papers submitted, with an acceptance rate of 56%. Each
paper in the main track was assigned to 4-5 reviewers and the majority of authors received at
least 3-4 reviews back. Due to the TPC members’ timely response, we were able to meet the
deadlines we had planned for the track. Each of the workshops and special sessions handled
their papers separately but maintained similar standards for paper evaluation and acceptance
as much as possible. The program’s technical papers represent works from academia,
research laboratories, government, and industry.

On behalf of the Organizing and Program Committees, I would like to thank the many people
who helped make this conference successful. I thank all authors who submitted their work to
HPCS 2008 and who are presenting in Nicosia. Our excellent collections of papers and
presentations were possible through the diligent work of the International Technical Program
Committee. The ITPC members and reviewers did an exceptional job and we are grateful for
their help in reviewing and evaluating the paper submissions. We would like to acknowledge
the multi conference’s three Keynote Speakers Profs. Geoffrey C. Fox, Felix Breitenecker,
and Raymond Marie as well as our Plenary Speaker Prof. Wolfgang Gentzsch. For the first
time, the conference this year has two workshops and two special sessions that were
organized by Profs. Luca Spalazzi, Ratan Guha, Pascal Bouvry, Ventzeslav Valev, Drs.
Girma Berhe, Bernabé Dorronsoro, Sébastien Varrette, and Taha Osman. We are thankful for
their efforts and contributions. We keenly urge all participants to organize workshops and
special sessions in their area of interest in future meetings and thus grow the community.

 XIII

Also for the first time, the conference has three tutorials presented by Drs. Sandro Fiore,
Salvatore Vadacca, Marcos Athanasoulis and Florence Reinisch and Prof. Geoffrey C. Fox.
We thank our panellists Profs. Abachi, Bouvry, Getov, Fox, and Trinitis for their
contributions to the HPCS 2008 Panel Session. This year, and with the outstanding efforts of
the Posters Co-Chairs, we put together a good set of poster papers and presentations that we
hope will contribute to some useful exchange and live discussions.

We wish to thank the European Council for Modelling and Simulation members for their hard
work, support, and advice, which made the conference a success. We also wish to thank our
hosts at the University of Cyprus in Nicosia, Cyprus for the wonderful arrangements, support,
and services they have provided. We acknowledge all our co-sponsors, including the
Biomedical High Performance Computing Leadership Summit and Harvard Medical School,
Boston, Massachusetts, USA. And last but not least, we thank Ms. Martina-Maria Seidel, the
HPCS 2008 Conference Manager for her continual support throughout the year to make this
conference possible in every way.

I must also express my gratitude for the support, guidance, and encouragement I received
from our General Chairs this year. In addition, I wish to thank all members of the Advisory
Committee and the Organizing Committee without whom this conference and program would
not have been possible.

We thank all of our attendees for making HPCS 2008 an extraordinary and enjoyable event.
We hope you find this year’s conference stimulating and worthwhile and look forward to
seeing you at HPCS 2009.

Waleed W. Smari
HPCS 2008 Program Chair
Dayton, Ohio, USA
April 2008

 XIV

TABLE OF CONTENTS

HPCS 2008 PREFACE...XI

HPCS 2008 PROGRAM .. XII

HPCS 2008 Keynote Speech ... 1

HPCS 2008 Plenary Speech.. 3

HPCS 2008 Tutorials .. 5

HPCS 2008 Panel Session .. 13

HPCS 2008 Posters ... 17

HPCS 2008 Sponsors .. 25

HPCS 2008 Exhibits.. 26

HPCS 2008 TECHNICAL PAPERS

Parallelization of Simulation and HPC Application
Comparison of Spatial Data Structures in OpenMP-Parallelized Steering...................... 31

Alexander Wirz, Björn Knafla, Claudia Leopold
(University Kassel, GERMANY)

Transaction-Oriented Simulation in Ad Hoc Grids: Design and Experience 38

Gerald Krafft, Vladimir Getov
(University of Westminster, Harrow, U.K.)

Automatic Development of High Performance Multi-Physics Simulators 45

Félix Santos, Eduardo R. R. Brito Jr., José Maria Bezerra
(Federal University of Pernambuco, Recife, BRAZIL)

Distributed Real-Time Railway Simulator .. 58

Camelia Avram, Mihai Hulea, Tiberiu Letia, Dana Muresan, Sergiu Radu
(Technical University of Cluj Napoca, ROMANIA)

Architectural and Organizational Infrastructure for HPC Systems
Parallel Clustering And Dimensional Scaling On Multicore Systems 67

Geoffrey Fox, Xiaohong Qiu, Huapeng Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen
(Indiana University, Indiana, USA)

Practical Precise Evaluation of Cache Effects on Low Level Embedded

VLIW Computing .. 75
Samir Ammenouche, Sid Ahmed, Ali Touati, William Jalby
(University of Versailles St-Quentin en Yvelines, FRANCE)

 XV

Non-Linear Seek Distance For Optimal Accuracy Of Zoned Disks Seek Time In
Multi-RAID Storage Systems.. 82
Soraya Zertal, Peter Harrison
(PRiSM laboratory-University of Versailles, Versailles, FRANCE)

VIRCONEL: A New Emulation Environment for Experiments with Networked

IT Systems... 89
Yacine Benchaib, Artur Hecker
(TELECOM ParisTech – ENST, Paris, FRANCE)

Resource Allocation, Sharing and Management in HPC Systems
Resource Sharing Usage Aware Resource Selection Policies for

Backfilling Strategies ... 99
Francesc Guim Bernat, J. Corbalan, J. Labarta
(Barcelona Supercomputing Center, Barcelona, SPAIN)

Energy Efficient Real Time Scheduling of Dependent Tasks Sharing Resources.......... 107

Abdullah M. Elewi, Medhat H. A. Awadalla, Mohamed I. Eladawy
(Helwan University, Cairo, EGYPT)

Partitioning and Scheduling Schemes for Grid and Cluster Systems
Scheduling Strategies in Federated Grids.. 117

Katia Leal, Eduardo Huedo, Rubén S. Montero, Ignacio M. Llorente
(Rey Juan Carlos University, Madrid, SPAIN)

Simple Near Optimal Partitioning Approach to Perfect Triangular

Iteration Space.. 124
Nedal Kafri, Jawad Abu Sbeih
(Alquds University, Abu Deis, Jerusalem, WEST BANK)

Databases in Grid and High Performance Computing Environments
Grid Database Management: Issues, Requirements and Future Directions 135

Sandro Fiore, Salvatore Vadacca, Alessandro Negro, Giovanni Aloisio
(University of Salento & SPACI Consortium, Lecce, ITALY)

Representing Uncertainty In Spatial Databases.. 141

Erlend Tøssebro, Mads Nygård
(University of Stavanger and the Norwegian University of Science and Technology,
NORWAY)

Code Generation, Libraries and Programming Environments
OpenMP Code Generation Based on a Model Driven Engineering Approach.............. 155

Julien Taillard, Frédéric Guyomarc'h, Jean-Luc Dekeyser
(INRIA Lille Nord Europe, FRANCE)

Analytical Matrix Inversion and Code Generation for Labeling

Flow Network Problems .. 162
Michael Weitzel, Wolfgang Wiechert
(University of Siegen, GERMANY)

 XVI

Workshop on Security and High Performance Computing Systems (SHPCS’08)
Correlation of System Events: High Performance Classification of SELinux Activities

and Scenarios.. 171
Jonathan Rouzaud-Cornabas, Patrice Clemente, Christian Toinard
(University of Orléans, FRANCE)

Cooperative Intrusion Detection System (CIDS) in Grid Environment on

Unlabelled Data .. 178
Abdul Samad Haji Ismail, Dahliyusmanto, Witcha Chimphlee,
Abdul Hanan Abdullah, Kamalrulnizam Abu Bakar, Md Asri Ngadi
(FSKSM-Universiti Teknologi MALAYSIA)

An IDS for Web Applications ... 185

Angelo Biscotti, Egidio Cardinale, Gianluca Capuzzi, Luca Spalazzi
(Università Politecnica delle Marche, ITALY)

Efficient Virus Detection Using Dynamic Instruction Sequences.................................... 192

Jianyong Dai, Ratan K. Guha, Joohan Lee
(University of Central Florida, USA)

MIAT-WM5: Forensic Acquisition for Windows Mobile PocketPC 200

Fabio Dellutri, Vittorio Ottaviani, Gianluigi Me
(University of Rome "Tor Vergata", ITALY)

A Proposal For Securing A Large-Scale High-Interaction Honeypot............................. 206

Jeremy Briffaut, Jean-Francois Lalande, Christian Toinard
(Laboratoire d'Informatique Fondamentale d'Orléans (LIFO), FRANCE)

Identity Based DRM System with Total Anonymity and Device Flexibility

Using IBES.. 213
Sharath Palavalli, U S Srinivas, Alwyn Roshan Pais
(National Institute of Technology-Karnataka, INDIA)

Requirements and Initial Design of a Grid Pseudonymity System 220

Joni Hahkala, Henri Mikkonen, Mika Silander, John White
(Helsinki Institute of Physics, SWITZERLAND)

SOPAS: A Low-cost and Secure Solution For E-Commerce ... 227

Marc Pasquet, Delphine Vacquez, Christophe Rosenberger
(ENSICAEN - Université de Caen – CNRS, FRANCE)

Performance of Security Mechanisms in Wireless Ad Hoc Networks 235

Matthias Becker, Martin Drozda, Sven Schaust
(University Hannover, GERMANY)

Efficient Tiny Hardware Cipher Under Verilog ... 241

Issam Damaj, Samer Hamade, Hassan Diab
(Dhofar University, Salalah, OMAN and American University of Beirut, Beirut,
LEBANON)

 XVII

Special Session on Web Services and the Semantic Grid (WSSG’08)
Access Control of Web Services Using Genetic Algorithms... 249

Nabila Semmache, Sadika Selka
(USTO, University of Science and Technology, ALGERIA)

Enabling Collaboration in the Semantic Grid: Survey of Web service

Composition Approaches .. 255
Taha Osman, Dhavalkumar Thakker, David Al-Dabass
(Nottingham Trent University, U.K.)

Special Session on Pattern Analysis and Recognition (PAR’08)
Robust Recognition of Checkerboard Pattern for Deformable Surface

Matching in Multiple Views .. 265
Weibin Sun, Xubo Yang, Shuangjiu Xiao, Wencong Hu
(Shanghai Jiao Tong University, Shanghai, CHINA)

Further Optimizations for the Chan-Vese Active Contour Model.................................. 272

Zygmunt L. Szpak, Jules R. Tapamo
(University of Kwazulu-Natal, Durban, REPUBLIC OF SOUTH AFRICA)

Workshop on Optimization Issues in Grid and Parallel Computing Environments
(Optim’08)
Energy Minimization-based Cross-layer Design In Wireless Networks 283

Le Thi Hoai An, Nguyen Quang Thuan, Phan Tran Khoa, Pham Dinh Tao
(Paul Verlaine Metz University, Metz, FRANCE, University of Alberta, Edmonton, AB,
CANADA, LMOOR/ INSA, Rouen, FRANCE)

Evaluation of Different Optimization Techniques in the Design of Ad Hoc Injection

Networks ... 290
B. Dorronsoro, G. Danoy, P. Bouvry, E. Alba
(University of Luxembourg, LUXEMBOURG, ETSI, University of Málaga, SPAIN)

BODYF - A Parameterless Broadcasting Protocol Over Dynamic Forests.................... 297

P. Ruiz, B. Dorronsoro, D. Khadraoui, P. Bouvry, L. Tardón
(CITI/CRP Henry Tudor, LUXEMBOURG, University of Luxembourg,
LUXEMBOURG, University of Málaga, Spain)

Optimizing Distributed Collaborative Filtering in Mobile Networks 304

Patrick Gratz, Adrian Andronache
(University of Luxembourg, LUXEMBOURG)

Building a Practical Event-Scheduler for a Multi-Processor Architecture 311

Sean Rooney, Daniel Bauer, Luis Garcés-Erice
(IBM Research, Zurich Research Laboratory, SWITZERLAND)

Detecting Protocol Errors Using Particle Swarm Optimization with

Java Pathfinder .. 319
Marco Ferreira, Francisco Chicano, Enrique Alba, Juan A. Gomez-Pulido
(Instituto Politécnico de Leiria, PORTUGAL, E.T.S. Ingeniería Informatica, University of
Málaga, SPAIN, University of Extremadura, Polytechnic Institute, SPAIN)

 XVIII

An Algorithm and Some Numerical Experiments for the Scheduling of Tasks with
Fault-Tolerancy Constraints on Heterogeneous Systems... 326
Moustafa Nakechbandi, Jean-Yves Colin
(LITIS, Université du Havre, FRANCE)

Structure and Latency Analyses for High Performance Computing System Based on
Asynchronous Optical Packet Switching ... 333
Zhao Jun; Sun Xiaohan
(Southeast University, Nanjing, CHINA)

HPCS 2008 POSTER and Work in Progress Session (Partial)
Communication Cost of a Matrix Product on Super-Hypercube Architecture 339

Maryam Amiripour, Hamid Abachi
(Department of ECSE, Monash University, AUSTRALIA)

Application Of Novel Technique In RIPEMD-160 Hash Function Aiming At

High-Throughput ... 344
Harris Michail, V. Thanasoulis, D. Schinianakis, G. Panagiotakopoulos, C. Goutis
(University Of Patras, Achaia, GREECE)

Massively Parallel Simulations Of Astrophysical Plasmas:

Status And Perspectives Of The Coast Project ... 349
B. Thooris, E. Audit, A. S. Brun, Y. Fidaali, F. Masset, D. Pomarède, R. Teyssier
(CEA/IRFU Saclay, Gif/Yvette Cedex FRANCE)

HPCS 2008 AUTHOR INDEX ... 355

 XIX

 XX

The 2008 International Conference on High Performance Computing & Simulation
(HPCS 2008)

June 3 - 6, 2008, Nicosia, Cyprus

HPCS 2008 KEYNOTE SPEECH

Multicore Grids and the Data Deluge

Geoffrey C. Fox
Professor of Computer Science, Informatics, Physics

Pervasive Technology Laboratories
Indiana University, Indiana, USA

ABSTRACT
Technology advances suggest that the data deluge, network bandwidth and computers
performance will continue their exponential increase. Computers will exhibit 64-128 cores in
some 5 years. Consequences include a growing importance of data mining and data analysis
capabilities that need to perform well on both parallel and distributed Grid systems.
Parallelism needs to be extended from cluster to multicore architectures. Grids need to inherit
the simplicity and broad support of Web 2.0 including mash-ups, gadgets and clouds. Clouds
are virtual clusters forming a Grid that exports a system not a service interface. We look at
possible scientific computing execution and programming environments that build on
commodity Web 2.0 and multicore software concepts. Perhaps these will get good
commercial support and finally allow attractive parallel and Grid software environments.

SPEAKER BIOGRAPHY

Geoffrey C. Fox (gcf@indiana.edu, http://www.infomall.org).
Professor Fox received a Ph.D. in Theoretical Physics from Cambridge
University and is now professor of Computer Science, Informatics, and
Physics at Indiana University. He is director of the Community Grids
Laboratory of the Pervasive Technology Laboratories at Indiana University.
He previously held positions at Caltech, Syracuse University and Florida
State University. He has published over 550 papers in physics and
computer science and been a major author on four books. Professor Fox has
worked in a variety of applied computer science fields with his work on

computational physics evolving into contributions to parallel computing and now to Grid and
multicore chip systems. He has worked on the computing issues in several application areas –
currently focusing on Defense, Earthquake and Ice-sheet Science and Chemical Informatics.
He is involved in several projects to enhance the capabilities of Minority Serving Institutions.

1

mailto:gcf@indiana.edu
http://www.infomall.org/

2

The 2008 International Conference on High performance Computing & Simulation
(HPCS 2008)

June 3 - 6, 2008, Nicosia, Cyprus

HPCS 2008 PLENARY SPEECH

Porting HPC Applications on Grids

Wolfgang Gentzsch
Duke University, RENCI Renaissance Computing Institute at UNC Chapel Hill, USA

and the D-Grid Initiative, Germany

ABSTRACT

This presentation addresses the state-of-the-art in applications running on distributed, high
performance and large scale computing systems, their modeling and simulation, design and
use, and their impact. We will focus on compute and data intensive applications which have
been ported to Grids recently. The presentation will include lessons learned and
recommendations, and tries to answer specific questions like: Why do we need Grids and for
which applications? Especially which applications benefit from Grids ? What are some of
the success stories so far? What are the benefits of Grids compared with monolithic HPC
systems? How to port and/or develop applications for Grids? The presentation will include
some thoughts about current trends and future directions.

SPEAKER BIOGRAPHY
Wolfgang Gentzsch is adjunct professor of computer science at Duke University in Durham,
and visiting scientist at RENCI Renaissance Computing Institute at UNC Chapel Hill, both in
North Carolina. He is also a consultant for the German D-Grid Initiative. Recently, he was
Vice Chair of the e-Infrastructure Reflection Group; Area Director of Major Grid Projects of
the Open Grid Forum Steering Group; and he is a member of the US President's Council of
Advisors for Science and Technology (PCAST-NIT). Before, he was Managing Director of
MCNC Grid and Data Center Services in North Carolina; Sun's Senior Director of Grid
Computing in Menlo Park, CA; President, CEO, and CTO of start-up companies Genias and
Gridware, and professor of mathematics and computer science at the University of Applied
Sciences in Regensburg, Germany. Wolfgang Gentzsch studied mathematics and physics at
the Technical Universities in Aachen and Darmstadt, Germany.

3

4

The 2008 International Conference on High Performance Computing and Simulation
(HPCS’08)

June 3-6, 2008, Nicosia, Cyprus

HPCS 2008 TUTORIALS

TUTORIAL I

Grid Database Access, Management and Integration

Sandro Fiore and Salvatore Vadacca
Euro-Mediterranean Centre for Climate Change (CMCC) and

SPACI Consortium
Lecce, Italy

TUTORIAL DESCRIPTION
Grids encourage and promote the publication, sharing and integration of scientific data,
distributed across Virtual Organizations. Scientists and researchers (from bioinformatics,
astrophysics, etc.) work on huge, complex and growing datasets. The complexity of data
management within a grid environment comes from the distribution, heterogeneity and
number of data sources. Along with coarse-grained services (such as grid storages, replica
services and storage resource managers), there is a strong interest on fine-grained services
concerning, for instance, grid-database access and management. This tutorial will explain in
detail Grid-Database Management Systems, with topics including basics on DBMS & Grids,
database virtualization, data access and integration, security issues, performance issues, and
interoperability with existing middleware (Globus, gLite, etc.). We present and discuss the
state of major projects in the area, with focus on emerging and consolidated grid standards
and specifications as well as production grid middleware. A demo on the Grid Relational
Catalog (GRelC) Project will show real scenarios and use cases related to data access and
integration. Examples concern bioinformatics (Italian LIBI Project), climate changes (Euro-
Mediterranean Centre for Climate Change Data Grid CMCC-DataGrid), virtual clinical
folders, accounting, monitoring and others. Both relational and XML databases are refered
to.

TUTORIAL OUTLINE

• Basics on Database Management Systems & Grids
• Database virtualization and Grid-DB concept
• Existing and novel approaches for data access and integration
• Security issues, e.g., ACL, VO Membership management systems

5

• Performance issues, e.g. advanced delivery mechanisms/protocols in grid, streaming,
compression

• Interoperability with existing middleware (Globus, gLite, etc.)
• Scalability issues
• Data Grid Portals and short demo on the GRelC Portal.

TARGET AUDIENCE
The targeted audience includes people interested in concepts related to database access,
management and integration (both relational and XML) and grid environments (both gLite
and Globus-based). Participants may, for instance, have background in bioinformatics
(molecules/protein DBs), astrophysics (astronomic DBs), or climate research (metadata DBs
for Earth Science, CMCC scenario).

REQUIRED BACKGROUND
Basics on Database Management Systems and query languages (SQL for RDBMS and XPath
for XML DBs).

TUTORIAL DURATION
Two hours:

 Hour 1 – Basic concepts on Grid data management systems (S. Vadacca)
 Hour 2 – Advanced concepts on Grid data management systems, state of the art and future

roadmap (S. Fiore)

INSTRUCTORS BIOGRAPHIES
Sandro Fiore was born in Galatina (ITALY) in 1976. He received a summa cum laude
Laurea degree in Computer Engineering from the University of Lecce (Italy) in 2001, as well
as a PhD degree in Informatic Engineering on Innovative Materials and Technologies from
the ISUFI-University of Lecce in 2004. Research activities focus on parallel and distributed
computing, specifically on advanced grid data management. Since 2004, he is a member of
the Center for Advanced Computational Technologies (CACT) of the University of Salento
and technical staff member of the SPACI Consortium. Since 2001 he has beens the Project
Principal Investigator of the Grid Relational Catalog project (http://grelc.unile.it). Dr. Fiore was
involved in the EGEE project (Enabling Grids for E-science) and is currently involved in the
EGEE-II project and other national projects (LIBI). Since June 2006, he leads the Data Grid
group of the Euro-Mediterranean Centre for Climate Change (CMCC) in Lecce (Italy). He is
author and co-author of more than 40 papers in refereed journals/proceedings on parallel &
grid computing and holds a patent on advanced data management.

Salvatore Vadacca was born in Galatina (LE) in 1982. He received summa cum laude
bachelor and master degrees in Computer Engineering from the University of Lecce, Italy in
2003 and 2006, respectively. His research interests include data management; distributed,
peer-to-peer and grid computing; as well as web design and development. Since 2003, he has
been a team member of the GRelC Project. In 2006 he joined the Euro-Mediterranean Centre
for Climate Change (CMCC) in Lecce, Italy, where he works in the Data Grid group.

6

http://grelc.unile.it/

The 2008 International Conference on High Performance Computing and Simulation
(HPCS’08)

June 3-6, 2008, Nicosia, Cyprus

TUTORIAL II

Building Shared High Performance Computing
Infrastructure for the Biomedical Sciences: Learnings

from Biomed HPC 2007

Marcos Athanasoulis Dr.PH and Florence Reinisch MPH
Harvard Medical School
Boston, Massachusetts

USA

DESCRIPTION
In recent years high performance computing has moved from the sidelines to the mainstream of
biomedical research. Increasingly researchers are employing computational methods to facilitate their
wet lab research. Some emerging laboratories and approaches are based on a 100% computational
framework. While there are many lessons to be learned from the computational infrastructure put into
place for the physical and mechanical sciences, the character, nature and demands of biomedical
computing differ from the needs of the other sciences. Biomedical computational problems, for
example, tend to be less computationally intensive but more “bursty” in their needs. This creates both
an opportunity (it is easier to meet capacity needs) and a challenge (job scheduling rules are more
complicated to accommodate the bursts).

Harvard Medical School provides one of the most advanced shared high performance research
computing centers at an academic medical center. In 2007, Harvard convened the first Biomedical
High Performance Computing Leadership Summit to explore the issues in creating shared computing
infrastructure for the biomedical sciences. We brought together over 100 leaders in the field to
exchange ideas and approaches. Through special sessions and direct participant surveys a number of
themes emerged around best practices in deploying shared computational infrastructure for the
biomedical sciences. Based on prior experience and the summit findings, this workshop summarizes
the approaches and ideas to providing a technical and process blueprint for organizations wishing to
provide shared research computing research resources for groups small or large – from a few hundred
CPUs and terabytes of data to thousands of CPUs and a petabyte or more of data.

TUTORIAL OUTLINE
The workshop includes the following topics:

• Summary of the current problems in Biomedical Sciences HPC
o Image Processing
o Simulation
o ‘Omics
o Translational Research

7

• Data Centers and Hardware
o Solving density problems
o Power and cooling strategies
o Blade servers and the multi-core machine

• Deployment Architectures
o Approaches to system imaging
o Supporting fault tolerant applications
o Distributed storage, ready for production use?
o Proprietary interconnects – cost/benefit analysis
o Virtualization

• Job Scheduling
o Approaches to time and resource based queues
o Handling the challenges of parallel vs. distributed
o Integrating “contributed” hardware

• Managing Storage Growth
o SAN vs NAS
o Distributed file systems
o Archiving and near-line storage
o New approaches to compression and de-duplication

• Organizational Challenges
o How to ask for and get seed funding
o Measuring performance and Return on Investment
o Affiliating for group purchasing power
o Workflow and support models
o Working with the ego of the PI
o Setting limits of services

• Putting it into Action
o Online and offline resources
o Communities and colleagues
o Deployment planning tools

TARGET AUDIENCE
The target audience includes any researcher and or research IT core service provider who are
interested in the challenges of providing shared high performance computing infrastructure to the
biomedical sciences. From the postdoc who needs to set-up a modest compute cluster for their
laboratory to the senior researcher who has been charged with providing world class infrastructure this
tutorial will make them aware of the foundations and latest challenges of biomedical HPC.

REQUIRED BACKGROUND
While it is expected that tutorial attendees should be information technology professionals with a basic
background in systems deployment and computer sciences, the session should prove valuable to
anyone with an interest in the challenges and opportunities in creating high performance computing
infrastructure for the biomedical sciences.

DURATION
The tutorial will take two hours. The bulk of the session will be devoted to the technical challenges
and current issues in the field. In the final part of the session, participants will have the opportunity to
present their plan for their home institution to the tutorial participants.

8

INSTRUCTORS BIOGRAPHIES
Dr. Athanasoulis is the chair of the Biomedical High Performance Computing Leadership Summit and Director
of Client Services and Research Information Technology for Harvard Medical School where he oversees the IT
service operations for the school and leads the development of high performance computing infrastructure to
support biomedical and healthcare research. During his career, Dr. Athanasoulis has worked in both the public
and private sector to improve the quality and efficiency of healthcare and research through information systems.
Prior to joining Harvard Medical School, Dr. Athanasoulis was the Vice President of Product Development at
RelayHealth Corporation, Inc., where he oversaw the continuing development and implementation of an
advanced patient-provider communication system. As Chief Technology Officer at HealthCentral.com, he led
the development of health information systems for more than 100 hospitals and health plans as well as a
consumer portal that served millions of consumers. Dr. Athanasoulis has consulted to a wide variety of health
care organizations including, UC San Diego, the Koop Foundation, the California Department of Health
Services, San Francisco General Hospital, Alta Bates Hospital, the National Community Pharmacists
Association and the UC Berkeley Wellness Guide. He is also the chief technical advisor for Healia, Inc. and co-
founder of the Healthy Communities Foundation. He holds a master’s degree in epidemiology and biostatistics
and a doctorate in health informatics, both from UC Berkeley where he was a University Fellow.

Ms. Reinisch, is the Program Director for the Biomedical High Performance Computing Leadership Summit.
She has more than twelve years of experience designing information systems in the biomedical sector. As
program officer for the Healthy Communities Foundation she leads the implementation of a web based indicators
project deployed in California and Washing State. She has served as co-investigator on multiple NIOSH –
funded projects, including a four year study to evaluate the 1994 CDC Guidelines for the control of nosocomial
transmission of tuberculosis risk among health care workers. Ms Reinisch was previously Director for the
California Sharps Injury Prevention Program, where she developed a dynamic web application for the program,
and served as co-investigator in a three-year CDC grant. She has expertise conducting surveillance and
epidemiologic studies in occupational and environmental health, designing data management systems, statistical
analysis, project management and web application deployment. She holds a Masters degree in Epidemiology
and Biostatistics from University of California, Berkeley.

9

10

The 2008 International Conference on High Performance Computing and Simulation
(HPCS’08)

June 3-6, 2008, Nicosia, Cyprus

TUTORIAL III

Using Multicore Chips for Scientific Computing

Geoffrey C. Fox
Professor of Computer Science, Informatics, Physics

Pervasive Technology Laboratories
Indiana University Indiana, USA

TUTORIAL DESCRIPTION
In this tutorial we review the status of generally available multicore chips including mainline
chips from AMD and Intel as well graphics units from IBM (Cell) and NVIDIA. We discuss
programming models and relation of these to those familiar on traditional distributed and
shared memory parallel machines. We look at performance issues emphasizing those like
memory bandwidth and shared cache usage that are distinct from those that dominate
traditional large scale parallel applications. We discuss relation of multicore, cluster and Grid
computing and examine role of services in unifying them. Examples from the SALSA project
http://www.infomall.org/salsa will be used to illustrate ideas. The application focus will be
linear algebra and data mining but other areas such as solution of differential equations will
be discussed.

TUTORIAL OUTLINE

• Introduction to Multicore Chips
• Programming Models
• Relation to Other High Performance Distributed and Parallel Machines
• Performance of Multicore Systems
• Relation to Cluster and Grid computing
• Multicore Projects and Applications
• Conclusions on State of the Art and Future Directions

TARGET AUDIENCE
The target audience includes researchers, students, and practitioners who are interested in
learning more about multicore design, development and use.

REQUIRED BACKGROUND
Knowledge of computer architecture and organization fundamentals. Knowledge of scientific
computing.

11

http://www.infomall.org/salsa

TUTORIAL DURATION
The tutorial material will be presented in a 2 to 3-hour session.

INSTRUCTOR BIOGRAPHY

Geoffrey C. Fox (gcf@indiana.edu, http://www.infomall.org).
Professor Fox received a Ph.D. in Theoretical Physics from Cambridge
University and is now professor of Computer Science, Informatics, and
Physics at Indiana University. He is director of the Community Grids
Laboratory of the Pervasive Technology Laboratories at Indiana University.
He previously held positions at Caltech, Syracuse University and Florida
State University. He has published over 550 papers in physics and
computer science and been a major author on four books. Professor Fox has
worked in a variety of applied computer science fields with his work on

computational physics evolving into contributions to parallel computing and now to Grid and
multicore chip systems. He has worked on the computing issues in several application areas –
currently focusing on Defense, Earthquake and Ice-sheet Science and Chemical Informatics.
He is involved in several projects to enhance the capabilities of Minority Serving Institutions.

12

mailto:gcf@indiana.edu
http://www.infomall.org/

The 2008 International Conference on High Performance Computing and Simulation
(HPCS 2008)

June 3-6, 2008, Nicosia, Cyprus

HPCS 2008 PANEL SESSION

Challenges Facing Modeling and Simulation in HPC
Environments

Moderator:

Dr. Waleed W. Smari, University of Dayton, Ohio, USA

PANEL MEMBERS:
Dr. Geoffrey Fox, Indiana University, USA
Dr. Vladimir Getov, University of Westminster, Westminster, U.K.
Dr. Hamid Abachi, Monash University, Australia
Dr. Pascal Bouvry, Luxembourg University, Luxembourg
Dr. Carsten Trinitis, UniversityTechnische Universität München, Germany

ABSTRACT:

In the past years, high performance computing environments have been used to solve
challenging scientific modeling and simulation applications. Now high performance
computing (HPC) technologies are becoming increasingly important as target platforms and
have matured to the point of becoming a tool for impacting society at large in many major
ways.

Panel members will present and discuss the main challenges facing HPC and simulation
communities today and in the foreseen future. They will emphasize and possibly prioritize
the importance of these problems and the difficulties of approaching them.

Furthermore, based on their experiences with different modeling and simulation applications
using HPC technologies (such as cluster and grid platforms), our panelists will point out the
main trends and new technologies that will impact these challenges, and the factors that they
believe will play major roles in pushing these challenges forward.

PANELISTS SHORT BIOS:
Geoffrey C. Fox, distinguished scientific and director of Community Grids Lab. Pervasive
Technology Labs at Indiana University. He earned his Ph.D. in Cambridge University (Theoretical
Physics) in 1967. He nationally renowned for his work in the development and application of parallel
computers, most recently served as director of the Computational and Information Science Laboratory
at Florida State University. He was also the director of the Northeast Parallel Architectures Center at
Syracuse University from 1990-2000. His research has led to two commercial spinoffs-

13

WebWisdom.com and Anabas Inc. Fox has worked with many distinguished scientists in his career;
while at CalTech he worked with Nobel Prize winner in physics, Richard Feynman. Fox's current
projects include developing the Online Knowledge Center for the Department of Defense High
Performance Computing and Modernization Program, which is creating a peer-to-peer system to allow
users to more easily access and update information on the department's high performance computers.

Vladimir Getov graduated from the Technical University of Sofia (Bulgaria) with distinction in 1975
and then earned his Ph.D. in Computer Science from the Bulgarian Academy of Sciences in 1980. As
a Senior Research Fellow he spent several years leading both R&D and academic research projects in
Bulgaria. During that time Dr Getov was Project Manager of the first Bulgarian IBM PC/XT
compatible computer (1984). In 1989 he moved to England where he joined the Concurrent
Computations Group at the University of Southampton. Since 1994 Dr Getov has been an academic
staff member at the University of Westminster in London where he was awarded the titles Reader in
1998 and Professor in 2001. In 2003 Vladimir Getov was appointed Research Director of the Harrow
School of Computer Science. In 2006 he was awarded Doctor of Science degree from the Bulgarian
Academy of Sciences for research work and results in the area of "Methods and Systems for High
Performance Computing with Java". Professor Vladimir Getov has been leading the Distributed and
Intelligent Systems Group at the University of Westminster in London since 1996. He was a founding
member of the Java Grande Forum in 1998 and has led the Java Grande Message Passing Group
which produced the Message Passing For Java (MPJ) specification. Vladimir Getov was also co-chair
of the Service Management Frameworks Group of the Open Grid Forum. In 2004, Professor Getov
was elected Governor of the International Council for Computer Communication. He is a member of
the CoreGrid Executive Committee and Leader of the European Institute on "Grid Systems, Tools, and
Environments" of the EU CoreGrid Network of Excellence (Sept. 2004 - Aug. 2008). Professor Getov
is also a Steering Committee Member of the John Vincent Atanasoff Initiative, working actively
towards worldwide recognition of the inventor of electronic digital computing.

Carsten Trinitis received his Master in Electrical Engineering from Technische Universität München,
Germany in 1990. He also received a Bachelor in Environmental Engineering in 1992, from
Technische Universität München,. He earned his PhD in Electrical Engineering, Technische
Universität München in 1998. Title of thesis: “Electric field optimization of three dimensional
problems in high voltage enineering”. He also carried out Postdoctoral studies: Lehrstuhl für
Rechnertechnik und Rechnerorganisation (Prof. Dr. A. Bode), Computer Science Department, TU
München, in 1998, and from 2001 to 2005. Since 2005 he is a Senior Scientist at Lehrstuhl für
Rechnertechnik und Rechnerorganisation TU München. Since 2002 he is also an Assistant Professor
at the German Armed Forces University, Munich, Germany. Other activities include: (1998) Systems
Engineer, MCG Company, Baldham, Germany, (1998 – 2001) Development Engineer, FORCE
Computers GmbH, Neubiberg, Germany, (1992) Visiting Scientist, Worcester Polytechnic Institute,
Worcester/MA, USA, (1994) Visiting Scientist, Jadavpur University, Calcutta, India, and (2005)
Visiting Professor, University of Lomza, Poland. His research interests comprise computer
architectures, microprocessor architectures, performance analysis of compute intensive applications,
and history of computer science.

Hamid Abachi received his Ph.D. degree in Electrical and Computer Systems Engineering from
University of Wales in Britain in 1981. He has been in academic life for more than 25 years. Hamid
has also worked and gained a wide spectrum of practical experiences in heavy to light industries. From
1991 to present he has held a faculty position in the Department of Electrical and Computer Systems
Engineering, at Monash University in Australia. He is Director of the International Program, and
Director of Postgraduate (Coursework) studies as well as the Professional Development Programs. He
is a member of the Editorial Board of the IEEE Systems Journal in the USA and WSEAS Transactions
on Computer Research. He has been a keynote speaker at many international conferences. In addition,
Hamid is also a member of Technical Program Committees and a reviewer of more than 60
international conferences where in a number of occasions he has been invited to serve as the
conference chair. He is a Fellow of IET (formally IEE, The Institution of Electrical Engineers, UK)
and a Fellow of IEAust (Engineers Australia). Hamid is also a Senior Member of the IEEE, USA. His
prime research areas include the modeling and simulation of Parallel Processing Systems, Design of
Advanced Computer Architectures, Fault-tolerant Distribution and Parallel Systems. He has many
journal and international conference papers in these areas.

14

Pascal Bouvry earned his undergraduate degree in Economical & Social Sciences and his Master
degree in Computer Science with distinction ('91) from the University of Namur, Belgium. He went on
to obtain his Ph.D. degree ('94) in Computer Science with great distinction at the University of
Grenoble (INPG), France. His research at the IMAG laboratory focused on mapping and scheduling
task graphs onto Distributed Memory Parallel Computers. Next, he performed post-doctoral research
on coordination languages and multi-agent evolutionary computing at CWI in Amsterdam, the
Netherlands. Dr Bouvry gained industrial experience as manager of the technology consultant team
for FICS (NASDAQ: SONE) a world leader in electronic financial services. Next, he worked as CEO
and CTO of SDC, a Saigon-based joint venture between SPT (a major telecom operator in Vietnam),
Spacebel SA (a Belgian leader in Space, GIS and Healthcare), and IOIT, a public research and training
center. After that, Dr. Bouvry moved to Montreal as VP Production of Lat45 and Development
Director for MetaSolv Software (NASDAQ: ORCL), a world-leader in Operation Support Systems
for the telecom industry (e.g. AT&T, Worldcom, Bell Canada, etc.). Dr. Bouvry is currently heading
the Computer Science and Communications (CSC) research unit of the Faculty of Sciences,
Technology and Communications of Luxembourg University, and serving as Professor. Pascal Bouvry
is also a member of the administration board of CRP-Tudor and a member of various scientific
committees and technical workgroups (ERCIM WG, COST TIST, LIASIT, etc.).

15

16

The 2008 International Conference on High Performance Computing and Simulation
(HPCS 2008)

June 3-6, 2008, Nicosia, Cyprus

HPCS 2008 POSTER ABSTRACTS
(Partial List)

Massively Parallel Simulations Of Astrophysical Plasmas

Bruno Thooris, E. Audit, A. S. Brun, Y. Fidaali, F. Masset, D. Pomarède, R. Teyssier
CEA/IRFU Saclay, Gif/Yvette Cedex FRANCE

ABSTRACT
The COAST (for Computational Astrophysics) project is a program of massively parallel numerical simulations
in astrophysics involving astrophysicists and software engineers from CEA/IRFU Saclay. The scientific
objective is the understanding of the formation of structures in the Universe, including the study of largescale
cosmological structures and galaxy formation, turbulence in interstellar medium, stellar magnetohydrodynamics
and protoplanetary systems. The simulations of astrophysical plasmas are performed on massively parallel
mainframes (MareNostrum Barcelona, CCRT CEA France), using 3-D magnetohydrodynamics and N-body
parallelized codes developed locally. We present in this paper an overview of the software codes and tools
developed and some results of such simulations. We also describe the Saclay SDvision graphical interface,
implemented in the framework of IDL Object graphics, our 3-D visualization tool for analysis of the
computation results.

17

Application Of Novel Technique In Ripemd-160 Hash Function Aiming At
High-Throughput

Harris Michail, V. Thanasoulis, D. Scinianakis, G. Panagiotakopoulos and C. Goutis
University Of Patras, Achaia, GREECE

ABSTRACT
Hash functions, form a special family of cryptographic algorithms that address the requirements for security,
confidentiality and validity for several applications in technology. Many applications like PKI, IPSec, DSA,
MAC’s need the requirements mentioned before. All the previous applications incorporate hash functions and
address, as time passes, to more and more users-clients and thus the increase of their throughput is necessary. In
this paper we propose an implementation that increases throughput and operating frequency significantly and at
the same time keeps the area small enough for the hash function RIPEMD-160. The deployed technique involves
the application of spatial and temporal pre-computation to the conventional operation block. The proposed
implementation leads to an implementation that achieves 35% higher throughput.

Presenter’s Biography:
Harris Michail received a Diploma in Electrical & Computer Engineering from the University of Patras, Greece
and since then he has been working towards his PhD degree, in the domain of computer security, hardware
design and reconfigurable architectures.

Vassilis Thansoulis is an under-graduate student in the Department of Electrical .Eng, University of Patras,
Greece. He is currently working on his thesis that lies in the domain of security.

Dimitris Schinianakis received a Diploma in Electrical & Computer Engineering from the University of Patras,
Greece and since then he has been working towards his PhD degree, in the domain of of computer security,
hardware design

George Panagiotakopoulos received a Diploma in Electrical & Computer Engineering from the University of
Patras, Greece and since then he has been working towards his PhD degree, in the domain of embedded
computers.

Costas Goutis (S’70-M’78) received B.Sc in Physics, Diploma in Electronic Engineering, M.Sc from the
University of Heriott-Watt and Ph.D from the University of Southampton. He is currently a Professor with the
ECE Department, University of Patras.

18

Communication Cost of Matrix Product on Super-Hypercube Architecture

Maryam Amiripour, Hamid Abachi
Department of ECSE, Monash University, AUSTRALIA

ABSTRACT
Processor allocation and the task scheduling technique in parallel processing systems play a significant role in
improving the performance of a message-passing architecture. Adapting the right algorithms and further
improvements in areas such as time complexity, execution time, speed up and synchronization mechanisms
undoubtedly facilitates implementation of advanced applications on a parallel processing system. These
applications include but are not limited to DNA computing, artificial immune systems and optical computing to
name a few. This paper highlights the communication cost related to a Super-Hypercube topology for being a
subclass of traditional Hypercube architecture. Furthermore, a particular reference is made to the mathematical
modeling of Hypercube and Super-Hypercube architectures. Finally, graphical presentations are carried out
based on mathematical calculations to address the advantage of Super-Hypercube topology.

Presenter’s Biography:
Maryam Amiripour received her B.A. in Mathematics from Al-Zahra University in Iran in 1999. That was
followed by a Post Graduate Diploma in Information and System Management form Queensland University in
Australia in 2001.She is currently pursuing her PhD degree in Department of Electrical and Computer Systems
Engineering at Monash University in Australia. Her area of research includes hardware design, modeling and
simulation of advance parallel processing systems. The main parameters of her investigation include evaluation
of performance, reliability, speed and cost analysis of massively parallel processing systems. She has a number
of referred journal and conference papers in these areas. Her e-mail address is:
maryam.amiripour@eng.monash.edu.au.

Hamid Abachi received his Ph.D. degree in Computer Engineering from University College Cardiff in Wales,
Britain, in 1981. He has twenty five years of teaching, research and administrative experiences in international
universities around the world. He is currently an Associate Professor in the Department of Electrical and
Computer Systems Engineering at Monash University in Australia. He has more than 95 referred international
publications including Journal and conference papers. He has served as a member of international program
committee to more than 72 international conferences around the world. On a number of occasions has acted as
the conference chairman and on many occasions as the session chairman at international conferences. He has
also participated in the plenary sessions at international conferences. He has been a corecipient of the John
Madsen Medal for his best Journal paper in the discipline of Electrical Engineering form the Institution of
Engineers Australia (IEAust) in 2002, plus receiving a number of best paper awards in international conferences.
In addition he has been invited as a keynote speaker at four international conferences. He is a Fellow of The
Institution of Engineering and Technology (the IET, formerly IEE) in Britain, a Fellow of the Institution of
Engineers in Australia (IEAust) and a Senior Member of IEEE in the USA. His research interests include design
and simulation of parallel processing systems, modeling of advanced computer architectures, application of
distributed multimedia computing in advanced Engineering Education. His e-mail address is:
hamid.abachi@eng.monash.edu.au.

19

mailto:maryam.amiripour@eng.monash.edu.au
mailto:hamid.abachi@eng.monash.edu.au

A Service Based Architecture for a Sensors Data Integrating System to
Support Emergency Management Using Grid based Infrastructure

Enrico Tosti, Waleed Smari
Universita’ Politecnica delle Marche, Ancona, ITALY & University of Dayton, Ohio, USA

ABSTRACT
Information is a critical aspect in any emergency management activity. Decision making and efficiency are
improved when these are based on complete sets of information about the conditions of the struck area. Sensors
integration in a grid-based architecture through a Service Oriented solution allows Real-time access to
information via the World Wide Web. Thanks to the computational power of the grid architecture, the workload
concerning the storing, analyzing, correlating and mining the large amount of sensed raw data can be split
allowing a quick notification when a potential threat is detected. In this poster, we survey and classify types of
sensors used in EMS and propose a grid based architecture that will support such systems.

Presenter’s Biography:
Enrico Tosti is a Computer Engineering student at the Università Politecnica delle Marche, Ancona, Italy,
currently performing research activities at the High Performance and Reconfigurable Computing Laboratory in
the Department of Electrical and Computer Engineering, the University of Dayton, OH. This work is in part the
subject of his Masters degree Thesis in Computer Engineering.

Waleed W. Smari received his Ph.D. degree in Electrical and Computer Engineering from Syracuse University,
Syracuse, New York. Currently, he is an Associate Professor at the Department of Electrical and Computer
Engineering, University of Dayton, Dayton, OH. His technical interests and specialties include Collaboration
Sciences and Technologies, Human Centered Computing, High Performance Parallel and Distributed Processing
and Networking, Performance Evaluation Methods and Modeling Techniques of Computing Systems,
Information Systems and Engineering, Reconfigurable Computing and Digital Systems Design, and Computer
Engineering Education. He has been active in research and scholarship in his areas of expertise, both at the
national and international levels. He has served as PI on several research projects sponsored by government
agencies and industry. He has edited several volumes and authored/co-authored over 60 publications. He is the
Associate Editor of five international journals. He chaired international conferences and worked in others in
various leadership capacities, such as program chair, exhibits chair, workshops chair, local arrangements chair.
He was a Visiting Fellow at government labs as well as at a number of universities around the World. Dr. Smari
has long teaching experience, both at the graduate and undergraduate university levels. Dr. Smari is a Senior
Member of the Institute of Electrical and Electronics Engineers (IEEE), a Member of the Association for
Computing Machinery (ACM), the American Society for Engineering Education (ASEE), the International
Society of Computers and Their Applications (ISCA), the International Association of Science and Technology
for Development (IASTED), The Society for Computer Simulation International (SCS), The European Council
on Modelling and Simulation (ECMS), and the VHDL International Users Forum (MASIC-VIUF).

20

GRelC DAIS: towards Data Access and P2P Integration in gLite-based
Production Grids

Sandro Fiore, Salvatore Vadacca
University of Salento & Euro-Mediterranean Centre for Climate Change (CMCC), ITALY

ABSTRACT
In this poster, we describe in detail the Grid Relational Catalog (GRelC) Project, an integrated environment for
grid database management, highlighting the vision/approach, architecture, components, services and
technological issues. The key topic of this poster is the GRelC Data Access and Integration Service. The GRelC
DAIS is a GSI/VOMS enabled web service addressing extreme performance, interoperability and security. It
efficiently, securely and transparently manage databases on the grid across VOs, with regard to emerging and
consolidated grid standards and specifications as well as production grid middleware (gLite & Globus). It
provides a uniform access interface, in grid, both to access and integrate relational (Mysql, Oracle, Postgresql,
IBM/DB2, SQLite) and non-relational data sources (XML DB engines such as eXist, XIndice and libxml2 based
documents). Today the GRelC DAIS is part of the GILDA release (EGEE t-Infrastructure) and is candidate at
the EGEE Respect Program, is part of the glite-based INFNGRID release since is tightly coupled with the gLite
middleware, the EGEE architecture and the EGEE Training Infrastructure. Currently the GRelC DAIS is used as
the Euro-Mediterranean Centre for Climate Change (CMCC) Data Grid framework.

Presenter’s Biography:
Sandro Fiore was born in Galatina (LE) in 1976. He received a summa cum laude Laurea degree in Computer
Engineering from the University of Lecce (Italy) in 2001, as well as a PhD degree in Informatic Engineering on
Innovative Materials and Technologies from the ISUFI-University of Lecce in 2004. Research activities focus on
parallel and distributed computing, specifically on advanced grid data management. Since 2004, he is a member
of the Center for Advanced Computational Technologies (CACT) of the University of Salento and technical staff
member of the SPACI Consortium. Since 2001 he has been the Project Principal Investigator of the Grid
Relational Catalog project. Dr. Fiore was involved in the EGEE project (Enabling Grids for E-science) and is
currently involved in the EGEE-II project and other national projects (LIBI). Since June 2006, he leads the Data
Grid group of the Euro-Mediterranean Centre for Climate Change (CMCC) in Lecce (Italy). He is author and co-
author of more than 40 papers in refereed journals/proceedings on parallel and grid computing and holds a patent
on advanced data management.

Salvatore Vadacca was born in Galatina (LE) in 1982. He received summa cum laude bachelor and master
degrees in Computer Engineering from the University of Lecce, Italy in 2003 and 2006, respectively. His
research interests include data management; distributed, peer-to-peer and grid computing; as well as web design
and development. Since 2003, he has been a team member of the GRelC Project. In 2006 he joined the Euro-
Mediterranean Centre for Climate Change (CMCC) in Lecce, Italy, where he works in the Data Grid group.

21

SOPAS: A Low-Cost and Secure Solution for E-Commerce

M. Pasquet, D. Vacquez, C. Rosenberger
Laboratoire GREYC: ENSICAEN & Université de CAEN – CNRS, FRANCE

ABSTRACT
We present in this poster a new architecture for remote banking and e-commerce applications. The proposed
solution is designed to be low cost and provides some good guarantees of security for a client and his bank
issuer. Indeed, the main problem for an issuer is to identify and authenticate one client (a cardholder) using his
personal computer through the web when this client wants to access to remote banking services or when he
wants to pay on a e-commerce site equipped with 3D-secure payment solution. The proposed solution described
in this paper is MasterCard Chip Authentication Program compliant and was experimented in the project called
SOPAS. The main contribution of this system consists in the use of a smartcard with a I2C bus that pilots a
terminal only equipped with a screen and a keyboard. During the use of services, the user types his PIN code on
the keyboard and all the security part of the transaction is performed by the chip of the smartcard. None
information of security stays on the personal computer and a dynamic token created by the card is sent to the
bank and verified by the front end. We present first the defined methodology and we analyze the main security
aspects of the proposed solution.

Presenter’s Biography:
Marc PASQUET is an assistant professor at ENSICAEN, France. He obtained his Master degree from ENSAM
(Ecole Nationale Supérieure des Arts et Métiers) in 1977. He worked for 13 years for different companies
belonging to the signal transmission field and 15 years for the banking sector in the field of electronic payment.
He joined ENSICAEN (National Engineer School of Caen in France) in 2006 where he is now leading researchs
in the field of electronic payment.

Delphine Vacquez is a Research & development engineer at ENSICAEN, France. She obtained her Master
degree in 2006 from the University of Caen (computer science department). She has been working in the field of
secure and contacless e-payment.

Christophe Rosenberger is a Full Professor at ENSICAEN, France. He obtained his Ph.D. degree from the
University of Rennes I in 1999. He works at the GREYC Laboratory. His research interests include evaluation of
image processing and biometrics. He is involved recently on e-transactions applications.

22

A Proposal for Securing A Large-scale High-Interaction Honeypot

Jérémy Briffaut, Jean-François Lalande, Christian Toinard
University of Orléans, Security and Distributed Systems (SDS) Team, FRANCE

ABSTRACT
This poster presents the design of a secured high-interaction honeypot. The challenge is to have a honeypot
that welcomes attackers, allows userland malicious activities but prevents from system corruption. The
honeypot must be scalable to authorize a large amount of malicious activities and to analyze those activities
efficiently. The hardening of the honeypot is proposed for two kinds of host. The first class prevents system
corruption and has never to be reinstalled. The second class assumes system corruptions but easy reinstallation
is available. A first cluster enables to deploy a wide range of honeypots and security sensors. A second cluster
provides an efficient auditing facility. The solution is totally based on open source software and has been
validated during one year. A statistical analysis shows the efficiency of the different sensors. Origin and
destination of attacks are given.

Presenter’s Biography:
Jeremy Briffaut has just finished his Phd thesis in december 2007. One of the contribution of his thesis is the
PIGA Intrusion Detection System that is used as one of the sensors deployed in the High-Interaction Honeypot.
He is currently a temporary researcher at Ensi de Bourges.

Jean-François Lalande is an Assistant Professor in the SDS team. He then made his PhD at INRIA of Sophia-
Antipolis, in the Mascotte project (CNRS/INRIA/UNSA). His research interests were the combinatory
optimization inside optical and satellite networks. He is currently working on the verification of security policies
and intrusion detection using policy graph analysis.

Christian Toinard is a Professsor in the Laboratoire d'Informatique de l'Université d'Orléans (LIFO).
He received a Degree in Engineering from INSA in 1985 and a Degree in Engineering from ENSIMAG in 1986.
After having worked in software industry, he made a PhD at the University of Paris VI in 1992. He is currently
inc harge to charge to set up and develop research activities in security. The research developed had lead to the
creation of the Security and Distributed System team.

23

24

The 2008 International Conference on High Performance Computing and Simulation
(HPCS 2008)

June 3-6, 2008, Nicosia, Cyprus

HPCS 2008 SPONSORS

Co-sponsored by:
• IEEE Germany Section
• ASIM; German Speaking Simulation Society
• EUROSIM; Federation of European Simulation Societies

(ASIM, AES, DBSS, CROSSIM, CSSS, FRANCOSIM, HSS, ISCS, SIMS, SLOSIM, UKSIM)
• CASS; The Chinese Association for System Simulation
• JSST; The Japanese Society for Simulation Technology
• LSS; The Latvian Simulation Society
• PTSK; The Polish Society of Computer
• TSS; The Turkish Simulation Society
• University of Cyprus, Cyprus

In Cooperation with the IEEE Computer Society Technical Committee on Parallel
Processing (TCPP) (Pending)

25

The 2008 International Conference on High Performance Computing and Simulation
(HPCS 2008)

June 3-6, 2008, Nicosia, Cyprus

HPCS 2008 EXHIBITORS

26

The 2008 International Conference on High Performance Computing and Simulation
(HPCS 2008)

June 3-6, 2008, Nicosia, Cyprus

Technical Papers

27

28

Parallelization of Simulation and
HPC Application

29

30

COMPARISON OF SPATIAL DATA STRUCTURES
IN OPENMP–PARALLELIZED STEERING

Alexander Wirz, Claudia Leopold, Björn Knafla
University of Kassel, Research Group Programming Languages / Methodologies

Wilhelmshöher Allee 73, 34121 Kassel, Germany
wirz@student.uni-kassel.de, {leopold,bknafla}@uni-kassel.de

KEYWORDS
Parallelization of Simulation; Partitioning, Mapping, and
Scheduling

ABSTRACT
With the invent of multicore CPUs, parallelization be-
comes an important issue in the programming of com-
puter games. We consider steering, i.e., the coordina-
tion of a large number of agents to simulate swarm-
like behavior. Steering and in particular its neighbor-
hood search component are compute-intensive and profit
from parallelization. In this paper, we combine OpenMP
threads with the use of spatial data structures, consider-
ing three structures: k-d tree, grid, and cell array with
binary search. In addition to parallelization, we tuned
the performance by e.g. optimizing cache usage. The
focus of the paper is an experimental comparison of the
three structures, based on a parallel version of the Open-
Steer library. In nearest-neighbor search and updates, we
found none of the structures to be superior to the others,
and provide a detailed account of their pros and cons.

1. INTRODUCTION
As parallel architectures are becoming commonplace,
novel application areas arise. One of them is com-
puter games in which, among others, artificial intelli-
gence components can profit from faster hardware. In
this paper, we consider steering, a technique that models
the movement of computer-controlled characters (agents)
as a combination of simple steering behaviors. Examples
include obstacle avoidance and alignment to the move-
ment direction of neighbors. From individual behaviors,
a seemingly intelligent group behavior emerges. Steer-
ing is deployed in games such as Fable and Alarm for
Cobra 11.

We carried out experiments with Open-
Steer (Reynolds, 1999, 2004), an open-source C++
library that implements steering behaviors, and its
associated testbed OpenSteerDemo that supports rapid
prototyping of combinations of the behaviors. Two
scenarios were considered: 1) a group of pedestrians
following a path and thereby avoiding collisions, and
2) a swarm of birds moving according to rules of
separation, alignment and cohesion. OpenSteerDemo
has been parallelized with OpenMP threads in previous

work (Knafla and Leopold, 2007), and we refer to this
parallel version.

As found by profiling, the clearly most compute-
intensive component of steering is neighborhood search.
Therein, each agent computes the c nearest from among
those agents who are within a certain radius around the
agent. A straightforward algorithm considers all pairs of
agents and requires time O(n2) for n agents.

Nearest-neighbor search can be speeded up by us-
ing spatial data structures, which are well-known from
areas such as database management systems and com-
puter graphics, where they are used for various types of
geometric queries. In general, these structures organize
data according to their coordinates, and thus store neigh-
bors closer to each other. We use the structures to store
agent data, which allows us to restrict nearest-neighbor
search to only a subset of agents.

Several types of spatial data structures have been sug-
gested in the literature and can be classified into flat and
hierachical structures (Velho et al., 2002). This paper
investigates k-d tree, grid, and cell array with binary
search, of which the k-d tree is a hierarchical and the
others are flat data structures. We consider two variants
of the grid, based on hashing and modulo functions, re-
spectively. A potentially infinite world is assumed for all
structures, i.e., coordinates are not bounded.

Our application runs a sequence of simulation steps.
In each step, it searches for the nearest neighbors of all
agents, and updates the states of all agents. As agents
move, states and in particular coordinates change dynam-
ically. A specific requirement of our application is par-
allel nearest neighbor queries and parallel updates, i.e.
multiple agents issue queries at the same time. Data
structures that support these operations have been im-
plemented with C++. Performance was tuned to make
each structure as efficient as possible. For instance, we
grouped queries from close agents to improve cache us-
age.

Our main contribution is an experimental comparison
of the performance of the three structures. Briefly stated,
there was no clear winner. Although the flat data struc-
tures clearly outperformed the k-d tree, they require care-
ful application-specific tuning. The k-d tree, in contrast,
is more robust towards changes in the application setting.
Of the flat structures, the cell array with binary search is
on advantage if agent density is high, and inferior other-

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

31

wise. Only of the two grid variants, the modulo grid was
a clear winner.

Sect. 2 of this paper starts with background on
steering, OpenSteer, and OpenSteerDemo, including
OpenMP parallelization. Then, Sect. 3 introduces the
three data structures. We explain the update and nearest-
neighbor search operations, including parallel implemen-
tation. Moreover, Sect. 3 comprises an analytical com-
parison among the structures. Sect 4 is devoted to exper-
iments, covering experimental setting, results, and dis-
cussion. Finally, Sect. 5 concludes the paper.

2. STEERING AND OPENSTEER
Steering is an artificial intelligence technique that is used
in the implementation of computer games. It can be de-
ployed to simulate swarms, flocks and other groups of
agents, for which a complex group behavior emerges
from simple individual behaviors of the group members.
These individual behaviors are composed of elementary
behaviors that may include (Schnellhammer and Feilkas,
2004):

• separation: keep some minimum distance from
neighbors to avoid collisions,

• cohesion: stay near the center of neighbors to form
a group, and

• alignment: adjust direction and velocity of move-
ment with neighbors, to provide for a coordinated
action.

Each elementary behavior is represented by a steering
vector that is computed by vector operations from the
agent’s own state (position, orientation, velocity), the
states of its neighbors, and possibly further information
on the local environment (e.g. obstacles). The steer-
ing vectors of different behaviors are combined, e.g. by
weighted summation, to compute the agent’s new state.

OpenSteer and OpenSteerDemo can be used to de-
velop and tune steering behaviors. In particular, Open-
SteerDemo allows a user to write plugins for certain sim-
ulation scenarios. This paper refers to two scenarios that
we adopted from Reynolds (Reynolds, 1999, 2004):

• Pedestrian: Here, agents (pedestrians) walk through
a two-dimensional world, following the path in
Fig. 1 from a to g and backwards, repeatedly. To
avoid collisions, each agent observes its environ-
ment and computes steering vectors according to
pathfollowing, agent- and obstacle-collision avoid-
ance rules. Note that only nearest neighbors (as de-
scribed below) are taken into account in these com-
putations. Thus, steering avoids but does not pre-
clude collisions, the remaining collisions are taken
care of by other components of a game.

• Boids: This scenario assumes a three-dimensional
world. Boids stands for birds-like objects or
bird-oids, i.e., the plugin simulates a swarm of birds

who move according to the separation, cohesion,
and alignment rules described above. As in the
pedestrian plugin, the computation of steering vec-
tors is based on nearest neighbors only.

g

a

b

c

de

f

Figure 1: Path for pedestrian plugin

The term nearest neighbor needs further explanation.
In both scenarios, it is assumed that an agent can only see
its local environment, which is modeled by a fixed-size
circle (for pedestrian), or a fixed-size sphere (for boids)
around the agent, respectively. An agent must fulfill two
requirements to be a nearest neighbor of another agent:
1) it must be situated within maximum distance d from
that agent, and 2) it must belong to the c closest neighbors
of that agent. Obviously, the nearest-neighbor relation is
not symmetric.

OpenSteerDemo runs a main loop as it is typical for
games. Each step of the iteration simulates one discrete
time step, and is subdivided into an update stage and a
graphics stage. The former logically moves all agents,
and the latter renders the new state of the game world.
We use the term frame rate to denote the number of main
loop steps that can be carried out per second. Thus, frame
rate is a measure for the speed of the application, and a
high frame rate corresponds to a low running time.

In previous work by the same authors, the applica-
tion has been refactored and parallelized (Knafla and
Leopold, 2007). The parallel version deploys a user-
configurable number of OpenMP threads, each of which
simulates multiple agents. In the parallel version, the up-
date stage has been split up into a simulation sub-stage
and a modification sub-stage, which are separated by
barriers. The simulation sub-stage starts with a nearest-
neighbor search for all agents, and then computes and
combines steering vectors based on the states of neigh-
bors. During the modification sub-stage, agents update
the world state by writing their new individual states to
a shared data structure. Since the simulation sub-stage
comprises read accesses only, and the writes of the mod-
ification sub-stage refer to disjoint data, each of the two
stages can internally be run in parallel, without any need
for synchronization.

In the base version of OpenSteerDemo (Knafla and
Leopold, 2007), the running time of each step is domi-
nated by the time for nearest-neighbor search. This ver-
sion deploys a straightforward search algorithm that we

32

denote as brute-force in the following. It assumes agents,
or more specifically the data that represent the agents’
states, to be stored in a list, and deploys a doubly-nested
loop. The outer loop runs through all agents to invoke
nearest-neighbor search, and the inner loop runs through
all agents to select the c closest neighbors.

Obviously, in the inner loop, it would be sufficient to
consider agents that are reasonably close. This can be
achieved with spatial data structures that allow to identify
close agents without touching the others. The following
section describes three structures that we experimented
with in this paper: k-d tree, grid, and cell array with bi-
nary search.

3. PARALLEL DATA STRUCTURES AND IMPLE-
MENTATION
k-d tree
The k-d tree (Bentley, 1975) is a special type of binary
search tree for data with k-dimensional keys. In our case,
keys represent agent positions, and k = 2 (for pedestrian)
or k = 3 (for boids). We refer to the homogeneous vari-
ant, in which data are held by both internal nodes and
leaves. As in any search tree, a node’s key is larger than
the keys of all nodes in its left subtree, and less than or
equal to the keys in its right subtree. The special feature
of k-d trees is the definition of this less-than relation. De-
pending on node level, it discriminates by one of the k co-
ordinates: first coordinate for the root, second coordinate
for nodes at level one, and so on, cyclically.

Figure 2 gives an example for k = 2. Here, subtrees of
A are discriminated by x-coordinate, subtrees of B and D
by y-coordinate, and subtrees of G, C and E, if existent,
by x-coordinate, again.

A (12,10)

D (16,3)

B (9,7)

E (18,16)

G (3,3)

C (5,19)

F (20,10)

(a) Points in a two-dimensional space

B

C

D

E

F

G

A

(b) The corresponding k-d tree

Figure 2: Example for k-d tree

A k-d tree may be balanced or not, and hence its

height may vary from O(logn) to O(n), where n denotes
the number of nodes. Operations search and insert are
straightforward: As in standard binary search trees, they
start from the root and recursively branch into the left
or right subtree, depending on a comparison between the
given node’s key and that of the root. Of course, the com-
parison must be based on the respective coordinate, and
thus the level needs to be taken care of. As in standard
search trees, a newly inserted node becomes a leaf.

For delete, let us denote the node to be deleted by
p, and assume its position to be known from a previous
search. If p is a leaf, delete is trivial. Otherwise, with-
out loss of generality, let p discriminate its subtrees by
x. Then, the contents of p is replaced by the contents
of q, the node with smallest x-coordinate from among
the nodes in p’s right subtree (if there are multiple such
nodes, any can be taken). In case of an empty right sub-
tree, the left and right subtrees are exchanged before se-
lecting q. After having replaced the contents of p by
that of q, the algorithm deletes q by applying the same
scheme recursively.

The algorithm for nearest-neighbor search takes as in-
put a center point, which is the position of an agent, and
the radius of the search region, which is a circle or sphere
around it. Starting with the root, it checks for each node
on its way through the tree whether it is inside the search
region. If it is, the corresponding agent is a candidate
for nearest neighbor, and the algorithm compares it to
the others found so far to decide whether it is among the
c closest. If the agent is outside the search region, the
value of its discriminator coordinate is compared to the
maximum and minimum values that this coordinate may
take for the search region, and the search proceeds with
either the left, right, or both subtrees, accordingly.

Parallel invocation of nearest-neighbor search for mul-
tiple agents does not require any changes to the data
structure, as all accesses are reads. We allocate fre-
quently used data structures such as lists of nearest neigh-
bors once per thread instead of once per nearest neighbor
search, to avoid expensive system calls from a parallel
region.

After each simulation step, the positions of all agents
need to be updated. Unfortunately, k-d trees are ill-suited
for this operation since they have a static structure, i.e.,
movement requires rearrangement of the tree. Of course,
any update can be realized by a delete followed by an
insert, but these operations are expensive and nontriv-
ial to parallelize (JáJá, 1992). Therefore, we decided
to rebuild the tree after each simulation step, which has
the additional advantage that the generated tree is bal-
anced. Experiments showed this variant to be faster than
inserts/deletes.

Grid
A grid subdivides the world into disjoint cells (Samet,
2006). We refer to equal-sized cells that correspond to
rectangles and cuboids, respectively. Grid cells are in-
dexed with k-dimensional vectors, where k denotes the

33

−4 −3 −2 −1 0 1 2 3 4 5 6

0

1

2

3

1,0 2,0

0,1 1,1 2,1

0,2 1,2

0,0

0,2 1,2 2,2

2,1 1,1

0,2 1,2 2,2

2,1

0,2

0,11,10,1 0,1

2,0 0,0 1,0 2,00,0 1,0 2,0 0,0

2,2

2,1

2,2

2,21,20,2

0,0 1,0 2,0 0,0 1,0 2,0 0,0

0,22,21,20,2

2,0

2,2

1,0

1,2

0,0

0,2

2,0

2,2−1

0,0 1,0 2,0 0,1 1,1 2,1 0,2 1,2 2,2

653210 7 84

Figure 3: Assignment from grid cells to buckets with
modulo function. The selected region is marked in bold.
There is a one-to-one correspondence between cells of
the region and buckets, as illustrated in the lower part of
the figure.

dimensionality of the world. From an agent’s coordi-
nates, the index of the grid cell holding the agent is com-
puted by integer divison through cell side lengths. If cells
have extent 10×10×5, for instance, an agent at coordi-
nates (23,7,17) belongs to grid cell (2,0,3).

From the assumption of an unbounded world, there is
an infinite number of grid cells. The grid data structure
groups them into a finite number m of buckets and stores
them in an array. Each element holds a list (implemented
by an STL vector) of those agents that belong to a grid
cell assigned to the bucket.

Note that the assignment of agents to buckets com-
prises two steps. First, agents are assigned to grid cells
by dividing their coordinates by the cell side lengths, and
then grid cells are assigned to buckets by another func-
tion. For the second step, we considered two options:
hashing and modulo. In both cases, the bucket index
is computed from an agent’s coordinates within constant
time. For hashing, we used function

hash(x,y,z) = (x · p1 xor y · p2 xor z · p3) % m

where (x,y,z) is the index of the grid cell, and p1 =
73856093, p2 = 19349663 and p3 = 83492791 are
primes. The function has been taken from Teschner et
al. (Teschner et al., 2003) to balance the number of grid
cells per bucket.

For the modulo function, a core grid is spanned on
a finite region of the world. Core cells have a one-to-
one correspondence to buckets. Cells outside core are
mapped to core by a modulo operation. Figure 3 illus-
trates the assignment. For example, grid cells (1,2) and
(−2,−1) are mapped to bucket 7.

In both variants of the grid, search is realized by
first computing the agent’s bucket, and then searching
this bucket linearly. Insert and delete start selecting the
bucket, as well. Then, insert appends the agent to the cor-
responding list, whereas delete first locates the agent and
then replaces it by the last entry.

Nearest-neighbor search selects the set of grid cells
that intersect with the search region by simple geomet-
ric calculations, and runs through all buckets that con-
tain at least one grid cell of interest. In both the hashing
and modulo variants, the algorithm traverses each bucket
only once if the search region overlaps with multiple cells
of the same bucket. In the hashing variant, a bitset with
one entry per bucket is used for bookkeeping. The mod-
ulo variant does not consider individual cells, but directly
computes the buckets from agent positions.

For performance tuning, we modified the parallel ver-
sion of OpenSteer, which has an outermost for loop that
runs through all agents, splits this loop into equal-sized
chunks, and maps each chunk to a thread. In the tuned
version, the outermost loop runs through buckets, and an
equal-sized chunk of buckets is assigned to each thread.
Threads process buckets one after another. Since each
bucket holds a group of grid cells, and agents from the
same grid cell are close, nearest neighbor queries issued
for agents from the same bucket have search regions with
much overlap. Thus, when processing these queries, a
similar set of buckets needs to be considered, which can
likely be kept in cache. The improvement in locality
comes at the price of worse load balancing, as buckets
differ in their number of agents. Nevertheless, in ex-
periments we observed a performance increase by about
35%.

Updates are simple writes of coordinates as long as an
agent stays within the same cell. If it crosses cell bound-
aries, it must be deleted from the old cell, and inserted
into the new one. As with nearest-neighbor search, each
thread is responsible for multiple buckets. To deal with
boundary crossings, it maintains a private list of agents
moving away. At the end of the update phase, all private
lists are processed sequentially. It would have been pos-
sible to parallelize this step as well, but not worthwhile
as only 0.5 to 2 % of agents are affected.

Cell Array with Binary Search
Like a grid, the cell array with binary search subdivides
the world into disjoint cells and assigns them to buck-
ets (Mauch, 2003). Unlike a grid, it includes only k− 1
dimensions into the partitioning, but uses the last coordi-
nate to sort entries of each bucket.

Figure 4 depicts a two-dimensional world divided into
cells of side lengths 10. As in the modulo variant of
grids, cells of a selected region (here 0 to 30 on the x-
axis) directly correspond to buckets. To assign an agent
to a bucket, first the index of the cell holding the agent is
calculated by dividing the agent’s coordinates by the cell
side lengths, and then the cell is mapped to the selected
region by the modulo operation. Within each bucket,
agents are sorted by their kth coordinate.

Search is accomplished by first selecting the bucket,
and then carrying out a binary search. For insert and
delete, data have to be moved to create or fill a gap, which
is less efficient than in grids.

34

A

B

C

D

E

F

G

H

J

x

y

10 20 30 40 60

0 1 2 20 1

Figure 4: Cell array with binary search

For nearest-neighbor search, as in grids, the algo-
rithm selects all buckets that intersect with the search re-
gion, but chooses buckets based on coordinates of only
k−1 dimensions. When searching a particular bucket, it
makes use of the sorted order. As illustrated in Fig. 5,
the search region defines minimum and maximum coor-
dinates in the kth dimension for agents of interest (ymin
and ymax). In each bucket considered, the algorithm car-
ries out a binary search to locate ymin, and then inves-
tigates consecutive agents until their kth coordinate ex-
ceeds ymax.

A
B

D

F

G

H

0 1 2 3y

x

E

x
min

x
max

y

y
min

max

C

Figure 5: Nearest-neighbor search in a two-dimensional
cell array.

Updates are realized as in grids, except that buckets
are unsorted after modifications. Thus the grid algorithm
is followed by a parallel sorting step in which each thread
sorts multiple buckets. Despite our data being presorted,
the STL sorting algorithm turned out to be faster than
insertion sort, and was therefore deployed.

Analytical Comparison
Table 1 analytically compares the data structures, refer-
ing to the operations of interest in OpenSteerDemo.
Formulas assume that the operations are applied to all
agents. The table uses the following abbreviations:

• n: number of agents

• m: number of buckets

• f : average number of agents in the search region

• g: average number of grid cells in the search region

• h: average number of agents in grid cells that inter-
sect with the search region

Buildup Nearest-Neighbor Update
Brute-F. O(n) O(n2) O(n2)
k-d Tree O(n · logn) O(n(logn+ f)) O(n · logn)
Grid O(m+n) O(n(g+h)) O(n)
Cell A. O(m+n2) O(n(g · log(n/m) O(n · logn)

+h))

Table 1: Average running times of operations buildup,
nearest-neighbor search, and update for different data
structures

Formulas have been taken from Samet (Samet, 2006)
and Mauch (Mauch, 2003). The table shows that all spa-
tial data structures outperform the brute-force algorithm.
Differences between the structures are minor. Note that
part of the formulas can not be directly compared as, for
instance, h differs between grid and cell array even for
identical scenarios. The formulas refer to a sequential
implementation. As we will see in Sect. 4, the running
time of our application is dominated by nearest-neighbor
search. For this operation, analytical speedup with p
threads is linear for all structures, since threads process
different agents independently.

4. EXPERIMENTS

Both the pedestrian and boids scenarios were run with
1000 agents, selecting c = 7 neighbors. We set the search
radius to 12 units in the pedestrian plugin, and to 9 units
in the boids plugin. In the boids scenario, we bounded the
world by a sphere of radius 50 units, with a bird leaving
the sphere immediately re-entering it at the diametrically
opposite point. Agent positions were initialized by ran-
domly placing pedestrians onto the path, and randomly
placing birds in a sphere of radius 20 units, respectively.

We run experiments for 7200 simulation steps of
OpenSteerDemo and report averages over three such
runs. OpenSteerDemo allows to separately measure
running times for different stages, and we made use of
this feature. Experiments were carried out on a dual-
processor dual-core AMD Opteron 270 machine with
2GB memory. OpenSteer / OpenSteerDemo was com-
piled by the Intel compiler version 10.0.23 with options
-std=c99 -O2 -inline-level=2 -openmp
-openmp-report1 -fp-model fast -xW.

35

1 Thread 2 Threads 4 Threads
Brute-Force 66,94 34,54 18,39
k-d tree 59,22 31,39 16,30
Grid (Hashing) 41,38 20,97 11,94
Grid (Modulo) 28,48 14,75 7,67
cell array 24,10 13,32 6,77

Table 2: Running time of nearest-neighbor search for
pedestrian plugin (in seconds).

1 Thread 2 Threads 4 Threads
Brute-Force 40,60 21,72 11,71
k-d Tree 24,73 13,91 7,63
Grid (Hashing) 15,66 8,53 4,89
Grid (Modulo) 10,62 6,02 3,40
Cell Array 10,93 5,84 3,32

Table 3: Running time of nearest-neighbor search for
boids plugin (in seconds).

Tables 2 and 3 list running times for nearest-neighbor
queries. Note that values are for 7200 simulation steps
with 1000 queries each.

The values in tables 2 and 3 refer to tuned variants of
the flat data structures, in which we selected side lengths
of cells and number of buckets as depicted in Table 4.
Note that our data structures can handle an unbounded
world, but in both scenarios the world is limited. There-
fore, we decided for a one-to-one correspondence be-
tween buckets and grid cells for the modulo grid. For
the hashing grid, such a one-to-one correspondence could
not be achieved.

Side length of cells Number of buckets
Pedestrian Boids Pedestrian Boids

Grid (H.) 15 18 80 500
Grid (M.) 15 15 343 343
Cell Array 10 10 100 100

Table 4: Selected parameters after performance tuning

A comparison of tables 2 and 3 reveals that nearest-
neighbor search always takes longer in the pedestrian
than in the boids scenario. This difference is partly due to
the larger search radius, for which more nodes or buckets
need to be investigated. It can even be observed for the
brute-force algorithm, because of the need to select the
c closest from among the neighbors in the search region.
Moreover, the boids scenario more uniformly distributes
agents in space, such that less birds than pedestrians are
candidate for nearest neighbor.

Both tables clearly demonstrate that spatial data struc-
tures speed up nearest-neighbor search. In both cases,

• flat data structures outperform the k-d tree

• the modulo variant of the grid outperforms the hash-
ing variant

• the cell array with binary search is slightly faster
than the modulo grid.

Differences between the data structures are partly due to
differences in the number of agents that need to be looked
at during the search. This presumption was verified ex-
perimentally by counting agents (Wirz, 2008). One rea-
son the hashing grid is inferior to the modulo grid is
the need to search all grid cells assigned to a bucket, in
contrast to the one-to-one correspondence in the modulo
grid.

The number of agents to be looked at is about the same
for k-d tree and modulo grid. Nevertheless, the modulo
grid is faster, which is due to the realization of buckets
by STL vectors, in contrast to the pointer-based structure
of the k-d tree.

In the cell array, only about half the number of neigh-
bors as in the modulo grid need to be looked at. The
performance gain is less, though, since the cell array re-
quires an additional operation: locating ymin by binary
search. Whether or not the expense for this operation
pays depends on the number of agents in a bucket.

As mentioned above, cell side lengths have been tuned
for the flat structures, since we observed a major impact
on running times. If side lengths are small, many cells
and the corresponding buckets need to be considered;
if cells are large, selected cells may hold many agents
outside the search region. Thus, optimal values depend
on both agent density and search radius. Experiments
proved our hypothesis that a one-to-one correspondence
between cells and buckets performs best in a bounded
world.

Tables 2 and 3 show that parallelization of nearest-
neighbor search was successful for all data structures,
confirming the analysis in Sect. 3. Speedups range be-
tween 3.1 and 3.7 with 4 threads for the different data
structures and scenarios.

Parallelization of the updates was less successful, as
tables 5 and 6 show. We observed speedups of 1.3 to 2.2
with 4 threads for the flat data structures (Wirz, 2008),
and slowdowns for the k-d tree. For the k-d tree, rebuild-
ing the tree was about twice as fast as deleting and re-
inserting the nodes. As tables 5 and 6 show, the cell array
performed best for the updates, as well. The hashing grid
is slightly faster than the modulo grid, and the k-d tree is
slowest.

The low speedups may be due to not having spent
much time on tuning updates, since their impact on the
overall running time is low. The fraction of running time
spent in different phases of the application is illustrated
in Fig. 6. It shows that spatial data structures significantly
speed up the simulation phase (sum of search, update and
simulation sections) to the point that further efforts are
only worthwhile for the graphics phase. Results for the
pedestrian scenario are similar and have been omitted for
brevity.

In our application, the speedups can be used to either
increase the frame rate, or to handle more agents. Ta-
ble 7 shows how many agents can be handled at a frame

36

1 Thread 2 Threads 4 Threads
k-d Tree 3,19 4,40 4,52
Grid (Hashing) 1,51 1,06 0,70
Grid (Modulo) 1,42 1,47 1,09
Cell Array 1,13 0,96 0,69

Table 5: Running time of update for pedestrian plugin (in
seconds)

1 Thread 2 Threads 4 Threads
k-d Tree 2,24 3,20 3,38
Grid (Hashing) 1,52 1,16 0,78
Grid (Modulo) 1,40 1,09 0,97
Cell Array 1,08 0,95 0,72

Table 6: Running time of update for boids plugin (in sec-
onds)

(a) Brute-Force (1 Thread) (b) Brute-Force (4 Threads)

(c) Cell Array (1 Thread) (d) Cell Array (4 Threads)

Figure 6: Fraction of running time spent in different
phases for boids plugin

rate of 30 frames per second with the various data struc-
tures. Increases are significant and demonstrate the suc-
cess of parallelization in combination with spatial data
structures.

Finally comparing all data structures, the flat structures
perform much better than the k-d tree, but have the draw-
back of requiring tuning. In particular, they can not deal
with frequent changes in search radius. The k-d tree is ro-
bust towards such changes, and still performs better than
the brute-force algorithm. Of the flat structures, the cell
array appears somewhat faster than grids, but this out-
come depends on scenario. The cell array is on advantage
if cells are densely populated, but for sparsely populated
cells grids may be the better choice. Of the two grid vari-
ants, the modulo grid was the clear winner.

Brute-F. k-d Tree Grid (M.) Cell A.
Ped. 2850 3100 4400 4700
Boids 3300 5000 7800 8200

Table 7: Maximum number of agents that can be simu-
lated at 30 frames per second with 4 threads

5. CONCLUSIONS
The paper has shown that use of spatial data structures
can significantly speed up steering in both sequential and
parallel settings. Experiments were based on OpenSteer
/ OpenSteerDemo, and considered three structures: k-d
tree, grid, and cell array with binary search. There was
no clear winner, although a certain advantage for the cell
array could be observed.

Future work should consider more data structures,
especially more hierarchical structures such as range
trees (Samet, 2006), other scenarios, and data structures
for a bounded world.

REFERENCES

Bentley, J. (1975). Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517.

JáJá, J. (1992). An Introduction to Parallel Algorithms.
Addison-Wesley.

Knafla, B. and Leopold, C. (2007). Parallelizing a Real-
Time Steering Simulation for Computer Games with
OpenMP. In Proc. Parallel Computing (ParCo), pages
219–226.

Mauch, S. (2003). Efficent Algorithms for Solving Static
Hamilton-Jacobi Equations. PhD thesis, California In-
stitute of Technology.

Reynolds, C. W. (1999). Steering Behaviors For Au-
tonomous Characters. In Proc. Game Developer Con-
ference, pages 763–782.

Reynolds, C. W. (2004). OpenSteer Website. http:
//opensteer.sourceforge.net.

Samet, H. (2006). Foundations of Multidimensional and
Metric Data Structures. Morgan Kaufmann.

Schnellhammer, C. and Feilkas, T. (2004). Steering be-
haviors. http://www.steeringbehaviors.
de.

Teschner, M. et al. (2003). Optimized spatial hashing
for collision detection of deformable objects. In Proc.
Vision, Modeling, Visualization, pages 47–54.

Velho, L., Gomes, J., and Figueiredo, L. H. (2002). Im-
plicit Objects in Computer Graphics. Springer.

Wirz, A. (2008). Parallele Räumliche 3D Datenstruk-
turen für Nachbarschafts-Abfragen. Master’s thesis,
Universität Kassel.

37

TRANSACTION-ORIENTED SIMULATION IN AD HOC GRIDS:
DESIGN AND EXPERIENCE

Gerald Krafft and Vladimir Getov

Harrow School of Computer Science
University of Westminster

Watford Rd, Northwick Park, Harrow HA1 3TP, U.K.
E-mail: G.Krafft@gmx.net, V.S.Getov@wmin.ac.uk

KEYWORDS
Parallelization of simulation, grid and cluster
computing, reliable parallel and distributed algorithms.

ABSTRACT

In this paper we analyse the requirements of performing
parallel transaction-oriented simulations within loosely
coupled systems like ad hoc grids. We focus especially
on the space-parallel approach to parallel simulation and
on discrete event synchronisation algorithms that are
suitable for transaction-oriented simulation and the
target environment of ad hoc grids. To demonstrate our
findings, a Java-based parallel simulator for the
transaction-oriented language GPSS/H is implemented
on the basis of the most promising shock-resistant Time
Warp (SRTW) synchronisation algorithm and using the
grid framework ProActive. The analysis of our parallel
simulator shows that the SRTW algorithm can
successfully reduce the number of rolled back
transaction moves but it also reveals circumstances in
which the SRTW algorithm can be outperformed by the
normal Time Warp algorithm. Finally, possible
improvements to the SRTW algorithm, based on
experiments using the Grid’5000 platform, are proposed
in order to avoid such problems.

1. INTRODUCTION

Transaction-oriented simulation is a special case of
discrete event simulation that uses two types of objects,
stationary objects called blocks and mobile objects
called transactions that move through the model and
change the state of the blocks. The movement of a
transaction can be delayed or blocked by a stationary
object but otherwise transactions always move at a
certain simulation time meaning that the simulation time
does not progress while a transaction is moved. Because
such a movement of a transaction describes an action
with a specific timestamp that changes the state of the
model it is equivalent to an event in discrete event
simulation. Inferred from this equivalency most aspects
and findings for discrete event simulation can also be
applied to transaction-oriented simulation and vice
versa. Transaction-oriented simulation is best suited for
the simulation of systems that are based on units of
traffic competing for the use of specific resources which
covers a wide area of applications. Typical examples

include communication systems, transportation systems,
manufacturing systems and general queuing systems.
The best-known transaction-orineted simulation
language is GPSS and its extended version GPSS/H
(Schriber 1991).
Parallel and distributed computing offers a way to
reduce the runtime of large and complex computer
simulations as for instance required in engineering,
military, biology and climate research. But the growing
complexity of simulation models can reach the limits of
today’s high-performance parallel computer systems,
that in addition also induce a very significant cost factor.
Grid platforms can provide large-scale computing at
lower costs by allowing several organisations to share
their resources. But traditional grid infrastructures are
relatively static environments that require a dedicated
administrative authority and therefore are not well suited
for transient short-term collaborations of small
organisations with fewer resources. Ad hoc grids enable
the design of such dynamic and transient resource-
sharing infrastructures (Smith et al. 2004) that allow
even small organisations or individual users to form grid
environments on demand. They make grid computing
and grid resources widely available to small
organisations and mainstream users allowing them to
perform resource demanding computing tasks like
complex computer simulations.
There are several approaches to performing simulations
distributed across a parallel computer system. The
space-parallel approach (Fujimoto 1993) is one of these
approaches that is robust, applicable to many different
simulation types and can be used to speed up single
simulation runs. It requires for the simulation model to
be partitioned into relatively independent sub-systems
that are assigned to logical processes (LPs). Each LP
may then be processed on a different node.
Synchronisation between these LPs is still required
because the model sub-systems are usually not fully
independent. A lot of past research has concentrated on
different synchronisation algorithms for parallel
simulation. Some of these are only suitable for certain
types of parallel computers such as shared memory
systems.
This work investigates the possibility of performing
parallel transaction-oriented simulation in ad hoc grid
environments with the main focus on the aspects of
parallel simulation. Potential synchronisation algorithms

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

38

and other simulation aspects are analysed in respect of
their suitability for transaction-oriented simulation and
ad hoc grids as the target environment and the chosen
solutions are described and reasons for their choice
given. To demonstrate the solutions a Java-based
parallel simulator for the transaction-oriented language
GPSS/H is implemented and evaluated using a set of
simple example simulation models.

2. SYNCHRONISATION ALGORITHMS

2.1. Requirements

The choice of synchronisation algorithm can have a
significant influence on how much of the parallelism
that exists in a simulation model will be utilised by the
parallel simulation system. An overview of the two main
groups of synchronization algorithms described as
conservative and optimistic alogirthms can be found in
(Das 1996). Conservative algorithms utilise the
parallelism less well than optimistic algorithms because
they require guarantees, which in most cases are derived
from additional knowledge about the behaviour of the
simulation model, like for instance the communication
topology or lookahead attributes of the model. For this
reason conservative algorithms are often used to
simulate very specific systems where such knowledge is
given or can easily be derived from the model. For
general purpose simulation systems optimistic
algorithms are better suited as they can utilise the
parallelism within a model to a higher degree without
requiring any guarantees or additional knowledge. The
best-known optimistic algorithm is Time Warp (TW)
(Jefferson 1985). But in many situations TW can show
an over-optimistic behavour leading to uncommitted
simulation progress being undone as a result of
rollbacks. Subsequent research has therefore focused on
limiting the optimism in TW if required and in a self
adapting way.
Another important aspect of choosing the right
synchronisation algorithm is the relation between the
performance properties of the expected parallel
hardware architecture and the granularity of the parallel
algorithm. In order for the parallel algorithm to perform
well in general on the target hardware environment the
granularity of the algorithm, i.e. the ratio between
computation and communication has to fit the ratio of
the computation performance and communication
performance provided by the parallel hardware.
Considering the target environment of ad hoc grids and
the goal of designing and implementing a general
parallel simulation system based on the transaction-
oriented simulation language GPSS/H we concluded that
the best suitable synchronisation algorithm is an
optimistic or hybrid algorithm that has a coarse grained
granularity. The algorithm should require only little
communication compared to the volume of computation
it performs. At the same time the algorithm needs to be
flexible enough to adapt to a changing environment, as
this is the case in ad hoc grids. A further requirement is

that the algorithm can be adapted to and is suitable for
transaction-oriented simulation.

2.2. Algorithm Selection

A promising algorithm found for these requirements is
the SRTW algorithm (Ferscha and Johnson 1999). This
algorithm has some similarities with the elastic time
algorithm (Srinivasan and Reynolds 1995) and also the
adaptive memory management algorithm (Das and
Fujimoto 1997) but at the same time is suitable for
loosely coupled distributed systems like grids. Similar to
the elastic time algorithm state vectors are used to
describe the current states of all LPs plus a set of
functions to determine the output vector but the SRTW
algorithm does not require a global state. Instead each
LP separately tries to optimise its parameters towards
the best performance. Similar to the adaptive memory
management algorithm the optimism is controlled
indirectly be setting artificial memory limits but for the
SRTW algorithm each LP will limit its own memory
instead of using an overall memory limit for the whole
simulator.
The SRTW algorithm is described by (Ferscha and
Johnson 1999) as a fully distributed approach to
controlling the optimism in TW that requires no
additional communication between the LPs. It is based
on the TW algorithm but extends each LP with a control
component called logical process control component
(LPCC) that constantly collects information about the
current state of the LP using a set of sensors. These sets
of sensor values are then translated into sets of indicator
values representing state vectors for the LP. The LPCC
will keep a history of such state vectors using a
clustering technique so that it can search for past state
vectors that are similar to the current state vector but
provide a better performance indicator. An actuator
value will be derived from the most similar of such state
vectors that is subsequently used to control the optimism
of the LP.
As the SRTW algorithm was designed for discrete event
simulation its sensors and indicators had to be adapted
to the equivalent values in transaction-oriented
simulation.

3. SIMULATOR DESIGN ISSUES

3.1. End of Simulation

Another important aspect that had to be considered is
the detection and correct handling of the simulation end.
A transaction-oriented simulation is complete when the
defined end state is reached, i.e. the termination counter
reaches a value less or equal to zero. When using an
optimistic synchronisation algorithm for the
parallelisation of transaction-oriented simulation it is
crucial to consider that optimistic algorithms will first
execute all local events without guarantee that the causal
order is correct. They will recover from wrong states by
performing a rollback if it later turns out that the causal

39

order was violated. Therefore, any local state reached by
an optimistic LP has to be considered provisional until a
global virtual time (GVT) message has been received
that guarantees the state. In addition, it is most likely
that at any point in real time each of the LPs has reached
a different local simulation time so that after an end state
has been reached by one of the LPs, which is guaranteed
by a GVT, it is important to synchronise the states of all
LPs. Thus, the combined end state from all model
partitions is equivalent to the model end state that would
have been reached in a sequential simulator.
The mechanism suggested here leads to a consistent and
correct global end state of the simulation considering the
problems mentioned above. For this mechanism the LP
reaching a provisional end state is switched into the
provisional end mode. In this mode the LP will stop to
process any further transactions leaving the local model
partition in the same state but it will still respond to and
process control messages like GVT parameter requests
and it will receive transactions from other LPs that
might cause a rollback. The LP will stay in this
provisional end mode until the end of the simulation is
confirmed by a GVT or a received transaction causes a
rollback with a potential re-execution that is not
resulting in the same end state. While the LP is in the
provisional end mode additional GVT parameters are
passed on for every GVT calculation denoting the fact
that a provisional end state has been reached and the
simulation time and priority of the transaction that
caused the provisional end. The GVT calculation
process can then assess whether the earliest current
provisional end state is guaranteed by the GVT. If this is
the case then all other LPs are forced to synchronise to
the correct end state by rolling back using the simulation
time and priority of the transaction that caused the
provisional end and the simulation is stopped.

3.2. Suitable Cancellation Technique

Transaction-oriented simulation has some specific
properties compared to discrete event simulation. One of
these properties is that transactions do not consume
simulation time while they are moving from block to
block. This has an influence on which of the
synchronisation algorithms are suitable for transaction-
oriented simulation but also on the cancellation
techniques used. If a transaction moves from LP1 to LP2
then it will arrive at LP2 with the same simulation time
that it had at LP1. A transaction moving from one LP to
another is therefore equivalent to an event in discrete
event simulation that when executed creates another
event for the other LP with exactly the same timestamp.
Because simulation models can contain loops, as it is for
instance common for models of quality control systems
where an item failing the quality control needs to loop
back through the production process, this specific
behaviour of transaction-oriented simulation can lead to
endless rollback loops for certain cancellation
techniques. Besides the original cancellation technique

introduced by (Jefferson 1985) that is known as
aggressive cancellation another cancellation technique
called lazy cancellation was suggested by (Gafni 1985).
Figure 1 compares the rollback behaviour of aggressive
cancellation and lazy cancellation in respect of such a
loop within the simulation model.

Lazy cancellation

Aggressive cancellation

xy
xy-

Transaction transferred to other LP

Rollback

Anti-transaction for other LP

LP1
x1

x1

LP2
x1

x2

x1'

x1 x1'

LP1
x1

x1
LP2 x1

x1'

x1

x1-
x1'-

x1

x1
x1

Cycle 1 Repeat of cycle 1

...

Time

x2

x1'

x2 x2

xy Transaction to be moved at time y

Figure 1: Cancellation in Transaction-Oriented
Simulation

It shows the movement of transaction x1 from LP1 to
LP2 but without a delay in simulation time the
transaction is transferred back to LP1. As a result LP1
will be rolled back to the simulation time just before x1
was moved. At this point two copies of transaction x1
will exist in LP1. The first one is x1 itself which needs
to be moved again and the second is x1’ which is the
copy that was send back from LP2. This is the point
from where the execution differs between lazy
cancellation and aggressive cancellation. In lazy
cancellation x1 is processed again resulting in the same
transfer to LP2. But because x1 was sent to LP1 already
it will not be transferred again and no anti-transaction
will be sent. From here LP1 just proceeds moving the
transactions in its transaction chain according to their
simulation time (transaction priorities are ignored for
this example). Apposed to that in aggressive
cancellation the rollback results in an anti-transaction
being sent out for x1 immediately which causes a second
rollback in LP2 and another anti-transaction for x1’
being sent back to LP1. At the end both LPs will end up
in the same state in which they were before x1 was
processed by LP1. The same cycle of events would start
again without any actual simulation progress.

40

In order to avoid the described endless rollback loops
lazy cancellation needs to be used for parallel
transaction-oriented simulation.

4. IMPLEMENTATION

The parallel transaction-oriented simulator was
implemented using the Java-based grid environment
ProActive (INRIA 2000) that is very well suited for ad
hoc grids. The overall architecture of the parallel
simulator follows the Master-Slave approach. Figure 2
shows the simplified architecture of the parallel
simulator including its main components.

Simulation controller

Model parser

GVT calculation

Reporting

LP

State list

LPCC

State cluster
space

Simulation engine

Model partition

Transaction chain

Figure 2: Architecture Overview

The main parts of the parallel simulator are the
simulation controller and the LPs. The simulation
controller steers the overall simulation. It is created
when the user starts the simulation and will use the
model parser component to read the simulation model
file and parse it into an object structure representation of
the model. After the model is parsed the simulation
controller creates LP instances, one for each model
partition. The simulation controller and the LPs are
implemented as ProActive Active Objects so that they
can communicate with each other via remote method
calls. Communication will take place between the
simulation controller and the LPs but also between the
LPs themselves, for instance, in order to exchange
transactions. Note that the communication between the
LPs is not illustrated in Figure 2. After the LPs have
been created and initialised, they will receive the model
partitions that they are going to simulate from the
simulation controller and the simulation is started. The
main component of each LP is the simulation engine,
which contains the transaction chain and the model
partition that is simulated. The simulation engine is the
part that is performing the actual simulation. It is
moving the transactions from block to block by
executing the block functionality using the transactions.
The implementation of the LPs follows the optimistic
TW algorithm. It use state checkpointing, i.e. each LP
contains a state list that stores historic simulation states
allowing them to perform rollbacks if required. Lazy
cancellation is implemented in order to propagate the

cancellation of transactions already sent to other LPs.
There are other lists within the simulation engine that
are not shown in Figure 2, for instance the list of
transactions received and the list of transactions sent.
The LPs are extended further to operate according to the
SRTW algorithm as desribed by (Ferscha and Johnson
1999). This is archived by adding an LPCC and specific
sensors into each LP. The sensor values are periodically
read by the LPCC and converted into indicators. The
most important indicators for the SRTW algorithm are
the number of events committed per second and the
average number of events in use. The first one describes
the simulation progress and the second is artificially
limited by the LPCC in order to reduce the optimism if
required. For transaction-oriented simulation the
equivalent indicators are the number of committed
transaction moves per second and the average number of
uncommitted transaction moves consisting of transaction
moves that have been performed but not yet committed
and transaction moves that are scheduled to be
performed. The LPCC stores each indicator set in a
cluster space and then uses it to find a similar past
indicator set that promises better performance and to
derive a new actuator value from the indicator set found.
An option to disable the LPCC allows for the simulator
to either operate in SRTW mode or in TW mode.
The simulation controller will perform GVT calculations
necessary to establish the overall progress of the
simulation and to allow LPs to reclaim memory through
fossil collection. GVT calculation will also be used to
confirm a provisional simulation end state that might be
reached by one of the LPs.
When the end of the simulation is reached then the
simulation controller will ensure that the partial models
in all LPs are set to the correct and consistent end state
and it will collect and assemble information from all LPs
to output the post simulation report.

5. SIMULATION RESULTS

The performance of a distributed simulation depends on
several factors such as the simulation model and how it
is partitioned, the hardware performance of the nodes
processing the LPs plus any additional loads on these
nodes and the performance of the communication
channels between the LPs. It also depends on how
efficient the synchronization algorithm can utilise the
parallelism within the model. This includes whether an
optimistic simulation leads to many and possibly
cascaded rollbacks because of over-optimistic
processing. Over-optimistic processing can itself be a
result of the simulation model or different and changing
processing speeds of the LPs.
The evaluation of the simulator therefore concentrates
on whether the SRTW algorithm can limit the optimism
compared to TW if required and on other effects it has
on simulation performance. The two example simulation
models used were deliberately kept very simple in order
to evaluate specific aspects of the algorithms. Each

41

example simulation model was run once in SRTW mode
and once in TW mode. The validation runs were
performed on the Grid’5000 platform with each LP and
the simulation controller using a separate node of the
Azur cluster at the Sophia Antipolis site. This cluster
consists of IBM eServer 325 machines with two 2.0GHz
AMD Opteron 246 CPUs per node. Communication
between the nodes took place through a gigabit Ethernet
link.

5.1. Reduction of Rolled Back Transaction Moves

The simulation model used for the first evaluation is
shown in Figure 3. It contains two partitions each
simulated by a separate LP. Both partitions have a
GENERATE block and a TERMINATE block but in
addition partition 1 also contains a TRANSFER block
that with a very small probability of 0.001 sends some of
its transactions to partition 2. The whole model is
constructed so that partition 2 is ahead of partition 1
regards simulation time, achieved through the different
configuration of the GENERATE blocks, and that
occasionally partition 2 receives a transaction from
partition 1. Because partition 2 is ahead in simulation
time this will lead to rollbacks in partition 2. The
simulation stops after 120000 transactions have been
terminated in the second partition. This model attempts
to emulate the common scenario where a distributed
simulation uses nodes with different performance
parameters or partitions that create different loads so
that during the simulation the LPs drift apart and some
of them are further ahead in simulation time than others
leading to rollbacks and re-execution.

PARTITION Partition1,120000
GENERATE 1,0
TRANSFER 0.001,Label1
TERMINATE 0
PARTITION Partition2,120000
GENERATE 3,0,5000
Label1 TERMINATE 1

Figure 3: Simulation Model 1

The model was simulated once in SRTW mode and once
in TW mode by enabling or disabling the LPCCs within
all LPs of the simulator. We found that in SRTW mode
the LPCC of LP2 successfully reduces the number of
rolled back transaction moves compared to the TW
mode by limiting the number of uncommitted
transaction moves using the actuator. Figure 4 shows the
actuator values set by the LPCC during the simulation.
For some of the processing intervals no actuator value
was set because the LPCC could not find a past state
vector with a better performance indicator.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

LPCC processing intervals

U
nc

om
m

itt
ed

tra
ns

ac
tio

n
m

ov
es

Figure 4: LP2 Actuator Value Graph

The actual reduction in the number of rolled back
transaction moves within LP2 over the whole simulation
can be seen in Table 1. It shows that the simulation run
using SRTW required 74232 less rolled back transaction
moves, which is around 20% less compared to the
simulation run using TW. As a result the total number of
transaction moves performed by the simulation was also
reduced leading to a better average simulation
performance of 5502 time unites per second in SRTW
mode compared to 4637 time unites per second in TW
mode.

Table 1: LP2 Processing Statistics

LP statistic item SRTW TW
Total committed transaction moves 119561 119961
Total transaction moves rolled back 308790 383022
Total simulated transaction moves 428789 503021

5.2. TW Outperforming SRTW

During the testing of the parallel simulator we found that
in some cases the TW algorithm can outperform the
SRTW algorithm. This second evaluation demonstrates
this in an example. The simulation model is very similar
to the one used in the first evaluation. It contains two
partitions with the first partition transferring some of its
transactions to the second partition but this time the
GENERATE blocks are configured so that the first
partition is ahead in simulation time compared to the
second. The simulation is finished after 5000
transactions have been terminated in one of the
partitions. The complete simulation model can be seen
in Figure 5.

PARTITION Partition1,5000
GENERATE 1,0,4000
TRANSFER 0.3,Label1
TERMINATE 1
PARTITION Partition2,5000
GENERATE 1,0
Label1 TERMINATE 1

Figure 5: Simulation Model 2

42

As a result of the changed GENERATE block
configuration and the first partition being ahead of the
second partition in simulation time, all transactions
received by partition 2 from partition 1 are in the future
for partition 2 and no rollbacks will be caused. But it
will lead to a steady increase of the number of
outstanding transactions within partition 2 pushing up
the indicator for the number of uncommitted transaction
moves during the simulation.
The first simulation run was performed with the LPCC
enabled, i.e. in SRTW mode. The significant effect of
the simulation run is that the LPCC in LP2 starts setting
actuator values in order to steer the local simulation
processing towards a past state that promises better
performance but because the number of uncommitted
transaction moves within the second partition increases
as a result of the transactions received from partition 1
the actuator limits set by the LPCC tend to be lower than
the current number of uncommitted transaction moves
resulting in the actuator limit being exceeded and the LP
being switched into cancelback mode. The cancelback
mode forces the LP2 to temporarily stop processing
transactions and to cancel back some of the transactions
received from LP1 leading to the overall simulation
progress being slowed down. Figure 6 shows the
actuator values applied by the LPCC in LP2. For most
of the simulation the actuator was set to a value of
around 2000 uncommitted transaction moves. All
intervals that had an actuator value set led to the LPCC
switching the LP2 into cancel back mode resulting in a
significantly reduced rate of committed transaction
moves in LP2 as shown in Figure 7.

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

LPCC processing intervals

U
nc

om
m

itt
ed

tra
ns

ac
tio

n
m

ov
es

Figure 6: LP2 Actuator Value Graph

The second simulation run of this model was performed
with the LPCC disabled, i.e. in TW mode. There were
no rollbacks during the simulation and none of the LPs
were artificially slowed down leading to an optimum
average simulation performance for the model and setup
of 165.7 time units per second. In SRTW mode the
average simulation performance for the same model was
dramaticaly reduced to 27.7 time units per second.

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

LPCC processing intervals

C
om

m
itt

ed
tra

ns
ac

tio
n

m
ov

es
pe

rs

Figure 7: LP2 Simulation Progress Rate

6. DISCUSSION AND FUTURE WORK

The evaluation using the first example simulation model
demonstrated that the SRTW algorithm can successfully
reduce the amount of rolled back simulation work
compared to TW. Although the number of rolled back
transaction moves was only reduced by around 10% for
the example simulation model used, much higher
reductions can be expected for more complex simulation
models that result in cascaded rollbacks.
The second example simulation model revealed a
problem of the SRTW algorithm, implemented as
described in (Ferscha and Johnson 1999). The TW
algorithm provides ideal performance for this model
because no rollbacks were caused and therefore none of
the simulation work needed to be undone. Any superior
synchronization algorithm would be expected to perform
this simulation model with similar performance like TW.
However, the SRTW algorithm performs significantly
worse than the TW algorithm because it attempts to limit
optimism in an LP that is already behind in respect of
simulation time and that is not causing any rollbacks
leading to a significant slowdown of the overall
simulation progress. The SRTW algorithm fails in this
scenario because the adaptive optimization within the
LPs is purely based on local information that is not
always sufficient for the algorithm to make the correct
decision. Making the LPs aware of their position within
the global progress window (GPW) as suggested by
(Tay et al. 1997) could be a way of avoiding such
problems. The SRTW algorithm already requires GVT
calculations in order to establish the values of its
performance indicators and this GVT calculation could
easily be extended to calculate the global furthest time
(GFT) giving all LPs an additional indicator of their
position within the GPW.
In future work the parallel simulator could be extended
to use a changed SRTW algorithm that is aware of the
GPW and perhaps also implement the adaptive throttle
scheme as described by (Tay et al. 1997) so that further
comparisons of these algorithms are possible. Future
studies could also investigate how the SRTW algorithm
or an improved version of it reacts to communication
delays that are likely to occur in Internet based grids.

43

7. CONCLUSION

We briefly discussed the requirements for a
synchronisation algorithm suitable for ad hoc grid
environments as well as transaction-oriented simulation.
Further requirements for parallel transaction-oriented
simulation were analysed and possible solutions
suggested. The SRTW algorithm was chosen as a
promising algorithm that fulfils the requirements. The
algorithm was adapted to transaction-oriented simulation
and a parallel simulator was implemented using the grid
environment ProActive. Our parallel simulator can
operate in SRTW mode as well as in TW mode allowing
a comparison of the two algorithms for different
transaction-oriented simulation models.
The evaluation of the parallel simulator showed that the
SRTW algorithm can successfully reduce the number of
rolled back transaction moves, which for simulations
with many or long cascaded rollbacks will lead to a
better simulation performance. But it also revealed a
weakness of the SRTW algorithm. Because LPs try to
optimise their properties based only on local information
it is possible for the SRTW algorithm to perform
significantly worse than the TW algorithm. Future work
on this simulator could improve the SRTW algorithm by
making the LPs aware of their position within the global
progress of the simulation.

ACKNOWLEDGMENT

This research work was funded partially by the European
Commission under the research and development project
GridCOMP (Contract IST-2006-034442). Experiments
presented in this paper were carried out using the
Grid'5000 experimental testbed, an initiative from the
French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS, RENATER and other
contributing partners (https://www.grid5000.fr).

REFERENCES

Das, S.R. 1996. “Adaptive protocols for parallel discrete event
simulation”. Proceedings of the 28th conference on
Winter simulation (Coronado, CA, USA), ACM Press,
New York, 186-193.

Das, S.R. and R.M. Fujimoto. 1997. “Adaptive memory
management and optimism control in time warp”. ACM
Transactions on Modeling and Computer Simulation
(TOMACS) 7(2), ACM Press, New York, 239-271.

Ferscha, A. and J. Johnson. 1999. “Shock resistant Time
Warp”. Proceedings of the thirteenth workshop on
Parallel and distributed simulation (Atlanta, Georgia,
USA), IEEE Computer Society, Washington, DC, 92-100.

Fujimoto, R.M. 1993. “Parallel and Distributed discrete event
simulation: algorithms and applications”. Proceedings of
the 25th conference on Winter simulation (Los Angeles,
USA), ACM Press, New York, 106-114.

Gafni, A. 1985. “Space Management and Cancellation
Mechanisms for Time Warp”. Ph.D. dissertation TR-85-
341. Dept. of Computer Science, University of Southern
California.

INRIA. 2000. ProActive - Programming, Composing,
Deploying on the Grid. [online] Available from:
http://proactive.inria.fr/ (Date viewed 10 February 2008).

Jefferson, D.R. 1985. “Virtual time”. ACM Transactions on
Programming Languages and Systems (TOPLAS) 7(3),
ACM Press, New York, 404-425.

Schriber, T.J. 1991. “An Introduction to Simulation Using
GPSS/H”. John Wiley & Sons.

Smith, M.; T. Friese; B. Freisleben. 2004. “Towards a Service
Oriented Ad-Hoc Grid”. Proceedings of the 3rd
International Symposium On Parallel and Distributed
Computing (Cork, Ireland), IEEE Computer Society,
Washington, DC, 201-208.

Srinivasan, S. and Jr.P.F. Reynolds. 1995. “NPSI adaptive
synchronization algorithms for PDES”. Proceedings of the
27th conference on Winter simulation (Arlington,
Virginia, USA), ACM Press, New York, 658-665.

Tay, S.C.; Y.M. Teo; S.T. Kong. 1997. “Speculative parallel
simulation with an adaptive throttle scheme”. Proceedings
of the eleventh workshop on Parallel and distributed
simulation (Lockenhaus, Austria), IEEE Computer
Society, Washington, DC, 116-123.

AUTHOR BIOGRAPHIES

GERALD KRAFFT was born in
Schwedt/Oder, Germany and first went to
the University of Wismar, where he studied
Computer Science and obtained his degree
in 1998. He subsequently relocated to
London, U.K. where he works as a senior

software developer and joined the University of
Westminster for a postgraduate degree in Advanced
Computer Science, which he completed with distinction
in 2007. He has a particular interest in parallel and
distributed systems and computer simulation. His Web-
page is http://perun.hscs.wmin.ac.uk/~gerald/.

VLADIMIR GETOV leads the
Distributed and Intelligent Systems Group
at the University of Westminster in
London. His current research interests are
focussed on component-oriented design of
Grid platforms and applications,

autonomous distributed systems, parallel architectures
and performance, mixed-language high-performance
programming environments with Java, and hybrid
programming models and paradigms. Professor Getov
has over 100 publications including edited volumes,
articles or chapters in books, journal and conference
papers, technical reports, as well as invited and tutorial
lectures, seminars, design prototypes, etc. His Web-page
is http://perun.hscs.wmin.ac.uk/~vsg/.

44

Automatic Development of High Performance
Multi-Physics Simulators

Félix Christian Guimarães Santos, Email: flxcgs@yahoo.com.br
Eduardo Roberto R. de Brito Junior, Email: errbj@yahoo.com.br

José Maria Bezerra, Email: zemaria@ufpe.br
Federal University of Pernambuco

Department of Mechanical Engineering
Rua Acadêmico Hélio Ramos, s/n - Recife - PE 50740-530 - Brazil

Abstract—MPhyScas - Multi-Physics and Multi-Scale Solver
Environment - is a computational system aimed at supporting
the automatic development of simulators for coupled problems,
developed at the Department of Mechanical Engineering of the
Federal University of Pernambuco - Brazil. It provides a frame-
work, which is flexible enough to accommodate representations
for all levels of computation that can be found in simulators
based on the finite element method. MPhyScas is built on a set
of a powerful language of patterns supporting abstractions for so-
lution algorithms; phenomena, geometric entities; phenomenon-
phenomenon and phenomenon-geometry relationships and oth-
ers, together with a library of low level entities - like finite
elements, reference finite elements, numerical integration tools,
and so on. In despite of its completeness in what regards all stages
of a multi-physics simulation, the current version of MPhyScas
produces sequential simulators only. Thus, it does not support any
kind of communication between its computational entities besides
those defined by direct references (pointers). In this work we
present the architecture of an improvement of MPhyScas, called
MPhyScas-P (MPhyScas Parallel), which can be used for the
automatic development of either sequential or parallel simulators.
We take an advantage of the architecture in layers of MPhyScas
in order to define a hierarchical parallel computational scheme
in such a way that communication procedures are automatically
identified, localized and built. That hierarchy also provides a
natural way of defining data structures and access dynamics
for all memory levels, providing simpler ways of dealing with
non-uniform memory access patterns. Some preliminary results
obtained with a prototype will be shown and analyzed.

Index Terms—Finite element method, Simulator, Multi-physics,
Coupled phenomena

I. INTRODUCTION

MPhyScas (Multi-Physics Multi-Scale Solver Environment)
is an environment dedicated to the automatic development of
simulators based on the finite element method. The term multi-
physics can be defined as a qualifier for a set of interacting
phenomena defined in space and time. These phenomena are
usually of different nature (deformation of solids, heat transfer,
electromagnetic fields, etc.) and may be defined in different
scales of behavior (macro and micro mechanical behavior of
materials). A multi-physics system is also called a system of
coupled phenomena. If two phenomena are coupled, it means
that a part of one phenomenon’s data depends on information
from other phenomenon. Such a dependence may occur in any
geometric part, where both phenomena are defined. Other type
of data dependence is the case where two or more phenomena
are defined on the same geometric component and share

the geometric mesh. Multi-physics and multi-scale problems
are difficult to simulate and the building of simulators for
them tend to be very costly in terms of time spent in the
programming and testing of the code. The main reason for
that is the lack of reusability. A detailed discussion can be
found in [1]-[2].

Usually, simulators based on the finite element method can
be cast in an architecture of layers. In the top layer global
iterative loops (for time stepping, model adaptation and artic-
ulation of several blocks of solution algorithms) can be found.
This corresponds to the overall scenery of the simulation. The
second layer contains what is called the solution algorithms.
Each solution algorithm dictates the way linear systems are
built and solved. It also defines the type of all operations
involving matrices, vectors and scalars, and the moment when
they have to be performed. The third layer contains the solvers
for linear systems and all the machinery for operating with
matrices and vectors. This layer is the place where all global
matrices, vectors and scalars are located. It is also responsible
for the definition of the finer details for the assembling of
matrices and vectors. The last layer is the phenomenon layer,
which is responsible for computing local matrices and vectors
at the finite element level and assembling them into global
data structures.

The definition of those layers is important in the sense of
software modularization. But it does not indicate neither how
entities belonging to different layers interact nor what data
they share or depend upon. That is certainly very important
for the definition of abstractions, which could standardize
the way those layers behave and interact. The architecture
of MPhyScas presents a language of patterns in order to
define and represent not only a set of entities in each layer -
providing the needed layer functionalities - but also the transfer
of data and services between the layers. Thus, MPhyScas is
a framework that binds together a number of computational
entities, which were defined based on that language of patterns,
forming a simulator. Such a simulator can easily be recon-
figured in order to change solution methods or other types
of behavior [3]-[4]. Almost every single piece of code that
constitute MPhyScas computational entities in a simulator can
be reused in the building of other different simulators. This
makes the simulators produced by MPhyScas strongly flexible,
adaptable and maintainable.

However, the original architecture of MPhyScas provides

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

45

support for the automatic building of sequential simulators
only. For instance, it does not have abstractions that could
automatically define the distribution of data and procedures
and their relationships across a cluster of PC’s. In this work
we briefly present MPhyScas architecture for sequential sim-
ulators (called MPhyScas-S from now on) in order to proceed
with the main part of the work, i.e., the definition of a new
parallel architecture. This new architecture, called MPhyScas-
P, should satisfy a number of new requirements, including
the support for the parallel execution of the simulators in
clusters of PC’s. MPhyScas-S is a framework with the sup-
port of an extended finite element library and a knowledge
management system. MPhyScas-P uses the same extended
library and knowledge management system from MPhyScas-
S (with minor differences). It also makes use of the concept
of layers already used in MPhyScas-S in order to define
a hierarchical parallel structure. Such a hierarchy is useful
for the automatic definition of synchronization schemes; data
partition and distribution procedures; inter-process commu-
nication patterns and data management across several levels
of memory. Procedures are automatically specialized for the
pre-processing; the simulation and the post-processing phases,
depending on the hierarchical distribution and on the charac-
teristics of the hardware being used. Also, only two types of
communication between processes during a simulation, and
patterns are defined for their representation.

This work is organized as follows: first the architecture
of MPhyScas-S is briefly described paving the ground for
describing MPhyScas-P’s architecture. Next, comments on
some relevant related work are provided in order to build a
context for this article. After that is done, the architecture of
MPhyScas-P is presented, followed by a description of its be-
havior (in the context of the work load and flow requirements).
In the end some conclusions are drawn. Our purpose here
is more descriptive than analytic. However, whenever needed
some comments will be provided in order to make things a
bit clearer. In the end some conclusions are drawn.

II. THE ARCHITECTURE OF MPHYSCAS-S

The architecture of MPhyScas-S [5], [4] establishes a com-
putational representation for the computational layers using
some design patterns (see Figure 1), where the Kernel Level
represents the global scenery level, the level of the solution
algorithms is represented by the Block Level, the level of
solvers is represented by the Group Level and the phenomena
level is represented by the Phenomenon Level. The definition
of this structure is aimed at improving the quality of simulators
design. The defined architecture attempts to fill in the existing
gap in the development of FEM simulators for multi-physics
and multi-scales problems. The main requirements of this
architecture are: (i) Flexibility in the development of simu-
lators; (ii) Extensibility of simulators through the integration
of components and (iii) Improved reusability of code, data and
models.

The architecture of MPhyScas-S is shown in Figure 2.
The Static Library allows the maintenance of data employed
in the building of simulators and simulations. Those data
includes: methods (mesh generation, numerical integration,

Fig. 1. Computational representation for the layers of the simulator

for instance), functions (constitutive parameters, for instance),
algorithms and phenomena. The Pre-Processor produces Data
for Simulation and builds the Simulator using the Static
Library. The Data for Simulation represents the input data in
a simulation as it is used by the Simulator. The Simulator is
responsible for the execution of a simulation. The Simulator
uses the Data for Simulation and produces the Results of the
Simulation. The Viewer uses the Results of the Simulation
and the Data for Simulation to produce the visualization of
the simulation results.

Fig. 2. Architecture of the MPhyScas

The Simulator is considered as a pattern [6], [3] and [7]
(see Figure 3), which, simply speaking, is a workflow in the
form of a DAG (Direct Acyclic Graph) and divided into four
layers, which strongly follows the slices of concerns for each
layer, already cited in the introduction:
i) Kernel: it is responsible for initialization procedures

(transferred to Blocks in the lower level); for global time
loops and iterations; for global adaptive iterations and for
articulation of activities to be executed by the Blocks in
the lower level. The Kernel stores system data related to
the parameters for its loops and iterations;

ii) Block: it is responsible for the transfer of incoming
demands from the Kernel to its Groups in the lower level
(initialization procedures, for instance); for Block local
time loops and iterations (inner loops and iterations inside
a global time step, restricted to groups of phenomena);
for procedures inside time stepping schemes; for Block
local iterations (restricted to some groups of phenomena,
like in a Newton-Raphson iteration, for instance); for
Block local adaptive iterations (restricted to some groups
of phenomena); for operations with global quantities
(transferred to Groups in the lower level, which are the
owners of global quantities). The Blocks serve the Kernel
level. Each Block is responsible for a certain number
of Groups, which can not be owned by other Block.
All demands from a Block to the lower level should be
addressed to its Groups. The Blocks store system data
related to parameters for their own loops and iterations

46

and parameters for their procedures;
iii) Group: it is responsible for the transfer of incoming

demands from its Block to Phenomena in the lower
level (initialization procedures, for instance); for the
assembling coordination and solution of systems of linear
algebraic equations (the method used depends on the
solver component); for operations with global quantities
(by demand from its Block), for articulation of activities
to be executed by its Phenomena in the lower level
(basically concerned with computation and assembling of
global matrices and vectors). The Groups serve their re-
spective Blocks. Each Group is responsible for a certain
number of Phenomena, which can not be owned by other
Group. All demands from a Group to the lower level
should be addressed to its Phenomena only. The Groups
store global matrices, vectors and scalars and store the
GroupTasks, which are objects encapsulating standard
procedures, where articulation of the Group’s Phenom-
ena are needed. The GroupTasks are programmable and
their data are standard pieces of information, depending
only on the type of the GroupTask.

iv) Phenomenon: it is responsible for the computation of
local matrices, vectors and scalars (Phenomenon quan-
tities); for operations involving matrices and vectors at
the finite element level and their assembling into given
global matrices and vectors. The Phenomena serve their
respective Groups. The Phenomena store data related
to constitutive parameters or other parameters, which are
specific of the respective Phenomenon; store the geometry
where the respective Phenomenon is defined (different
Phenomena may share a geometry or a part of it);
store WeakForms, which are tools for computing and
assembling quantities defined on a certain part of the
geometry. A WeakForm may be active or not. Only
active WeakForms can be used during a simulation. A
WeakForm may store parameters, which are related to
specific simulation data (for instance, functions for the
definition of boundary conditions or parameters needed
for the computation of a quantity, which should be given
together within a simulation data set). The Phenomenon
should store methods, which are tools to be used in
certain Phenomenon specific tasks. For instance, those
tasks can be generation of geometric and Phenomenon
meshes, numerical integration at the element level, shape
functions, etc.

The simulation starts with the execution of the root of the
Kernel, which uses services provided by a set of Blocks,
which in turn uses services from a set of Groups. Each
Group owns a set of Phenomenon objects, which are used to
perform the production of local matrices and vectors and the
assembling of them into given (by the Group) global matrices
and vectors.

The states that define the configuration of each Phe-
nomenon object are stored in the respective Group object,
where solvers are located. This is convenient due to the fact
that the Group’s layer is responsible not only to assemble
and solve algebraic systems, but also to operate with scalars,
vectors and matrices in response to requests from a Block (see

Fig. 3. Simulator diagram

Fig. 4. Each Phenomenon object is able of computing a set of quantities
during a simulation

Figure 5).

Fig. 5. Each Phenomenon object has its own set of states, which is stored
in its Group object

A quantity that a Phenomenon object can compute and
assemble may be coupled to other Phenomenon’s states (one
or more) as it is depicted in Figure 6. MPhyScas-S provides all
the machinery to make this procedure automatized following
the specification of some data related to the place where
coupling occur; handlers for the states and a reference to the
coupled Phenomenon object, which should be given to the
object responsible for the computation.

For further detailed information on MPhyScas-S see [4]. In
the next section we provide some relevant related work.

47

Fig. 6. A quantity computed by a Phenomenon object may be coupled to a
state from other Phenomenon object

III. RELATED WORK

Definition and building of computational frameworks that
support programming of simulator for multiphysics problems
has been a very active area in the last decade. For the sake of
providing a simpler context for the present work, we classify
current research efforts into only two classes: (i) libraries,
which, besides providing important abstractions supporting
data, procedures and relationships for coupled physics sim-
ulation, do not provide a structural guidance (architecture) for
the building of simulators, and (ii) frameworks, which provide
a deep structure of abstractions and patterns in the form of
an architecture. We will comment more on the second class,
since MPhyScas is a framework with those characteristics. As
examples of class (i) we cite the Component Template Library
(CTL) [8] and Comsol [9]. CTL provide abstractions that
support the building of solutions algorithms for loose and tight
coupling (procedures in the level of Group and Phenomena). It
is an implementation of the component concept with an RMI
semantic similar to CORBA or Java-RMI components, which
can be used to build complex parallel simulators. It is sophisti-
cated in the sense that allows component in several languages
(C, C++, FORTRAN) and different communication models
(RMI, MPI, PVM, threads) among other features. Comsol is a
commercial package and not much of its internal behavior is
publicly exposed. Nevertheless, it provides abstractions that
allow users to define coupled procedures through handlers
to vector fields and provide encapsulated access to high
performance computing. It has a sophisticated GUI with CAD
and visualization modules. However, besides varying levels
of support for HPC, neither one of them provides structural
guidance for simulators (levels Kernel through Phenomena),
leaving that task to the user.

In the class of frameworks (class (ii)), one can find powerful
packages, such as Uintah [10], Cactus [11] and Sierra [12].
They are substantially different and have been applied to
extremely sophisticated simulations. Since the architecture of
MPhyScas is closer to Sierra’s architecture, we will comment
on this framework with more detail. Uintah Computational
Framework and Cactus Framework consist of a set of software
components and libraries that facilitate the solution of Partial
Differential Equations (PDEs) on Structured AMR (SAMR)
grids using hundreds to thousands of processors. Although
they do not provide a structure for simulators as done by Sierra
and MPhyScas, they are in this class due to how they bind
components together; define and use coupling information and
provide access to high performance (e.g. parallel) processing
through a shared service infrastructure. That characterizes
them as having a deep interoperability system. Uintah uses
CCA (Common Component Architecture) [13] for designing
and describing components interfaces. It does not have a pre-
defined structure for simulators. Thus, in order to provide
framework functionality it defines on top of its primary set
of abstractions another set of components and supporting
libraries, which targets the solution of PDE’s on massively
parallel architectures. This set is called Uintah Computational
Framework (UCF). UCF builds a graph called TaskGraph,
which describes the data dependencies between the various
computation steps in a simulator. Also, it defines a simulator’s
workflow as a direct acyclic graph of Tasks. Communication
between Tasks is made through a DataWareHouse, which
provides the illusion that all memory is global. If a Task
correctly describes its data dependencies, then the data stored
in the DataWareHouse will match the desired data (variable
and region of state). Communication is scheduled by a local
scheduling algorithm that approximates the true globally op-
timal communication schedule. Because of the flexibility of
single-assignment semantics, the UCF is free to execute tasks
close to data or move data to minimize future communication
[10].

The following nice summary of Cactus structure is found in
[14]: ”The Cactus Flesh acts as the coordinating glue between
modules that enables composition of the modules into full
applications. The Flesh is independent of all modules, includes
a rule based scheduler, parameter file parser, build system,
and at run time holds information about the grid variables,
parameters, methods in the modules and acts as a service
library for modules. Cactus modules are termed Thorns and
can be written in Fortran 77 or 90, C or C++. Each thorn
is a separate library providing a standardized interface to
some functionality. Each thorn contains four configuration files
that specify the interface between the thorn and the Flesh
or other thorns (variables, parameters, methods, scheduling
and configuration details). Drivers are a specific class of
Cactus Thorns that implement the model for parallelism. Each
solver thorn is written to an abstract model for parallelism,
but the Driver supplies the concrete implementation for the
parallelism” (see also [11]).

Sierra framework provides a structural guidance in layers
composed of (from top to bottom) Application, Procedure,
Region and Mechanics. Application articulates user-provided

48

algorithms in order to establish high-level activities. It uses
services from a set of Procedures, which can freely articulate
Regions using a set of user-provided algorithms. A Region
defines activities, which are related to a fixed geometric region,
for which a mesh is provided. Those activities are defined by
user-provided algorithms. It uses services provided by a set of
Mechanics. In order to perform the desired work, a Mechanics
uses a set of MechanicsInstances and a set of user-provided
algorithms. A Mechanics implements procedures related to a
specific physics - defined on a subset of its Region’s mesh
- and its MechanicsInstances are responsible for atomistic
operations defined on a subset of its Mechanics’ mesh. A
Mechanics may use another set of Mechanics, building more
layers downwards. This may be used in multiscale computa-
tions, where a lower level Mechanics is used to compute con-
stitutive data for a MechanicsInstance of its parent Mechanics
[12]. If a Mechanics A needs data from another Mechanics B
(provably defined in another Region), the Advanced Services
of Sierra provide means to transfer mesh-dependent data from
one mesh to the other. The result is then stored in the Region of
Mechanics A. The SIERRA Framework Core Services manage
the parallel distribution of mesh objects for an application.
Management of a parallel distributed mesh is defined in three
parts: (i) policies and distributed mesh sets, relations, and
data structures; (ii) parallel operations that do not modify
the distributed-mesh data structures, and (iii) operations that
modify the distributed-mesh data structures. Sierra has a so-
phisticated management system for parallel operations, which
is strongly supported by its defined topology. As far as the
authors are concerned Sierra supports only SPMD (single
process multiple data) type of parallel processing.

Clearly, it is possible to provide a parallel between the
architecture of MPhyScas and that of Sierra. Application
relates to Kernel; Procedure relates to Block; Region relates to
Group; Mechanics relates to Phenomenon and MechanicsIn-
stance relates to WeakForm (geometry-related atomistic piece
of code). However, there are several and important notes that
should lead to marked differences:

i) MPhyScas is strongly concern-oriented, instead of
procedure-oriented or context-oriented. Concerns are
more easily mapped into requirements and architectures.
Also, concerns are related to the fundamentals of the
classes of problems being tackled and are less vulnerable
to programming traditions and limitations. Adequate
separation of concerns may lead to more reusable, main-
tainable and adaptable code. Therefore, MPhyScas was
built to satisfy a nested set of concerns (functional and
non-functional) related to the numerical approximation
to solutions of partial differential equations (mainly
those solutions defined by the finite element method).
For instance, layers in MPhyScas are slices of the code
following a set of concerns already cited before. Sierra
is more procedure-oriented.

ii) The specification for the Kernel (simulator’s scenery)
is more detailed than that for Sierra’s Application. It
has only one shallow algorithm limited by the designed
responsibilities of the layer of Blocks. Of course, that
algorithm can be freely designed, but should satisfy

the concerns specified by what we call the Scenery
of the Simulation (it can be understood as a general
specification for the simulator, which gets more refined
when requirements for the other layers are detailed).

iii) MPhyScas’s Block is quite similar to Sierra’s Procedure
in their generality (their behavior is determined solely
by their algorithms). However, one Block never shares a
Group with other Block. This constraint does not apply
to the relationship between Procedure and Region in
Sierra framework. The justification for both Procedure
and Block is the need for the articulation (in adaptive
iterations, nonlinear solver iterations, and other situa-
tions) of sets of solvers involving different phenomena
(physics). As Sierra does it, MPhyScas limited the depth
of this layer in a slice of a generic simulator, where
activities related to time stepping methods, nonlinear
iterations and other processes are defined and articulated
for one fixed set of subsets of phenomena . However, in
MphyScas each Block also has the responsibility to de-
fine its cone of influence in a disjoint way. The reason is
that MPhyScas would like to support dynamic exchange
of components in all levels of computation. Therefore if
two Blocks were allowed to establish relationships to the
same Group, concerns related to both would get messed
up, making it extremely difficult to define the parts of
code affected by changes in one Block.

iv) A Region in Sierra is based on operations (Mechanics
and algorithms) and vector fields, which are defined on
a geometric entity and its geometric mesh. Transfer of
vector fields from one mesh to the other is provided
by the Advanced Services of Sierra. All vector fields
in a Region are defined in subsets of the same mesh.
The motivation for the Group in MPhyScas is based
on a set of Phenomenon objects and their data, which
participate in formation of linear monolithic algebraic
systems. Thus, all data needed to assemble and solve
those algebraic systems are stored in the Group. Thus,
there might be Phenomenon objects in a Group defined
on different meshes. That becomes manageable because
a Group does not know anything neither about geometry
domains nor about meshes. The transfer of vector fields
between meshes is performed by a especially designed
Phenomenon (instantiated and executed as a normal
Phenomenon object). Those pieces of information are
located in the respective Phenomenon objects. There
are special data structures that allow two Phenomenon
objects to share the mesh of a geometric entity, whenever
they are defined in that geometric part [4]. All matrices
and vectors are stored in the Group and their relationship
with the Group’s Phenomenon objects is described by
user-provided data. The location of matrices and vectors
in the Group was motivated by the location of linear
solvers in the Group. All dependencies between Phe-
nomenon objects are resolved in the Phenomenon layer.
Besides the solvers, a Group is entirely programmable;
does not depend on other user-defined algorithm and
does not share Phenomenon objects with other Group
(therefore providing the influence cone). There are other

49

differences, but the cited references are able of providing
further information.

v) Mechanics in Sierra encapsulate procedures related to a
particular physics. It articulates its MechanicsInstances
and algorithms in order to provide the computation
of quantities and the assembling of them. MPhyScas
provide those functionalities with Phenomenon objects
and their activated WeakForm objects. A Phenomenon
object accepts algorithms for activities such as numerical
integration, error estimation, mesh adaptation (geomet-
ric and phenomenon meshes), shape functions (trial
and test), mesh generation (geometric and phenomenon
meshes). A Phenomenon has two types of meshes: geo-
metric and phenomenon. Phenomenon meshes describe
the distribution of polynomial order of approximation
over the geometric mesh. It seems Sierra does not
support p and h-p adaptivity, because it does not data
structures for such procedures. This certainly would
complicate transfer procedures and the way coupled
vector fields are used in Sierra. That is supported by
MPhyScas and is one of the concerns, which was
considered when placing meshes at the Phenomenon
layer.

Both architectures (MPhyScas’ and Sierra’s) were devel-
oped independently. The first definition of the MPhyScas’
architecture was published in 2001. Nevertheless, they present
a similar structure with some marked differences (mainly in
the execution graph and placement of some data structures),
which get sronger in MPhyScas-P, where the tree structure
of the architecture of MPhyScas is used in the control of the
simulator execution on a cluster of PC’s (see next section). It
is important to note that while MPhyScas-P is in the beginning
of its development, Sierra is already a mature, complex,
fully developed system with far more functionalities than
MPhyScas-P. MPhyScas-P is being developed to be applied
in a production environment (analysis of material degradation
for the petroleum industry).

IV. THE ARCHITECTURE OF MPHYSCAS-P

In modern clusters of PC’s one can identify at least four
hierarchical levels of different procedures and/or memory
usage:
i) Cluster Level: it is composed of all processes running

in all machines being used in a simulation.
ii) Machine Level: it is composed of all processes running

in one individual machine among all those used in a
simulation

iii) Processor Level: it is composed of all processes running
in one individual processor among all those running in
one individual machine.

iv) Process Level: it is composed of one single process
running in one individual processor (provably multi-core)
among all other processes in this same processor. It can
be divided into two groups:

iv.i) Core Sub-level: it is composed of all parts of the
code from one individual process, which is not
strongly hardware specific.

iv.ii) Software-Hardware (SH) Sub-level: it is composed
of all parts of the code from one individual process,
which is strongly hardware specific (cache manage-
ment, fpga acceleration, etc.)

Whenever the architecture of a computational system allows
for a hierarchy of procedures, it may be a good idea to
define a hierarchy of processes in such a way that few of
them would accumulate some very light management tasks.
The benefits for this strategy include: (i) procedures can
be hierarchically synchronized (from coarse to fine grain),
reducing management concerns and increasing correctness;
(ii) since locality concerns change along the hierarchy levels,
memory management can become more and more specialized
from top to bottom. Communication processes can also ben-
efit from locality knowledge; (iii) The hierarchy allows for
the encapsulation of concerns, making it easier the design
of exchangeable components. Besides the natural benefit of
this aspect, it also allows for the adaptation of the code to
new hardware and software technologies, without incurring in
heavy reprogramming in all levels of the hierarchy.

A. Interprocess Communication Process

Next we provide a description of how interprocess com-
munication is considered in MPhyScas-P architecture. Com-
munication between processes is a very important issue for
problems with only one physics and gets even more crucial for
multi-physics problems. The cause for that is the fact that for
those types of problems communication is not needed only to
complete information during linear algebra operations, but also
to transfer information (vector fields and meshes) from one
phenomenon to the other. Furthermore, such a data dependence
between phenomena does not occur only on the boundaries
between two mesh components, but on any geometric entity.
There are other complication factors that contribute to make
things even worse. Changing solution algorithms means that
the linear systems, which are going to be solved, may be dra-
matically changed. For instance, changing from a monolithic
scheme to an operator splitting one will require the solutions
of several different coupled linear systems (inside an iteration
loop) instead of only one.

The architecture of MPhyScas-S has satisfactorily solved
those problems related to data dependence and sharing be-
tween Phenomenon objects for the sequential processing. It is
also able of representing solution algorithms in such a way that
the entire simulator can be adapted with a minimum amount
of reprogramming (maximum amount of reuse). However,
the essential difference, when considering parallel processing,
is the appearance of interprocess communication procedures,
which can be of four types:
i) Communication during linear algebra operations: The

inclusion of code parallelization as a requirement implies
that interprocess communication is needed during linear
algebra operations. For instance, parallel matrix-vector
multiplication requires interprocess communication in
order to complement the job done by each process.

ii) Communication along process hierarchy: The estab-
lishment of the hierarchy of procedures will require some
processes to assume some kind of leadership depending

50

on the layer, where they are located. This will require
interprocess communication throughout the hierarchy.

iii) Communication for coupled information - I:
MPhyScas-S has dealt with coupling dependences be-
tween different phenomena already, but in parallel pro-
cessing this type of dependence can become very com-
plex. For instance, this is the case whenever the interface
between two coupled phenomena coincides with a bound-
ary between two components of the mesh partition. That
means that vector fields and respective meshes data have
to be transferred from one process to the other.

iv) Communication for coupled information - II: If two
coupled phenomena have different geometric meshes, all
components in one mesh partition may be different from
all components in the other partition. Thus, there will be
a need for interprocess data transfer from one phenomena
to the other, whenever coupled quantities have to be
computed.

Well-thought distribution schemes and data representation
abstractions can eliminate both types of communication for
coupled information. This can be done by copying the coupled
vector fields and meshes data, to the processes where they
are needed. Those copies will be updated whenever needed
(communication of type (i) only). Processes will have to be
given a larger memory space, but that can be made a minimum.
The important thing is that the whole data set of a coupled
mesh will not be transferred between two processes when a
coupled quantity is to be computed. Thus, only types (i) and
(ii) will be needed. They will be called communications of
Type-I and Type-II, respectively.

In order to simplify the presentation of the MPhyScas-P’s
architecture some requirements have to be made: (i) If two
or more phenomena are coupled in one geometric entity, then
they share the same geometric mesh on that geometric entity.
We will not consider transfer of data between different meshes
in this work; (ii) All phenomena have to be represented in each
process with a nonempty geometric mesh; (iii) Only three
hierarchical levels will be considered in this work: Cluster,
Machine and Process Levels. We do not differentiate the
running processes by their processors in the same machine.
Furthermore, we will not divide a process code into Core and
Software-Hardware Sub-levels.

Requirements (i) and (iii) are made for simplification of
explanation, since if they were not made, some details about
mesh partition and distribution and the use of software-
hardware procedures would be needed, blurring the center
piece of this work. Requirement (ii) is needed because of
the lack of a better alternative: we are making an option
for a SPMD scheme. A MPMD scheme would require an
automatic analysis of the solution algorithm in order to decide
what procedure branches could be executed in parallel. Such
a solution algorithm analysis is still the subject of an ongoing
work.

B. Logical and Topological Views

There are two views of the MPhyScas-P’s architecture:
i) Logical View: the logic of MPhyScas-P’s workflow is

the same as the MPhyScas-S’, that is, it has the same lev-

els of procedures (Kernel, Blocks, Groups and Phenom-
ena), all relationships between them are preserved and
all procedures within each layer are technically the same
(besides the fact that data are now distributed). Therefore
the relationships among entities in the different levels
of MPhyScas-P is also a DAG (direct acyclic graph).
Thus, we are able of cloning a suitable modification of
MPhyScas-S to all processes in a SPMD scheme. In this
sense, one can imagine that MPhyScas-P is MPhyScas-S
with distributed data and a hierarchical synchronization
scheme (see Topological View below).

ii) Topological View: the topology of the procedures in the
workflow of MPhyScas-S is implemented in MPhyScas-
P in a hierarchical form with the aid of a set of processes,
which are responsible for the procedures synchroniza-
tion. There are three types of leader processes (see
Figure 7):

Fig. 7. Hierarchy of the simulator in MPhyScas-P

ii.i) ClusterRank Process: it is responsible for the
execution of the Kernel and to synchronize the
beginning and the end of each one of its level’s
tasks, which requires demands to lower level pro-
cesses. In a simulation there is only one ClusterRank
process (for instance, the process with rank equal to
zero in an MPI based system). Figure 8 depicts the
relationship between a ClusterRank process and the
simulator layers.

Fig. 8. Layers with procedures executed by clusterRank in MPhyScas-P

ii.ii) MachineRank Processes: one process is chosen
among all processes running in an individual ma-

51

chine to be its leader. Thus, there is only one
MachineRank process per machine. It is responsible
for the execution of procedures in the Block level
and to synchronize the beginning and the end of
each one of its level’s tasks, which requires demands
to lower level processes. ClusterRank is also the
MachineRank in its own machine. Figure 9 depicts
the relationship between a MachineRank process
and the simulator layers.

Fig. 9. Layers with procedures executed by machnineRank processes in
MPhyScas-P

ii.iii) ProcessRank Processes: it is responsible for the
execution of the procedures in the Group level.
The ClusterRank and all MachineRank processes
are also ProcessRank processes. Figure 10 depicts
the relationship between a ProcessRank process and
the simulator layers.

Fig. 10. Layers with procedures executed by processRank processes in
MPhyScas-P

Knowing that MPhyScas-S transfer commands from the
Kernel level down to the Phenomenon level in the
form of a tree structure, it can be seen that ClusterRank
only demands services from all MachineRanks, which
only demands services from all of its ProcessRanks.
Since the activities in one level returns to the level
immediately above after they are accomplished (with the
exception of the Kernel level) there are natural ways of
synchronizing each activity (for instance, using barriers
after each demand to the respective lower level has been
executed). The heavy computational load is located in
the ProcessRank processes. Since all processes are also

ProcessRanks and the extra management duties of the
leader processes are extremely light, there is no waste
of processing power. Furthermore, there is certainly an
advantage with the tremendous simplification in the
synchronization tasks. Note that the activities in Group
and Phenomenon levels are left for a finer granularity of
management. In both levels there are well localized CPU
intensive operations, which could be accelerated with a
suitable software optimization and the use of hardware
devices (for instance, fpga’s).

As it has been seen, MPhyScas-P can be considered as
MPhyScas-S running in different processes with distributed
data. Besides the natural differences between sequential and
parallel programs, there is also a specialization of some of the
processes, which is important in the synchronization activities.
However, when coming to the more demanding parts of the
computation, all processes will participate as well. Those parts
are coded almost exactly in the same as they are in MPhyScas-
S. In what follows we explain the main procedures executed
by the preprocessor and by the simulator.

V. COMPUTATIONAL WORK LOAD AND FLOW IN
MPHYSCAS-P

In this section we summarize several aspects of the main
activities related to the simulator building, the preprocessing of
user data and the simulation. In what follows we will describe
the following activities: (i) definition and instantiation of the
simulator; (ii) Input of simulation data; (iii) Preprocessing; (iv)
Simulation execution; (v) Mesh partition and (vi) Visualiza-
tion.

A. Simulator definition and instantiation

Simulator objects are complex computational entities and
are built following a set of user data (actually, meta-data).
Simulators in MPhyScas-P architecture do not behave the same
in all processes. Therefore, the preprocessing builds simulators
able of instantiating different behaviors . Behavior instantiation
will be performed depending on the role of each running
process, that is, ClusterRank, MachineRank and ProcessRank
type processes will behave differently, since they have different
management duties. However, in the present implementation,
they will perform virtually the same procedures, when it comes
to activities at the Group and Phenomenon levels (the most
computationally intensive procedures). The definition of a
simulator behavior in each process comprises the following
activities:

a. ClusterRank (Rank Zero): (i) Interacts with user in order
to build/configure the simulator; (ii) Identifies all other
processes as either MachineRank or ProcessRank and
provides a tag to each one of them; (iii) Format simulator
specification data for distribution to each MachineRank
process; (iv) Distributes simulator specification data to
all MachineRank processes.

b. MachineRanks: (i) Receive simulator specification from
ClusterRank; (ii) Format simulator specification data
for distribution to its ProcessRanks processes; (iii) Dis-
tribute simulator specification data to all its Process-
Ranks processes.

52

c. ProcessRanks: Receive simulator specification from its
MachineRank process.

d. All processes: Instantiate simulator (processes from one
hierarchical level to another have different simulation
instantiation mechanism).

B. Simulation data input

Input of simulation data in MPhyScas-P is exactly the same
as for MPhyScas-S (for more information see [4]). However,
since processes are specialized - depending on where they
are placed in the hierarchy of the simulator - the transfer of
simulation data start with the ClusterRank and goes down the
hierarchy down to the ProcessRanks. The input procedures are:

a. ClusterRank: (i) Interacts with user in order to in-
put simulation data: (i.1) Geometry; (i.2) Phenomenon
types; (i.3) Relation phenomenon × geometry; (i.4)
Quantity to be activated for each phenomenon object;
(i.5) Group data;(i.6) Phenomenon data; (i.7) Com-
plementary data for the definition of the preprocessor
behavior; (ii) Formats simulation data for distribution to
all MachineRanks; (iii) Distributes simulation data to all
MachineRanks.

b. MachineRanks: (i) Receive simulation data from Clus-
terRank; (ii) Format simulation data for distribution to
its ProcessRanks; (iii) Distribute simulation data to its
ProcessRanks.

c. ProcessRanks: Receive simulation data from its Machin-
eRank.

d. All processes: Instantiate preprocessor object.

C. Preprocessing

Preprocessing is an activity responsible for the building
of data structures for the simulation data in a way that can
be understood by the simulator. Not only that, of course,
because part of the user data is transformed severely, before
becoming available for the simulator. Those tasks can be
very computationally demanding and can be performed either
sequentially - with the result being distributed afterwards -
or in parallel. One of such an example is mesh generation. In
MPhyScas-P the preprocessing is also especialized, depending
on the process type along the hierarchy. In any case, the
idea is that the processes in each level will perform part of
the preprocessing and will send subsets of raw data together
with subsets of already preprocessed data to processes in the
lower level. This helps not only load balancing, but also the
simplification of procedures.

1) Preprocessing Dynamics: The dynamics of the prepro-
cessing activities can be described through the actions taken
at each level of computation:

a. ClusterRank: (i) If preprocess is sequential: (i.1) Prepro-
cess whole simulation data including mesh generation
and partition; (i.2) Format preprocessed simulation data
to all MachineRanks; (i.3) Distribute preprocessed simu-
lation data to all MachineRanks, or else (i.1) Preprocess
the whole simulation data in parallel with all other
processes (communication with other processes depends
on the methods used, i.e., mesh generation)

b. MachineRanks: (i) If preprocess is sequential: (i.1) Re-
ceive preprocessed simulation data from ClusterRank;
(i.2) Preprocess a small part of its simulation data; (i.3)
Format preprocessed simulation data for distribution to
its ProcessRanks; (i.4) Distribute preprocessed simula-
tion data to all its ProcessRanks, or else (i.1) Preprocess
the whole simulation data in parallel

c. ProcessRanks: (i) If preprocess is sequential: (i.1) Re-
ceive preprocessed simulation data from rank machine;
(i.2) Preprocess a small part of its simulation data; or
else (i.1) Preprocess the whole simulation data in parallel

d. Notes: (i) The Preprocessor object is actually a very
complex machine. It encapsulates a great variety of other
objects, which were instantiated following data (choices)
given by the user; (ii) This object is specialized depend-
ing whether the node is a ClusterRank or a MachineRank
or a ProcessRank; (iii) It is not the intention of this
paper to go into details about the preprocessing stage.
Nevertheless, short explanations about mesh generation
and distribution will be needed; (iv) A third party mesh
generation in parallel for MPhyScas should require that:
(iv.1) ClusterRank starts the process and distributes data
to be performed in parallel with all MachineRanks; (iv.2)
Then all MachineRanks will process the data a little bit
more and then redistribute them to all ProcessRanks;
(iv.3) Since ClusterRank and all MachineRanks are also
ProcessRanks, the heaviest work will be done after the
data is spread among all processes; (v) When the mesh
generation is sequential, only ClusterRank executes the
mesh generator and then makes the partition and distri-
bution of the mesh; (vi) Being able of using a third party
mesh generator is also a requirement for MPhyScas-
P. Thus, it is wrapped inside an object, which is also
responsible to transfer data in and out of the mesh
generator.

2) Preprocessing activities: The following activities com-
prise the main activities in the preprocessing. For clarity pur-
poses, we assume that the mesh generation is done sequentially
by the ClusterRank:

a. ClusterRank: (i) Instantiate Phenomenon objects; (ii) For
each Phenomenon object: (ii.1) Build GeomGraph; (ii.2)
Build PhenGraph; (ii.3) Activate quantities; (ii.4) Build
relationship Phenomenon × Phenomenon based on cou-
pled quantities; (ii.5) Establish mesh sharing relation-
ship; (ii.6) Instantiate methods; (iii) Relate Phenomenon
objects with simulator Groups; (iv) For each Group:
(iv.1) Build GroupTask objects and load their data;
(iv.2) Build QuantityGroup objects with their Group-
Task objects; (iv.3) Instantiate methods; (v) Generate
geometric meshes; (vi) Generate phenomenon meshes
for each Phenomenon; (vii) Partition each one of the
geometric meshes and respective phenomenon meshes
among MachineRank processes; (viii) Partition Geom-
Graphs following geometric mesh partition; (ix) Parti-
tion PhenGraphs following the partition of the respective
GeomGraphs; (x) Build Phenomenon objects for each
partition; (xi) Format data (Group data and Phenomenon
data for each partition) to be sent to the MachineRanks

53

processes; (xii) Distribute preprocessed data to Machin-
eRanks processes.

b. MachineRank: (i) receive data from ClusterRank; (ii)
Instantiate Phenomenon objects; (iii) For each Phe-
nomenon object: (iii.1) Build GeomGraph; (iii.2) Build
PhenGraph; (iii.3) Activate quantities; (iii.4) Build re-
lationship Phenomenon × Phenomenon based on cou-
pled quantities; (iii.5) Establish mesh sharing relation-
ship; (iii.6) Instantiate methods; (iv) Relate Phenomenon
objects with simulator Groups; (v) For each Group:
(v.1) Build GroupTask objects and load their data;
(v.2) Build QuantityGroup objects with their Group-
Task objects; (v.3) Instantiate methods; (vi) Recover
geometric meshes; (vii) Recover phenomenon meshes
for each Phenomenon; (viii) Partition each one of the
geometric meshes and respective phenomenon meshes
among its ProcessRank processes; (ix) Partition Geom-
Graphs following geometric mesh partition; (x) Partition
PhenGraphs following the partition of the respective
GeomGraphs; (xi) Build Phenomenon objects for each
partition; (xii) Format data (Group data and Phenomenon
data for each partition) to be sent to its ProcessRank
processes; (xiii) Distribute preprocessed data to its Pro-
cessRank processes

c. ProcessRank: (i) receive data from its MachineRank;
(ii) Instantiate Phenomenon objects; (iii) For each Phe-
nomenon object: (iii.1) Build GeomGraph; (iii.2) Build
PhenGraph; (iii.3) Activate quantities;(iii.4) Build rela-
tionship Phenomenon × Phenomenon based on coupled
quantities; (iii.5) Establish mesh sharing relationship;
(iii.6) Instantiate methods; (iv) Relate Phenomenon ob-
jects with simulator Groups; (v) For each Group (v.1)
Build GroupTask objects and load their data; (v.2)
Build QuantityGroup objects with their GroupTask ob-
jects; (v.3) Instantiate methods; (vi) Recover geometric
meshes; (vii) Recover phenomenon meshes for each
Phenomenon; (viii) Build Phenomenon objects

D. Simulation execution

The execution of the simulation requires synchronization in
all levels of the hierarchy. We will not describe this mechanism
in detail. However, it is important to mention that the execution
of tasks at a given level, which requires tasks to be executed by
other processes in the lower level, is used as a synchronization
point for all processes involved. The main procedures can be
viewed below:

a. ClusterRank: (i) Interacts with the user in order to start
simulation; (ii) Starts simulation by executing the Kernel
driver (it is an object): (ii.1) Whenever the Kernel driver
calls the execution of a procedure at the Block level,
it should broadcast a message with the needed data to
all MachineRanks; (ii.2) Execute its own Block level as
requested by the Kernel driver (ClusterRank acts as a
MachineRank); (ii.3) Upon the end of the execution of
the procedure in the Block level, ClusterRank broadcasts
a message to all MachineRanks for synchronization
purposes.

b. MachineRanks: (i) Receive message from ClusterRank
to execute a procedure in the Block level; (ii) Execute
the required procedure; (iii) Whenever a procedure in
a Block object demands the execution of a procedure -
operation of type BLAS I, II or III or the execution of
a GroupQuantity object - at the Group level, it should
broadcast a message with the needed data to all its
ProcessRanks; (iv) Upon the end of the execution of
the procedure in the Group level, MachineRank broad-
casts a message to all ProcessRanks for synchronization
purposes; (v) At the end of the procedure, MachineRank
sends a message answering the synchronization broad-
cast sent by ClusterRank

c. ProcessRanks: (i) Receive message from its Machin-
eRank to execute a procedure in the Group level; (ii)
Execute the required procedure; (iii) At the end of the
procedure, ProcessRank sends a message answering the
synchronization broadcast sent by its MachineRank.

d. Notes: It is noticeable that the described hierarchi-
cal execution in parallel allows also for parallelization
schemes of type MPMD (multiple processes multiple
data), because it links components in a DAG (direct
acyclic graph) structure. The DAG structure allows for
automatic and dynamic analysis, load balancing, algo-
rithm partitioning and scheduling of the execution of all
its parts on a given set of processors. This is currently
being pursued and will be published elsewhere.

Fig. 11. Geometric domain

E. Further notes

In this subsection we present some notes to further clarify
some issues.

1) Mesh partition and distribution: For what follows, con-
sider the geometric domain in Figure 11 and its geometric

54

Fig. 12. Partitioned geometric mesh

Fig. 13. Partition component in contact with the outer boundary

mesh 12, which is partitioned for twelve processes. Assume
that phenomena Ph1 and Ph2 act on S1 and S2, respectively.
Note that both domains were partitioned into twelve parts
(processes i, i = A, . . ., L) in order for each process to contain
both Phenomenon objects with nonempty meshes.

a. MPhyScas architecture associate procedures (quantity
computations and other tasks) to geometric entities [15],
[4]. They are performed at the Phenomenon level, but
their execution and required parameters are established
at the Group level. Those procedures and the geometry
are then organized in the form of two graphs, the
GeomGraph and the PhenGraph, which have the same
structure. However, while the GeomGraph encapsulates
a geometric entity (points, curves, surfaces, volumes)
at each one of its nodes (GeomGraphNodes), the Phen-
Graph encapsulates the procedures (called WeakForm) at

Fig. 14. Partition component without contact with the outer boundary

Fig. 15. Neighboring partition components, such that the interface is an
existent geometric entity

each one of its nodes (PhenGraphNodes), which are to
be computed on the geometric entities of the respective
GeomGraphNodes.

b. The partition of the mesh represents a partition of the
geometry and thus requires an associated graph partition.
The current geometric entities will then be partitioned -
after their mesh partition - and new geometric entities
will be formed (including those on the mesh interface
between two mesh parts), see Figures 13 and 14. Note

Fig. 16. Added CouplingPhenomenon to the process on one side

55

Fig. 17. Added CouplingPhenomena to the process on the other side

that ghost elements are always included in the parts of
a partition.

c. The partition of already existent geometric entities will
produce new geometric entities (Figure 13), which will
inherit all WeakForms from the former. However, the
new geometric entities obtained at the interface between
two partitions will be given new WeakForms, depending
on the solution algorithm implemented in the simulator.
Nevertheless, the vector fields restricted to those brand
new geometric entities will represent the data to be
exchanged between the neighboring processes.

d. Following item (c) above, new GeomGraphs and Phen-
Graphs will be generated for each partition. It is im-
portant that a process P can retrieve the id’s of its
neighboring processes and the connectivity of the mesh
nodes at each interface between P’s mesh and its
neighboring mesh parts. Those pieces of information
can also be localized at the PhenGraphNode associated
to the GeomGraphNode, which contains the geometric
interface between two mesh parts. Two processes are
neighbors if their geometric meshes have a nontrivial
intersection.

e. It may happen that an interface between two mesh parts
is also a part of an existent geometric entity at the
contour of the geometric domain, Figure 15. Suppose
that this geometric entity divides the geometry into two
regions, where one phenomenon acts on one side and
a different one acts on the other (for instance, part A
and part D in Figure 15 and 16). In this case, if there
is exchange of data between both phenomena during
simulation, then, special procedures should take place.
This is so because one cannot afford the transfer of
coupling data (vector fields and Phenomenon meshes)
across processes each time one Phenomenon object
needs data from other Phenomenon on the boundary of
its geometric domain.

f. In order to tackle the problem described in item (e)
above, consider that both meshes were partitioned
among all processors in such a way that each process
has all Phenomenon objects with nonempty mesh parts.
Suppose now that Ph0 computes a quantity qa on the
interface between S1 and S2 (that is, curve C6), where it

needs data from phenomenon Ph1. Consider process A,
which contains two mesh partitions, A−0, for Ph0 and
1−A for Ph1. Consider now process D, which contains
two mesh partitions, 0−D, for Ph0 and 1−D for Ph1.
Note that the interface between 0−A and 1−D coincides
with a part of the curve C6. Thus, the computation of
qa by process A will need information from Ph1, which
is not in process A (note that 1 − A is far from that
curve). The solution is, then, to add to process A another
Phenomenon object called CouplingPhen (in the same
Group as Ph0), containing the copy of the geometric
entity, where the coupling occur (interface 0−A-1−D),
together with its mesh and related vector fields, Figure
17. Also, this object should know process D’s id and
handler to its locale in Ph1 in D. In this way, whenever
required, the CouplingPhen object will update - through
communication between both processes - only the vector
field data from process D related to the geometric part
1−D. Mesh data (geometric and phenomenon meshes)
is already local to process A and need not be transferred.

g. The structure of CouplingPhen is exactly the same as a
regular Phenomenon object. The difference is that the
instantiation of CouplingPhen is dynamic and does not
need data from the user. Also, the coupling information
needed in the computation of a coupled quantity (like
qa in the above example) is automatically built from the
original information (provided by the user), which linked
the computation of qa by Ph0 with data from Ph1 on
the curve C6.

h. Note that geometric interfaces between two parts can
be either a point, or a mesh curve, or a mesh surface.
This is so because those entities can be shared by more
than one partition. Actually, points (in 2-D and 3-D) and
mesh curves (in 3-D) can be interfaces between many
partitions at the same time. This makes the above story
a little more demanding, but we will not go into further
details. The main picture is already set.

i. After the mesh partition and distribution is finished,
the preprocessing procedures will generate the new
GeomGraphs and PhenGraphs for each process. Then,
all CouplingPhen objects are instantiated. That is the last
thing the preprocessor will do before the simulation. The
simulator automatically schedules the updating requests
to CouplingPhen objects.

j. Mesh partition and distribution are far more complex
when two or more Phenomena objects - defined on the
same geometric entity - do not share the same geometric
mesh. It is when data transfer between meshes should
take place. This case is quite important, but will not be
considered here.

2) Visualization and other types of external interfaces:
MPhyScas does not provide costume-made visualization ma-
chinery for simulation data and results. However, it does
provide interfaces to third party visualization software. An
interface should be implemented for each new visualization
software to be used. Also, the post-processing procedures are
implemented as Phenomenon objects, that is, all calculations
and format exchange of quantities to be visualized/analyzed

56

are implemented as coupled WeakForm’s in Phenomenon
objects. The execution of the visualization software can be
done through MPhyScas interface, although it can also be
done separately. Not only visualization events can be consid-
ered. Phenomenon objects can also encapsulate (through their
WeakForm’s) a variety of different types of interferences in the
simulation. For instance, interruptions and coupling between
simulation and laboratory experiments can be implemented
with this strategy. The simulation algorithm will dictate when
and where in the simulation those interferences will become
active.

VI. CONCLUSIONS

We presented the architecture of MPhyScas-P, a frame-
work aimed at supporting the automatic development of high
performance simulators for multi-physics problems. This ar-
chitecture inherits from MPhyScas-S (the sequential version)
all its workflow representation, with the obvious difference
that MPhyScas-P is distributed in a hierarchical way. Al-
though MPhyScas-S has already a fully functional prototype,
MPhyScas-P has a prototype (using MPI) currently being
tested. Besides those qualities that MPhyScas-S has already
demonstrated (strong reusability, maintainability, adaptability
and correctness), MPhyScas-P provides also another nice
feature: due to the DAG (direct acyclic graph) structure
of its workflow, its code can be dynamically analyzed and
reconfigured in such a way that MPMD schemes could be
used. At last but not least, it is important to notice that we
are dealing with very complex problems, with very complex
solution algorithms. We think that if MPhyScas-P would be
able to alleviate the burden of programming and changing code
for those types of problem, our task would be fulfilled. We are
currently building a graphic user interface coupled to a DBMS
in order to manage the use of components for MPhyScas-S and
MPhyScas-P and are planning in using an interface description
language in order to describe all interfaces of components.
One candidate being considered is SIDL from the Common
Component Architecture (CCA) [13].

REFERENCES

[1] F. C. G. Santos, E. R. R. J. Brito, and J. M. A. Barbosa, “Simulao
do problema de evoluo do dano em uma barra elasto-viscoplstica
com acoplamento termomecnico empregando grafo de interface genrica
(gig),” 7◦ Congresso Iberoamericano de Engenharia Mecnica, 2005.

[2] F. C. G. Santos, E. R. R. J. Brito, and J. M. A. Barbosa, “Coping with
data dependence and sharing in the simulatin of coupled phenomena,”
International Congress on Computational and Applied Mathematics -
ICCAM, 2006.

[3] F. Santos, M. Lencastre, and M. Vieira, “Workflow for simulators based
on finite element method,” Proceedings of the International Conference
on Computational Science (ICCS), 2003.

[4] F. Santos, E. R. R. J. Brito, J. M. A. Barbosa, J. M. B. Silva, and I. H. F.
Santos, “Toward the automatic development of simulators for multi-
physics problems,” International Journal of Modelling and Simulation
for the Petroleum Industry, vol. 1, no. 1, 2007.

[5] M. Lencastre, Conceptualisation of an Environment for the Development
of FEM Simulators. Doutorado em ciências da computação, Universi-
dade Federal de Pernambuco, Recife, Pernambuco, 2004.

[6] F. Santos, M. Lencastre, and I. Rodrigues, “Fem simulator based
on skeletons for coupled phenomena,” Proceedings of the 2nd Latin
American Conference on Pattern Languages of Programming, 2002.

[7] F. Santos and M. Lencastre, “An approach for fem simulator develop-
ment,” Journal of Computational ans Applied Mathematics, 2006.

[8] R. Niekamp, “Software component architecture,”
http://congress.cimne.upc.es/cfsi/frontal/doc/ppt/11.pdf.

[9] http://www.comsol.com/.
[10] S. Parker, “A component-based architecture for parallel multi-physics

pde simulation,” Future Generation Computer Systems, no. 22,
p. 204216, 2006.

[11] A. G. L. G. M. J. R. T. S. E. S. J. Goodale, T., “The cactus framework
and toolkit: Design and applications,” Vector and Parallel Processing -
VECPAR ’2002, 5th International Conference, Springer, 2003.

[12] H. C. Edwards, “Sierra framework version 3: Core services theory and
design,” Sandia National Laboratory, report SAND2002-3616, Novem-
ber 2002.

[13] “Common component architecture home page,” http://www.cca-
forum.org/.

[14] T. S. G. M. Graybill, B., “Hpc application
software consortium summit - concept paper,”
http://www.cct.lsu.edu/ gallen/Reports/HPCASC March2007.pdf,
March 25-26, 2008.

[15] F. C. G. Santos, E. R. R. J. Brito, and J. M. A. Barbosa, “Phenomenon
computational coupling relationship between phenomena on multi-
physics simulation,” 20th European Conference on Modelling and and
Simulation, 2006.

57

DISTRIBUTED REAL-TIME RAILWAY SIMULATOR

Mihai Hulea, Camelia Avram, Tiberiu Letia, Dana Muresan, Sergiu Radu
Technical University of Cluj-Napoca, C. Daicoviciu street, nr. 15, Cluj-Napoca, Romania

{mihai.hulea, camelia.avram, tiberiu.letia}@aut.utcluj.ro

KEYWORDS
Railway traffic, real time simulation, distributed
systems.

ABSTRACT

The problem of control and management of railway
transportation is a complex task with major outcomes
in a modern society. Trains are suitable for transporting
peoples and goods with a good trade-off between cost
and rapidity. A railway system consists of a network of
tracks, list of stations, safety devices (signals, sensors,
etc) and a set of trains. Trains moves from one station
to other along the network. Distributed applications are
applicable in case of large systems.

INTRODUCTION

Railways are perceived as the most efficient means of
mass passenger transportation. In the case of land
based freight movements, railways are usually at a
competitive advantage relative to road transport for the
non-urban medium to long distances, bulk and
containerized tasks. The operations of railway systems
involve multi-disciplinary practices, ranging from
business to transport operations and engineering (Ho et
al 2004).
Many railway systems are still state-owned, but the
privatization of various extents has been going on in
many countries (Zimmermann et al 2003). The newly
evolved private companies assume different roles
within the operational chart of a railway system.
Indeed, more than one company may take on the same
role and compete with each other, which is one of the
supposed advantages of privatization. A number of
non-privatized railway lines are also contemplating
decentralization in some way so that local authorities
or contracting companies are running the rail services.
As a result, there are many parties, such as track
owners and service providers, working together
(collaborating and/or competing) to provide such
services that the overall business and engineering
objectives are considered and balanced, as well as
fulfilling their own interests and duties. In order to
study the behavior of this system with multiple,
interactive and autonomous parties, agent-oriented
technology offers the framework for modeling. Each
party is represented by an independent agent who is
equipped with its objectives, intelligence and
autonomy (Ho et al 2004; Cuppari et al 1999; Faber et
al 2006).

The increase demand of short-term train schedules by
Transport Operators highlights the necessity of
automated tools for train traffic decision support. When
the number of trains running on a railway line and the
availability of tracks are known on day by day basis,
decision support systems can help in maximizing the
demand granting and optimizing the traffic flow.
(Cuppari et al 1999)
The issue in railway simulation is to let trains move
through the network based on their time table and to
check if deadlocks appears. Also the simulator can be
used to check the performances of different dynamic
control algorithms before implement them in the real
field. The simulators can be used also for training the
railway operators.
As stated in (Ferschea 2005) the fundamental
approaches for simulating systems are continuous vs.
discrete; event and time driven vs. event driven. In
continuous event simulation the state change
continuously in time, while in a discrete event
simulation the events happen instantly at a fixed
moment in time. The proposed approach of this paper
is a time driven simulation in which the simulator
update the state of the system at fixed point in time
based on a given pulse clock. For solving very large
railway simulation problems a distributed architecture
approach must be considered. The main reasons for
this are: scalability, performance and reliability.
 The paper proposes a distributed time driven generic
simulation system suitable for testing various routing
and planning algorithms. By generic is meant that the
simulator is able to take a configuration as input in
form of the XML structures therefore not being tied by
a static railway structure. The simulator updates time in
discrete steps. One basic requirement needed to be
fulfilled by the time update method is to synchronize
it’s time update interval with other simulator instances.
It should not be possible for one simulator to progress
faster than other simulators. Taking into account the
discrete nature of the proposed simulator, each entity in
the system should update his state on each time step.
Tow possible approaches can be identified to
accomplish this. This first approach is a parallel update
where all entities update states concurrently. With this
method extra care should be taken in order to
synchronize updating threads and to prevent data
inconsistency. The second approach is a sequential
method where all entities are updated one after another.
The proposed simulation architecture uses the
sequential method.
The simulator provides a structure communication
module through which other applications (like

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

58

controller, monitoring and information and advisory
system) can send commands to the railway objects
(switches, signals, etc.) and read the current state of the
different railway objects (sensors, signals, trains, etc).
The system also integrates a GPS emulator which can
be queried in order to obtain current train coordinates
and speed. The simulator instances communicate
through a communication and coordination module.
The issue of railway simulation is to virtually let trains
run through the network and to check whether the
timetable is verified or stable (H. Schlenker 2005).

STATE OF THE ART

Modeling behavioral characteristics is a key issue of
Rail way Intelligent Safety Guarantee System (RISGS)
presented in (Cai et al 2006). A multi-agent simulation
system in RISGS is considered and the proposed model
is evaluated in a simulated experiment. This model
incorporates the philosophy of object oriented
concepts, available Petri-nets analysis tools and multi-
agent techniques. The analysis results indicate this
method can provide effective judgments without
deadlocks, and improve complicated characteristics
description about intelligence, autonomy and security.
Using parallel processing reduce the computing time
and therefore is suitable for building real-time
simulators and present different issues related to
solving a power distribution system with parallel
computing based on a multiple-CPU server and they
concentrate, in particular, on the speed-up performance
(Fun et al 2000). The model presented in [Bon, 2000]
was initially based on the track analyzer method
developed by Volpe National Transportation Systems
Center, but was significantly enhanced in order to
provide accurate predictions over a wider variety of
vehicle behavior and to fulfill the real time constraints.
Several models are described in literature and some
programming constraints for the routing and
scheduling of trains running through a junction are
taken into account (Rodriguez 2005). The model uses
input data from relevant time events of train runs
calculated by a simulator. The model can be integrated
into a decision support system used by operators who
make decisions to change train routes or orders to
avoid conflicts and delays.
Hybrid Petri nets can be used to simulate the traffic and
to evaluate the performance of the control system.
(Kaakai et al 2007) propose a simulation model based
on hybrid Petri nets able to carry out performance
evaluation procedures in order to increase the traffic
safety.

DESIGN OF THE SIMULATOR

Railway structure modeling

XML Schema is used to describe the structure of the
document containing the railway network structure. In

this section the elements used to describe the network
are presented.
The root of the XML document is the railmap element
which contains all other elements which define a
railway network.
The following types of railway elements are defined:
gate, connectionGate, segment, signal, switch and
sensor. Each element has a unique id and is stored in
the element ID attribute. Also all elements have tow
attributes (posX and posY) which store the location of
the elements and are used for displaying them inside
the simulator graphical user interface.

A gate represents a connection point between tow
segments. A special type of gate is a connectionGate
which is used to define connectivity between segments
located in the networks managed by different
simulators. This type of gates are located at the border
of the railway network, and when the train pass a
connectionGate it will be transferred to the remote
network in a position which correspond to the remote
connectionGate identified by the local connectionGate.

A segment represents a railway track and is
delimited by tow gates named gate1 and gate2. A
convention is maid that the moving direction from
gate1 to gate2 is the positive direction and is coded
with the value 1 while moving from gate2 to gate1 is
considered negative direction and is noted with -1.
The railway switch is modeled by switch element. A
switch element is composed of a set of gates and has at
a moment of time one active connection which allows
a train to pass from one segment to another segment.
The switch can be commuted in order to change the
connected segments.

The signal element models a railway semaphore. The
signals can have 2 possible states: green state and red
state. Signals are attached to segments and are
identified by the gate where are located and by the
direction from which they can be seen.
The sensor element models a presence sensor which
can be installed on any position on the road network.
The sensor is activated when the train passes over it.
Based on the presented XSD schema, the XML files
are created representing various railway network
structures. When a simulator instance is launched it
will load a railway network located in a XML file.

System Architecture

The paper proposes a distributed simulator architecture
in which each station in a road network is handled by
one simulator. The simulators are interconnected and
communicate between each others. The UML
component diagrams in Figure 1 presents the general
simulator software architecture.

59

Figure 1: Simulator general software architecture.
The railway network structure is loaded from an XML
file by the configuration module. The core of the
configuration module is the RailMapLoader which uses
a XML parser for interpreting the structure XML file
and creating a structure of objects representing the
railway network. The UML diagram presented in the
Figure 2 describes the structure of objects used to
model the railway network.

The RailwayMap class is a container class which
stores the structure of the railway network and the
current state. The simulator engine accesses the
internal data and alters the state of the network through
a set of function defined in the following modules:
StructureQuer, DataTransformtion, SingalReceive and
SignalApply.

The communication between simulator instances is
realized through CommServer and CommClient
modules which use TCP\IP protocol in order to
exchange messages. The serialization mechanism is
used for sending messages. When a train reach the
border of the network controlled by a simulator it will

be sent to the corresponding remote simulator as stated
in the network structure connection rules (this rules are
set in the connectionGate elements presented in the
previous section).

Moving trains and controlling structure states inside
the network are accomplished by the simulator engine
using the TrainMove and CollisionDetection modules.
On each step the next position of the trains will be

calculated taking into account the following aspects:
the dynamic train characteristics and the current status
of the railway objects (the state of signals, semaphores
and switches). The CollisionDetection implements an
algorithm for detecting collision between trains which
are moving on the same segment.

Figure 2: Railway structure modeling classes

The communication model

The communications between distributed simulators
are implemented at tow levels. At the first level it is
implemented a communication layer between simulator
engines. When a train leaves a zone controlled by a
simulator it will be sent through the simulator engine
connection to the corresponding neighbor simulator. At

60

the second level it is implemented a communication
layer between controllers. At this level messages are
exchanged between controllers in order to make path
reservations. In Figure 3 the communication between
simulators is presented.

In this paper an asynchronous message passing model
for implementing the distributed communication
mechanism is proposed. This approach as been used
both for implementing the communication at the
simulator engine level but also at the controller level.
The components will exchanges messages in an
asynchronous manner.

In order to model task and threads the following
stereotypes have been defined:

• <<PeriodicThread>>, which represent
activities which are executed with a given
time period;

• <SporadicThread>> , which represents
activities which are executed each time an
event occurs;

For communication between threads the following
stereotypes have been defined:

• <<PriorityQueue>>, this is an unbounded
queue in which elements are ordered based on
an priority attribute associated with each
element;

• <<Buffer>>, this is a simple buffer on which
data are ordered based on the FIFO rule;

Based on the stereotypes defined before, the UML

object communication diagram for the simulator
system is presented in Figure 4.

The messages are passed between threads using
unbounded buffers and queues. For send commands to
the railway structure elements, and for receiving data
about the state of the railway structure elements
FIFOBuffers are used. The PriorityQyeye queue are
used for exchanging messages between working
threads (simulator SimulatorEngine and Controller)
and communication threads (Sender and Receiver).
Messages between distributed controllers are

exchanged using CSender and CRecevier threads.
When a new message must be sent, it must be added in
the COutQueue queue or the corresponding
SOutQueue, from where is get by the CSender or
SSender and is sent to the destination. When a new

message is received by SReceiver threads or the
corresponding CReceiver, it is put in the CInQueue or
SInQueue queue, from where is read by the Controller
or Simulator Engine thread.

Figure 3. Simulators communication.

Time modeling

The method chosen to update time in the simulators
is to use discrete time steps. This means that time is not
updated continuously but in blocks of a certain
interval. The time updates are executed by calling a
tick method in the simulator engine. Each entity new
state is calculated based on (e.g. a train updates its
position, velocity and acceleration) the previous state
and the time passed since last tick. The component
responsible for calling the tick method is the Timer.

Figure 4. Object communication diagram.

In order to synchronize time of tow or more simulator
instance, a time server coordinate all the simulators
timers and notify each simulator timer when the
simulator must advance at the next step.

61

SIMULATOR IMPLEMENTATION

The simulator application has been implemented in
Java language using JDK v1.6.0. The implementation
has been tested on Windows XP and Linux RedHat
platforms.

In Figure 5 a screenshot of the simulator graphical user
interface is presented. The railway network managed
by the simulator is presented into a window. We are
using color codes to represent states of structure
elements. For example a free segment is drawn in
green while a segment on which is at least one train is
drawn in red. A manual control interface is available to
the operator from which he can change the state of
structure elements, and also can control trains.
The screenshot in Figure 6 represents the structure
view window. In this window the details of the
simulated structure are presented to the operator. For
each structure element a separate table is displayed
containing the attributes values.

The simulator architecture has been designed with
the goal to be used for testing various controls and
routing algorithms. In order to provide this
functionality the simulator implements tow interfaces
through which other modules like controller,
monitoring or information systems can have access to
the simulation data or can interact with the simulated
railway structures.

CONCLUSIONS

This paper highlights the benefits of applying
distributed techniques to rail transportation system
modeling.
The proposed simulator enables the handling of more
complex problems than the existing technology can
handle. In the case of railroads, this might include
routing more trains over more tracks, whereas
traditional movement planning systems are able to plan
the movement of only one train at a time. Another
advantage of this simulator is that it enables more rapid
adaptation to alternative schedules because of changes
in the environment (e.g., a track blocked by an
accident) and does not require a total reassessment.
The proposed system architecture is distributed since
several train stations are connected and on each of it a
simulator railway is started.
The communication will be realize on each layer
(control, monitoring, information, simulation) between
two simulator railways and between different layers
inside of a simulator railway.
Using a good scheduling algorithm the traffic can be
increase and to test the result is better to use a proper
distributed simulator.

REFERENCES

Bernaer, S.; E. Burke; P. De Causmaecker; G. Vanden
Berghe; and T. Vermeulen, 2006. “A Multi Agent

System to Control Complexity in Multi Modal
Transport”, The IEEE Simulation Tran.

Bonaventura, C.S.; J.W. Palese; and A.M. Zarembki,
2000. “Intelligent system for real-time prediction
of railway vehicle response to the interaction with
track geometry”, Railroad Conference,
Proceedings of the 2000 ASME/IEEE Joint
Volume, Issue, 2000 Page(s):31 – 45.

Cai, G.; Z. Zhang; L. Jia; and Y.Ye, 2006. “A Multi-
Agent Model of Railway Intelligent Safety
Guarantee System, (PRC)”, From Proceeding
(523) Computational Intelligence.

Cuppari, A.; P.L. Guida; M. Martelli; V. Mascardi; and
F. Zini. 1999. “An Agent Based Prototype for
Freight Trains Traffic Management”, Proc. of
FMERail Workshop.

Faber J; and R. Meyer. 2006. “Model Cheking Data-
Dependent Real-Time Properties of the European
Train Control System”, Proceedings of the Formal
Methods in Computer Aided Design.

Ferschea, A. 2005. “Parrallel and distributed simula-
tion of discrete events systems”, Handbook of
Parallel and Distributed Computing. McGraw-
Hill.

Fung, Y.F.; T.K. Ho; and W.L. Cheung. 2000. “Real-
time simulation for power systems based on
parallel computing-an empirical study”,
International Conference on Advances in Power
System Control, Operation and Management,
Volume 2.

Gambardella, L.M.; A.E. Rizzoli. 2005. “Agent-based
Planning and Simulation of Combined Rail/Road
Transport”, Mathematical and Computer
Modelling.

Ho, T.K.; L. Ferreira; and K.H. Law. 2004. “Agent
applications in rail transportation”, Proc of
International Conference on Intelligent Agents
Web Technologies and Internet Commerce, pp.
251-260, Vienna.

Kaakai, F.; S. Hayat; and A. El Moudni. 2007. “A
hybrid Petri nets-based simulation model for
evaluating the design of railway transit stations”,
Simulation Modeling Practice and Theory,
Science Direct.

Rodriguez, J. 2005. “A constraint programming model
for real-time train scheduling at junctions”,
Transportation Research Part B 41 pp 231–245,
Science Direct.

Schlenker, H. 2005. “Distributed Constraint Based
Railway Simulation”, Springer Verlag Berlin
Heidelberg 2005.

Zimmermann A.; and G. Hommel. 2003. “A Train
Control System Case Study in Model-Based Real
Time System Design”, Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS’03).

62

Figure 5. Simulator application main view.

Figure 6. Simulator structure view.

AUTHOR BIOGRAPHIES

Camelia Avram works in the field of designing and
implementing of real time applications and
discrete events systems applied in communications
protocols.

Mihai Hulea works in the filed of object oriented
programming and real time applications.

63

64

Architectural and Organizational
Infrastructure for HPC Systems

65

66

PARALLEL CLUSTERING AND DIMENSIONAL SCALING ON
MULTICORE SYSTEMS

 Xiaohong Qiu Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae
 Research Computing UITS Community Grids Laboratory
Indiana University Bloomington Indiana University Bloomington
 Email: xqiu@indiana.edu gcf@indiana.edu yuanh@indiana.edu sebae@indiana.edu

 George Chrysanthakopoulos, Henrik Frystyk Nielsen
Microsoft Research Redmond WA

georgioc@microsoft.com henrikn@microsoft.com

INVITED PAPER

KEYWORDS
Multicore, Grids, Data mining, Parallel Programming

ABSTRACT

Technology advances suggest that the data deluge,
network bandwidth and computers performance will
continue their exponential increase. Computers will
exhibit 64-128 cores in some 5 years. Consequences
include a growing importance of data mining and data
analysis capabilities that need to perform well on both
parallel and distributed Grid systems. We discuss a
class of such algorithms important in
Chemoinformatics, bioinformatics and demographic
studies. We present a unified formalism and initial
performance results for clustering and dimension
reduction algorithm using annealing to avoid local
minima. This uses a runtime CCR/DSS that combine the
features of both MPI, parallel threaded and service
paradigms.

1. INTRODUCTION

There are many important trends influencing scientific
computing. One is the growing adoption of the eScience
paradigm which emphasizes the growing importance of
distributed resources and collaboration. Another is the
data deluge with new instruments, sensors, and the
Internet driving an exponential increase of data [1]. On
the other hand, multicore chips are challenging because
they require concurrency to exploit Moore’s law in
contrast to the improved architectures and increasing
clock speed of the last 15 years that has allowed
dramatic performance increase within a well established
fixed (sequential) programming paradigm [2-4]. Thus
we suggest that it is important to look at data analysis
and data mining and derive efficient multicore
implementations. The data deluge, its management in a
distributed environment and its analysis (mining) are
relevant for both eScience and commodity applications.
The former could involve data from high throughput
instruments used in Life Sciences. The latter includes
the analysis of environmental and surveillance monitors

or the data fetched from the Internet that could
characteristic a user’s interests. The RMS (Recognition,
Mining, Synthesis) analysis from Intel [5, 6] identified
data mining and gaming as critical applications for
multicore chips. Scientific data is likely to be so
voluminous that we need any implementation to work
well on clusters of multicore chips with preferably the
same programming model for the inter-chip as well as
the intra-chip parallelism. On the other hand commodity
applications might well not need cluster
implementations but probably would choose thread-
based runtimes involving managed code – Java or C#.
Data is often distributed so the Grid capabilities are
essential; data mining can be extremely computationally
intense so parallel implementations will sometimes be
necessary.

The importance of Grids and multicore to both eScience
(scientific computing) and commodity applications,
motivates us to look at scientific data mining but in a
programming model that is natural for related
commodity applications. This motivates the SALSA
(Service Aggregated Linked Sequential Activities) [7]
research that we describe here. SALSA is implementing
a set of data mining applications on multicore systems
using managed code (C#) with parallel synchronization
from a runtime CCR (Concurrency and Computation
Runtime) developed at Microsoft Research [12, 13].
CCR supports both MPI style synchronization and the
dynamic threading essential in many concurrent
commodity applications. Further there is a service
model DSS (Decentralized System Services) built on
top of CCR [14]. CCR is a possible choice of runtime
that could bridge between scientific and commodity
applications as it supports the key concurrent primitives
used in both of them. SALSA proposes that one builds
applications as a suite of services [8] rather than
traditional subroutine or class libraries. The service
model allows one to support integration within grid,
cluster and inter-chip environments. Thus SALSA is
exploring a possible future application (data mining) on
multicore chips using a programming model that could
be used across a broad set of computer configurations

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

67

and could be the basis of an approach that integrates
scientific computing with commodity applications. We
note that we program in a low level style with user
responsible for explicit synchronization in the fashion
that is familiar from MPI. There certainly could be
general or domain specific higher level environments
such as variants of automatic compilation, OpenMP,
PGAS or even the new languages from Darpa’s HPCS
program [6, 15]. Our work can still be relevant here as it
uses a runtime that is a natural target for such advanced
high-level environments.

Performance is a critical question for any system that
spans multiple different domains; integration of
multiple paradigms requires that the performance is
good in each paradigm. In previous papers [9-11], we
have discussed the core performance of CCR and DSS
and here we focus on applications and discuss in more
detail their structure and performance.

The SALSA work is currently performed on a variety of
two CPU multicore systems with a total of 4 or 8 cores
and running variants of Linux and Windows operating
systems. The results reported in this paper use a single 8
core machine termed Intel8b. This is a Dell Precision
PWS690, with 2 Intel Xeon CPUs x5355 at 2.66GHz,
an L2 Cache 2X4M, 4GB Memory, and running Vista
Ultimate 64bit.

In the following section we briefly discuss our
programming model and refer the reader to other papers
[9-11] for more details. In section 3, we discuss the data
mining algorithms investigated and give some overall
performance results. In section 4, we summarize our
results and identify the key features of the application
structure and the implications for the parallel run time.
Conclusions are in section 5.

2. PARALLEL CCR RUNTIME

CCR provides a framework for building general
collective communication where threads can write to a
general set of ports and read one or more messages from
one or more ports. The framework manages both ports
and threads with optimized dispatchers that can
efficiently iterate over multiple threads. All primitives
result in a task construct being posted on one or more
queues, associated with a dispatcher. The dispatcher
uses OS threads to load balance tasks. The current
applications and provided primitives support a dynamic
threading model with capabilities that include:

1) FromHandler: Spawn threads without reading ports
2) Receive: Each handler reads one item from a single

port
3) MultipleItemReceive: Each handler reads a

prescribed number of items of a given type from a
given port. Note items in a port can be general
structures but all must have same type.

4) MultiplePortReceive: Each handler reads a one item
of a given type from multiple ports.

5) JoinedReceive: Each handler reads one item from
each of two ports. The items can be of different
type.

6) Choice: Execute a choice of two or more port-
handler pairings

7) Interleave: Consists of a set of arbiters (port --
handler pairs) of 3 types that are Concurrent,
Exclusive or Teardown (called at end for clean up).
Concurrent arbiters are run concurrently but
exclusive handlers are not.

One can spawn handlers that consume messages as is
natural in a dynamic search application where handlers
correspond to links in a tree. However one can also
have long running handlers where messages are sent
and consumed at a rendezvous points (yield points in
CCR) as used in traditional MPI applications. Note that
“active messages” correspond to the spawning model of
CCR and can be straightforwardly supported. Further
CCR takes care of all the needed queuing and
asynchronous operations that avoid race conditions in
complex messaging. CCR is attractive as it supports
such a wide variety of messaging from dynamic
threading, services (via DSS described in [9]) and MPI
style collective operations.

We have [11] already compared CCR with MPI and
note that posting to a port in CCR corresponds to a
MPISEND and the matching MPIRECV is achieved
from arguments of handler invoked to process the port.
MPI has a much richer set than CCR of defined
methods that describe different synchronicity options,
various utilities and collectives. These include the
multi-cast (broadcast, gather-scatter) of messages with
the calculation of associative and commutative

Main Routine for Exchange Pseudocode {
 Create CCR dispatchers to control threads
 Create a queue to hold tasks
 Set up start ports with MPI initialization data such as thread

number
 Invoke handlers (MPI threads) on start ports
} End Main Routine

MPI logical thread Pseudocode (Arguments are start port
contents) {
 Calculate nearest neighbors for exchange collective
 Loop over stages { Post information to 2 ports that will be

read by left and right neighbors

 yield return on CCR MultipleItemReceive will wait till this

thread’s information is available in its ports and continue
execution after reading 2 ports

 Do computation for this stage
 } End loop over stages

Each thread sends information to ending port
and thread 0 only does yield return on CCR
MultipleItemReceive to collect information from all threads to
complete run after reading from one port for each thread
(this is a reduction operation).

} End MPI Thread

CODE SAMPLE 1: MPI EXCHANGE IN CCR

68

functions on the fly. It is not clear what primitives and
indeed what implementation will be most effective on
multicore systems and so we have not performed an
exhaustive study of MPI collective patterns in CCR. In
fact it is possible that SALSA’s results which suggest
one can support in the same framework a set of
execution models that is broader than today’s MPI,
could motivate a new look at messaging standards for
parallel computing. CCR only has built-in primitives to
support MPI shift and reduction operations but we
exploited CCR’s ability to construct customized
collectives sketched in Code Sample I to implement the
MPI Exchange pattern [11]. An important innovation of
the CCR is to allow sequential, asynchronous
computation without forcing the programmer to write
callbacks, or continuations, and at the same time not
blocking an OS thread. This allows the CCR to scale to
tens of millions of pending I/O operations, but with
code that reads like synchronous, blocking operations.

Note that all our work was for managed code in C#
which is an important implementation language for
commodity desktop applications although slower than
C++. In this regard we note that there are plans for a
C++ version of CCR which would be faster but prone to
traditional un-managed code errors such as memory
leaks, buffer overruns and memory corruption. The C++
version could be faster than the current CCR but
eventually we expect that the C# CCR will be within
20% of the performance of the C++ version. CCR has
been extensively applied to the dynamic threading
characteristic of today’s desktop application but its
largest use is in the Robotics community. One
interesting use is to add an efficient port-based
implementation of “futures” to C#, since the CCR can
easily express them with no modifications in the core
runtime. CCR is very portable and runs on both CE
(small devices) and desktop windows. DSS sits on top
of CCR and provides a lightweight, service oriented
application model that is particularly suited for creating
Web/Grid-style applications as compositions of services
running in a distributed environment. Its use in SALSA
with performance results is described in [9, 10] and
very briefly in Section 4 of this paper.

3. DATA MINING

In this paper we consider data mining algorithms that
analyze a set of N data points X(x) labeled by x in a D
dimensional space. These algorithms have a common
formalism corresponding to iterative minimization of
the function F given by equations (1) and (2).

1

2
1

() ln () where (1)

() () exp[0.5(() ()) / (())] (2)

N

x
K

k

F T a x Z x

Z x g k X x Y k Ts k
=

=

= −

= − −

∑

∑

There are four useful algorithms covered by the above:
Clustering with Deterministic Annealing (CDA) [16-
19]; Gaussian Mixture Models (GMM) [21]; Gaussian
Mixture Models with DA (GMMDA) [22]; Generative

Topographic Maps (GTM) [20]. We show how
equations (1) and (2) cover each of these cases below.
Note that for GMM and GTM, F is directly the cost
function C (or negative of log likelihood) while for the
annealing cases CDA and GMMDA, F is C-TS, the
“free energy” where T is a temperature and S is the
Shannon Entropy [18]. The sum over k corresponds to
sum over clusters or mixture model components. A key
characteristic of all these algorithms is “missing data”
represented by the sum over clusters k in equation (2).
We do not know a priori which value of k (e.g. which
cluster) is associated with each data point X(x). This
missing data characteristic also allows the applicability
of the well known EM method [21] which is similar to
steepest descent and can be shown to always decrease
the objective function F in all four cases. Steepest
descent methods are prone to find local minima so DA
is attractive as it mitigates the effect of local minima.

In the annealing method one includes the entropy
associated with these degree of freedom k and
minimizes the Free Energy. The temperature is varied in
an annealing schedule from high values (when F is
dominated by entropy) to low values when the true cost
C dominates. Unlike simulated annealing, DA involves
no Monte Carlo but rather optimizes (1, 2) iteratively as
temperature T is varied from high to low values. For
clustering CDA improves on the well known K-means
clustering algorithm [20]. In our cases the annealing can
be interpreted as a multi-scale approach with T1/D as a
distance scale. Now we define the four methods for
which equations (1, 2) can be used and after that discuss
their solution and our approach to parallelism.

For the first example, CDA clustering, the variables in
(1) are given by:

 a(x) = 1/N, g(k)=1, s(k) = 0.5 (3)

and T is temperature decreased to 1 by some schedule.
DA finds K cluster centers Y(k) where K is initially 1
and is incremented by algorithm as T decreases.

We emphasize that unlike K-Means [19] or GMM, one
need not specify the number of clusters K a priori in
CDA. Rather K is determined by the annealing; as the
distance scale decreases (see example in fig. 5 later),
more clusters are determined. In the extreme limit T=0,
all points x become clusters of size one and K=N.

For the second example, Gaussian Mixture Models
GMM are defined by:

 a(x)=1, g(k)= Pk/(2πσ(k)2)D/2, s(k)= σ(k)2 (4)

The component probability Pk, the standard deviation
σ(k) and component center Y(k) are varied with number
of components K fixed a priori.

Equation (3) specializes to a common case of spherical
distributions. The general case has s(k) as a general
symmetric DxD correlation matrix but this does not
impact key ideas; it just makes the formalism more
complex. Of course the model components in GMM are

69

“just” clusters but GMM is more natural than clustering
when the components have very different sizes.
Although GMM makes Pk and σ(k) as fitted variables,
the formulae for their estimated values (using EM
Method) are in fact identical to those from clustering.
So CDA can find variable sized clusters although GMM
could be a more precise approach.
One can easily extend GMM to add annealing [22]
although there is currently little practical experience.
This leads to GMMDA, which is given by:

 a(x)=1, g(k)= {Pk/(2πσ(k)2)D/2}1/T, s(k)= σ(k)2 (5)

and T is temperature decreased to 1 by some schedule.
GMMDA finds K component probabilities Pk, standard
deviations σ(k) and component centers Y(k) where K is
initially 1 and is incremented by algorithm as T
decreases.

The final algorithm considered here has a very different
goal to GMM and DAC; namely it addresses
dimensional scaling or the derivation of a set of vectors
vi in a metric space where the distance between vectors i
and j is given by a known discrepancy function δij. Here
δij may come from the distance between points i and j in
another vector space or be a discrepancy derived from
an algorithm like BLAST comparing sequences in
bioinformatics. In particular, we look at a powerful
algorithm GTM (Generative Topographic Mapping)
developed in [20] and often used to map from high
dimensional spaces to two or three dimensions for
visualization. This is illustrated in fig. 1 showing the 2D
GTM projection of a set of three Gaussians in a 5D
space. Note that one could use the simple Principal
Component Analysis (PCA) approach [23]. This gives
an optimal linear projection but does not perform well
on complex problems whereas GTM has a nonlinear
algorithm that is broadly effective [20]. PCA gave poor
results on many Cheminformatics problems in high
dimensions as the top two eigenvectors (used by PCA
for 2D projection) do not capture much of the structure.
Fig. 2 shows a successful GTM projection of two
clusters in a D=155 dimensional Cheminformatics case.
GTM is defined in the syntax of Equation (1) by:

a(x) = 1; g(k) = (1/K)(β /2π)D/2; s(k) = 1/ β; T = 1 and
β and Wm are varied for fixed K, L(k), and M below.
L(k), λ and μm are vectors in the latent (2D) space.

GTM has excellent scaling properties and works well
on large problems. We are currently applying it to the
over 10 million compounds in PubChem. GTM can
used for both clustering and dimensional reduction but
we use DA for clustering and GTM just for the
projection to 2D. The clusters found in GTM are
viewed as a convenient averaging of the high
dimensional space. For example in figs. 1 and 2 with 3

or 2 “real” clusters respectively, our GTM used K=225
averaging clusters. This large number of clusters used in
averaging for projection leads to exceptional parallel
performance for GTM given below. As discussed
above, GTM and DA clustering are essentially the same
algorithm with different optimizations; one for mapping
and the other for robust clustering. Note GTM is closely
related to SOM (Self Organizing Maps) but there are
other important dimensional scaling methods whose
parallel implementation we are also working on. The
classic MDS (Multi Dimensional Scaling) approach
using the SMACOF algorithm [23] has the advantage
that it preserves distances δij and not just the spatial
topology mapped by GTM. Further it does not need
vectors in the original space but just their discrepancies
δij. Other interesting methods with this property include
random projection [24] and quadratic programming
methods [25]. We will report on the multicore
implementation of these other projection methods later.
Here we just look at GTM which is a powerful efficient
tool when the original vectors X(x) are known. We note
that one could add annealing to GTM but we have not
explored this yet.

For the four algorithms defined in equations (3-6),
solution of (1, 2) is implemented by a variation of the
Expectation Maximization (EM) algorithm [21]:

Figure 1: GTM Projection of a simple test problem
with three Gaussians in a D=5 dimensional space

Figure 2. GTM Projection for 2 clusters from DA in
space of 155 Chemical Properties labeled as a . or +

1
2 2

() (()) with fixed (6)

() exp(0.5() /)

M

m m
m

m m

Y k W L kφ

φ λ λ μ σ
=

=

= − −

∑

70

1 1

2

() () Pr[() ()] / Pr[() ()] (7)

Pr[() ()] exp[0.5(() ()) /] / () (8)

N N

x x
Y k X x X x C k X x C k

X x C k X x Y k T Z x
= =

= ∈ ∈

∈ = − −

∑ ∑

written for the case of DA clustering where new values
of cluster centers Y(k) are calculated iteratively from
probabilities of x belonging to cluster C(k). GTM,
GMM and GMMDA have similar formulae with more
quantities being calculatedly but always as averages
with probabilities that a point X(x) belongs to a
component/cluster k.
Realistic implementations must support both
conventional real valued quantities in the above
equations and also binary variables (for chemical
fingerprints) and profiles in bioinformatics where the
variables represent the frequencies with which features
occur.

Initial results on the parallel performance of DA
clustering are shown in fig. 3 for runs on the 8 core
Intel machine Intel8b used in all results presented in this

paper. The figure shows that DA has a parallel overhead
[26, 27] that decreases asymptotically like 1/grain size
as the data set increases. Here grain size n is the dataset
size N divided by the number of processors (cores)
which is here 8. Putting T(P) as the execution time on P
cores, we can define:
 Overhead f = (PT(P)-T(1))/T(1) (9)
 Efficiency ε = 1/(1+f) = Speed up S(P)/P (10)

Thus the overhead of 0.05 seen for large n (small 1/n) in
fig. 3 corresponds to an excellent speedup of 7.6. The
results for GTM in fig. 4 show even smaller overheads
even at small grain size due to the substantial additional
computation (matrix multiplication and equation
solving) in this case. We emphasize that much of the
critical overhead in multicore parallel code is not
synchronization but rather due to interference between
cores in the memory subsystem.

Tables 1, 2 and 3 study the parallel overhead for GTM
as a function of the variables N (number of points), K
(number of averaging clusters), M (number of mapping
functions). The overhead lies between .01 (speedup of
7.9) and .05 (speedup of 7.6) except for the “small
problem” N=1000 data points in table 1, where the
overhead rises to 18% for the smallest problem. These
results emphasize the excellent parallel efficiency of
these algorithms and that large problems run well!

Table 1: Parallel Overhead for GTM as function of M

M= 128 256 512 768 1024 1280
K=16384
N=20000

- 0.014 0.013 0.014 0.016 0.022

K=900
N=1000

0.18 0.17 0.16 0.09 - -

Table 2: Parallel Overhead for GTM as function of K
K= 1024 2304 4096 6400 9216 12544
N=20000
M=256

0.026 0.023 0.018 0.017 0.028 0.015

Table 3: Parallel Overhead for GTM as function of N

N= 4000 8000 12000 16000 20000
K=4096
M=256

0.045 0.036 0.020 0.018 0.017

In fig. 5, we illustrate the multi scale aspect of DA
clustering with results from the clustering of the State of
Indiana Census data for two temperatures in the
annealing schedule. The value of the temperature is
represented by a distance T0.5 on figures 5(a) and 5(b).
At the higher temperature in fig. 5(a), one finds 10
clusters. The larger cities in Indiana (such as the capital
Indianapolis) are identified but some other
municipalities are averaged together and not found
individually. As we lower resolution in fig. 5(b), there
are 30 clusters and most of the major towns in Indiana
are identified. This figure shows possible studies one
can perform as it looks at total population as well as
three different groupings: Hispanics, Asians and renters
with somewhat different clustering results.

Figure 3. 8 core Parallel Overhead (approximately 1-
efficiency) from Equation (9) for GIS 2D DA Clustering
on Intel8b for three values (10, 20,30) of the number of

clusters and plotted against 10000/N

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead 10 Clusters

20 Clusters

10000/Grain Size

30 Clusters

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead 10 Clusters

20 Clusters

10000/Grain Size

30 Clusters

Figure 4. 8 core Parallel Overhead defined in Eq. (9) on Intel8b
plotted against 8/N for GTM using M=256 and K=4096

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1/Grain Size n

n = 500 50100

Parallel Overhead

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1/Grain Size n

n = 500 50100

Parallel Overhead

71

4. PARALLEL PROGRAMMING

The algorithms illustrated in equations (1-8) have a
structure familiar from many scientific computing areas
[6, 26, 27]. There is an iteration – in this case over the
annealing schedule for T and the steps needed for the
EM method to converge. Synchronization is needed at
the end of each iteration. Further looking into more
detail, we find that the iteration consists of sums like
Equations (7) and (8) calculating vector and matrix
elements combined with linear algebra. The latter is
identification of principal directions for CDA and
GMMDA. There is no significant linear algebra for
GMM while GTM needs matrix multiplication and
linear equation solution. The sums themselves are first
calculated in the memory of the threads and then after
synchronization, accumulated into “global” variables.

This strategy assures good use of cache with negligible
interference that occurs when two cores write to
different memory locations that share the L1 cache [11].
Thus we see that all these algorithms have a “loosely
synchronous” structure where the parallel algorithm

consists of “compute-synchronize” stages where
synchronization typically implies all cores reach a
barrier [6, 27]. CCR supports the loosely synchronous
paradigm with modest overheads analyzed in detail in
earlier papers. Although CCR supports messaging like
MPI, we only need CCR for synchronization in the
applications considered in section 3. Data
communication is achieved by accessing it in the
memory shared by the threads. This is attractive as read
access to shared information does not incur cache
interference penalties. One does not need to put in
thread memory the “edges” of regions as in Halos or
ghost cells familiar in MPI. Rather one needs cache-
sized blocks of data copied into thread memory; that is
performed by the thread itself and not by
communicating between threads. The critical source of
overhead on a multicore chip is the memory subsystem.

Comparing our multicore implementations with
traditional parallel programming, we see that we are
using essentially the same programming model with
domain decomposition breaking up the application into
parallel components that execute in a loosely
synchronous fashion. We use threads not processes in
each core which allows us to optimize data connection
between the decomposed components. Note we do need
to link our thread based model inside a multicore system
with a traditional distributed memory model if our
algorithm needs parallelism across a cluster. The model

r: Renters

a:Asian

h: Hispanic

p: Total

Resolution T0.5

(b)

r: Renters

a:Asian

h: Hispanic

p: Total

Resolution T0.5

(b)

Resolution T0.5

(a)

Resolution T0.5

(a)

Figure 5. DA Clustering of Census data for state of
Indiana showing K=10 clusters in (a) and 30 in (b). The
resolutions T0.5 are shown in bottom right. (a) shows just

total population while (b) also shows Asian, Hispanic and
Renter communities

72

for parallelism is identical inside and outside the
multicore system but the data connection is different.
The fine grain parallelism is handled by CCR but this is
not a complete software engineering model as it does
not provide the desired modularity. Here we are using
services as the building block. Services are attractive as
they allow linkage to the distributed (Grid)
programming model. We have successfully used DSS in
in our early work. This is a Grid compatible service
model which runs with high performance inside a chip.
Further DSS is built on top of CCR which we use for
synchronization inside the multicore and will use for
linking to MPI for cluster operations. DSS has latencies
of around 35 μs which corresponds to between 0.25
and 0.5 (floating point) million operations on an 8 core
system achieving 1-2 Gflops per core. This implies that
for example linear algebra on 100x100 matrices can be
packaged as services without significant overhead. We
have used DSS to encapsulate data reading,
manipulation and visualization and will extend to break
up the data mining itself in later work.

5. CONCLUSIONS

SALSA aims to develop scalable parallel data mining
algorithms with good multicore and cluster performance
and understand needed software runtime and
parallelization method. We use managed code (C#) and
package algorithms as services to encourage broad use
assuming experts parallelize core algorithms. We have
shown that Microsoft CCR supports well MPI, dynamic
threading and via DSS a service model of computing.
Detailed performance measurements give speedups of
7.5 or above on 8-core systems for “large problems”
with deterministic annealed algorithms for clustering,
Gaussian Mixtures, GTM and MDS (dimensional
reduction). Future work includes further algorithms and
applications as well as extensions to distributed and
cluster implementations.

REFERENCES

[1] Tony Hey and Anne Trefethen, The data deluge: an e-

Science perspective in “Grid Computing: Making the
Global Infrastructure a Reality” edited by Fran Berman,
Geoffrey Fox and Tony Hey, John Wiley & Sons,
Chicester, England, ISBN 0-470-85319-0, February 2003

[2] Jack Dongarra Editor The Promise and Perils of the
Coming Multicore Revolution and Its Impact, CTWatch
Quarterly Vol 3 No. 1 February 07,
http://www.ctwatch.org/quarterly/archives/february-2007

[3] David Patterson The Landscape of Parallel Computing
Research: A View from Berkeley 2.0 Presentation at
Manycore Computing 2007 Seattle June 20 2007
http://science.officeisp.net/ManycoreComputingWorksho
p07/Presentations/David%20Patterson.pdf

[4] Annotated list of multicore Internet sites
http://www.connotea.org/user/crmc/

[5] Pradeep Dubey Teraflops for the Masses: Killer Apps of
Tomorrow Workshop on Edge Computing Using New
Commodity Architectures, UNC 23 May 2006
http://gamma.cs.unc.edu/EDGE/SLIDES/dubey.pdf

[6] Geoffrey Fox tutorial at Microsoft Research Parallel
Computing 2007: Lessons for a Multicore Future from
the Past February 26 to March 1 2007.

[7] Home Page for SALSA Project at Indiana University
http://www.infomall.org/salsa and
http://www.infomall.org/ has links to publications and
presentations of SALSA group.

[8] Dennis Gannon and Geoffrey Fox, Workflow in Grid
Systems Concurrency and Computation: Practice &
Experience 18 (10), 1009-19 (Aug 2006), Editorial of
special issue prepared from GGF10 Berlin

[9] Xiaohong Qiu, Geoffrey Fox, and Alex Ho Analysis of
Concurrency and Coordination Runtime CCR and DSS,
Technical Report January 21 2007

[10] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen
High Performance Multi-Paradigm Messaging Runtime
Integrating Grids and Multicore Systems, published in
proceedings of eScience 2007 Conference Bangalore
India December 10-13 2007

[11] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-
Hee Bae, George Chrysanthakopoulos, Henrik Frystyk
Nielsen Performance of Multicore Systems on Parallel
Data Clustering with Deterministic Annealing
Proceedings of ICCS Krakow Poland June 23-25 2008.

[12] Microsoft Robotics Studio is a Windows-based
environment that includes end-to-end Robotics
Development Platform, lightweight service-oriented
runtime, and a scalable and extensible platform. For
details, see http://msdn.microsoft.com/robotics/

[13] Georgio Chrysanthakopoulos and Satnam Singh
“An Asynchronous Messaging Library for C#”,
Synchronization and Concurrency in Object-
Oriented Languages (SCOOL) at OOPSLA
October 2005 Workshop, San Diego, CA.
http://urresearch.rochester.edu/handle/1802/2105

[14] Henrik Frystyk Nielsen, George Chrysanthakopoulos,
“Decentralized Software Services Protocol – DSSP”
http://msdn.microsoft.com/robotics/media/DSSP.pdf

[15] Internet Resource for HPCS Languages
http://crd.lbl.gov/~parry/hpcs_resources.html

[16] Geoff M. Downs, John M. Barnard Clustering Methods
and Their Uses in Computational Chemistry, Reviews in
Computational Chemistry, Volume 18, 1-40 2003

[17] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox
Statistical mechanics and phase transitions in clustering
Phys. Rev. Lett. 65, 945 - 948 (1990)
http://dx.doi.org/10.1103/PhysRevLett.65.945

[18] Rose, K. Deterministic annealing for clustering,
compression, classification, regression, and related
optimization problems, Proceedings of the IEEE Vol. 86,
pages 2210-2239, Nov 1998

[19] K-means algorithm at Wikipedia
http://en.wikipedia.org/wiki/K-means_algorithm

[20] Bishop, C. M., Svensen, M., Williams, C. K. I. GTM:
The generative topographic mapping. Neural Comput.
1998, 10, 215-234.

[21] Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977).
Maximum-likelihood from incomplete data via the EM
algorithm. J. R. Statist. Soc. Ser. B (methodological), 39,
1–38.

[22] Naonori Ueda and Ryohei Nakano Deterministic
annealing EM algorithm Neural Networks Volume 11,
Issue 2, 31 March 1998, Pages 271-282
http://dx.doi.org/10.1016/S0893-6080(97)00133-0

[23] Ingwer Borg, Patrick J. F. Groenen Modern

73

Multidimensional Scaling: Theory and Applications
Springer August 2005 ISBN-10: 0387251502

[24] Golan Yona Methods for Global Organization of the
Protein Sequence Space PhD Thesis Hebrew University
1999 http://www.cs.cornell.edu/golan/Thesis/thesis.ps.gz

[25] E. Halperin, J. Buhler, R. Karp, R. Krauthgamer and B.
Westover Detecting protein sequence conservation via
metric embeddings Bioinformatics Vol. 19 Suppl. 1 2003
Pages i122-i129

[26] “The Sourcebook of Parallel Computing” edited by Jack
Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken
Kennedy, Linda Torczon, and Andy White, Morgan
Kaufmann, November 2002.

[27] Fox, G. C., Messina, P., Williams, R., “Parallel
Computing Works!”, Morgan Kaufmann, San Mateo Ca,
1994.

74

PRACTICAL PRECISE EVALUATION OF CACHE EFFECTS ON LOW LEVEL

EMBEDDED VLIW COMPUTING

Samir Ammenouche, Sid-Ahmed-Ali Touati, William Jalby

University of Versailles St-Quentin en Yvelines, France

Email: saam@prism.uvsq.fr, Sid.Touati@uvsq.fr, William.Jalby@uvsq.fr

KEYWORDS

non-blocking cache, load-use distance, ILP.

ABSTRACT

The introduction of caches inside high performance pro-

cessors provides technical ways to reduce the memory

gap by tolerating long memory access delays. While such

intermediate fast caches accelerate program execution in

general, they have a negative impact on the predictabil-

ity of program performances. This lack of performance

stability is a non-desirable characteristic for embedded

computing. We will present the progress of our experi-

mental study about the influence of cache effects on em-

bedded VLIW processors (ST2xx processors). We are

trying to understand qualitatively and quantitatively the

interactions between cache effects (Data cache) and in-

struction level parallelism at different granularities: ap-

plications and functions (coarse grain), program regions

(medium grain) and instructions (fine grain). Our aim is

to come up with experimental arguments helping to de-

cide whether non-blocking caches would be a reasonable

architectural design choice for embedded VLIW proces-

sors. By reasonable, we mean bringing opportunities at

two levels: 1) program execution acceleration with tol-

erable performance predictability, and 2) active interac-

tions with compiler optimization techniques. Our study

is based on many months of full-time simulations on tens

of workstations producing many terabytes of data to anal-

yse.

Introduction

Cache effects permit to hide the existing gap be-

tween memories and processors performances. How-

ever, caches have a negative impact on loads latency pre-

dictability, depending on dynamic data location in the

memory hierarchy. Our goal is to understand the execu-

tion behaviour by taking into account the cache effects;

we measure the impact of different cache architectures

and also the impact of the compiler. We follow a prac-

tical approach with common benchmarks (mediabench)

and less common applications(ffmpeg) This is a typical

embedded multimedia application used by STmicroelec-

tronics to design their chips. It a video compression

basing on h263 standard which are precisely simulated.

The used industrial simulator (implemented by STmicro-

electronics) models an embedded processor which is the

ST231 of STMicroelectronics. We are targeting reduc-

ing memory cache penalty. Reducing processors stalls

due to memory access latencies is an old goal for the

community. Some software techniques are available,

like tiling (2), loop permutation, loop fusion, loop un-

rolling, loops jam, software prefetching (3). Hardware

techniques are also available such as hardware prefetch-

ing and non blocking caches (4).

The authors in (1) explain the interest of non-blocking

cache architecture for the Out-Of-Order processor. We

try to measure the benefit of such cache architecture for

an In-Order processor. To achieve that, we used an em-

bedded VLIW processor, the ST231. We have collected

the simulation results of the benchmarks on the ST231

using two cache architectures: a blocking cache archi-

tecture and a non blocking one. We make comparison of

obtained results, and we proposed a compilation method

to better exploit the non-blocking cache feature.

Current commercial and academic backend compilers

schedule all loads using the cache hit latency. That is,

cache misses latencies are not used during instruction

scheduling. Assuming statically that all data reside in

low level caches involves a great difference between real

and expected execution times. Current compilers do not

schedule the loads operations using a miss latency be-

cause: 1) The benefit of the cache would disappear. 2)

The register pressure would increase. 3) It is not always

possible to schedule operations to hide such long load la-

tencies (ILP extraction is limited in some applications).

So, when a Dcache miss occurs, the VLIW processor

stalls completely if the cache is blocking. If the cache

is non-blocking, the VLIW processor continues to exe-

cute other pending operations but stalls quickly because

the compiler schedule loads with short latencies (the dis-

tance between the issued load and the first reader is equal

to a cache hit latency). We consider this gain too slen-

der. We propose to adjust the load latencies in order to

improve the gain of the non-blocking caches.

This paper is organized as follows. Sect. 1 first

presents some related work. Our target embedded pro-

cessor is described in Sect. 2. Sect. 3 presents the col-

lected simulation results of the blocking cache architec-

ture. Sect. 4 presents the collected results on the non-

blocking cache architecture. Before concluding, we also

present our proposal for a compile-time pre-loading tech-

nique to generate better embedded VLIW codes in pres-

ence of a non-blocking cache.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

75

1 Related Work

Several research on cache effects at fine grain level have

been carried out. Touati included the impact of the com-

pulsory misses in an optimal acyclic scheduling prob-

lem (6) in a single basic block. He models the exact

scheduling problem by including the constraint of data

dependences, functional units, registers and compulsory

misses. Our current work is different because we try to

cover all the kinds of misses (compulsory, capacity and

conflict). Also, we do not focus in a single DAG (basic

block) only, we are interested in optimising of whole ap-

plication. Tien et al. studied the effects of non-blocking

loads and the prefetch in MIPS3000 processor (7), and

tried some compiler optimisation adapting loads to have

more gain with the non-blocking loads. Whereas in our

work, we study the cache effects for a VLIW (multiple

issue) processor. We also use two phases compilation to

adapt latencies to loads operations (as we will explain

later). Oner et al. made a study of kernel scheduling over

a MIPS processor (8). They increased the load-use de-

pendency distance in loop kernel using loop pipelining.

Ding et al. (9) made a static analysis of code to deter-

minate which is a cache hit and which is a cache miss

load instruction, this technique is called selective sched-

ule. Abraham et al. (10) made a profiling of the load in-

structions, then the step of selecting loads which misses

the cache. The final state is the prefetching of these delin-

quent loads. Our study is also based into profiling and

analysis of trace, but we change the load-use distance

rather than adding prefetch instructions. Furthermore, we

aim to propose a pre-loading technique in conjunction

with global scheduler (handling a whole function), and

such scheduler does not necessarily target regular codes

such as loop nests.

As far as we know, this is the first study demonstrat-

ing the practical effectiveness (or not) of a non-blocking

cache inside an embedded VLIW processor. The next

section presents our processor model.

2 ST231 Processor Description

The ST231 (5) is the latest processor of the ST2xx in

the market of embedded VLIW computing. It is a in-

teger 32bits VLIW processor, 3 stages pipelined, which

contains 4 integers units, 2 multiplications units and 1

load/store unit. It has a 64KB L1 cache. The latency of

the L1 cache is 3 cycles. The cache is blocking, i.e. in

the case of load cache-miss, the pipeline stalls until the

commit of the pending load. The cache is separated Data/

Instruction. The Data cache is 4 way associative. It oper-

ate with write back no allocate policy. A 128 bytes write

buffer is associated with the Dcache.

The next formula describes the execution time of a

VLIW code on an ST231 in function of different stalls

sources resulted from dynamic hardware mechanisms:

T = Calc + DC + IC + InterS + Br

Figure 1: Mediabench Execution Time Distribution

where: T : is the total execution time in processor clock

cycles, Calc : is the effective computation time in cycles,

DC is the number of stall cycles due to Dcache misses,

IC is the number of stall cycles due to instruction cache

misses, InterS is the number of stall cycles due to the in-

terlock mechanism and finally Br is the number of taken

branch (for each branch, there is one penalty cycle).

STmicroelectronics provided us a precise pipeline ac-

curate simulator of the ST231. Our approach does not

focus on benchmark’s kernel only, we want to study

and improve performance of application benchmarks us-

ing full precise, but long, simulation. The next section

presents our performance analysis study of ST231 using

a regular blocking cache.

3 Blocking Cache Architecture Results

For a coarse grain profiling we use a simulator named

ST200run with the simulator option -a statistics. It prints

precise and detailed execution statistics. We collect sim-

ulation results of the mediabench and ffmpeg execution.

We can observe in Fig. 1 that a mean of 3,5% of time

is lost in stalls due to Dcache misses. We focus on peg-

wit and jpeg benchmarks while Dcache miss represent

96.91% and 15.66% resp.

Fig. 2 shows that 33.34% of execution time is wasted

in Dcache stalls. We calculate another parameter to quan-

tify the Dcache misses, this parameter is the distance be-

tween a load operation and the first load’s costumer op-

eration. We call this distance as the load-use distance.

There are two kinds of load-use distances. The first one

is the load-use distance in cycles (Dynamic), which ex-

presses the effective dynamic distance including all the

stalls. The second one is the static distance set by com-

piler in the generated code (it is resulted from the static

instruction scheduler).

Through several experiences, we observed a great dif-

ference between measured static distances and the dy-

76

Figure 2: Ffmpeg Execution Time Distribution

namic ones. The mean of static distance values is around

three bundles. This demonstrated that the compiler

makes an optimistic load latency, it assumes that all data

reside in the L1 cache (since the cache latency is 3 cy-

cles). The dynamic load-use distances measured at the

simulation time. Its mean value is around thirty cycles,

which is far from the three optimistic cycles. The gap

is due to Dcache misses. In the next section, we will

see the contribution of a hardware mechanism (lock-up-

free caches) generally designed for reducing stalls due to

cache misses.

4 Non-blocking Cache Simulation Results

Kroft (11) defined the lock-up-free (non-blocking)

caches. The interesting aspect of this architecture is

the ability to overlap the execution and the memory

data loading. When a cache miss occurs, the proces-

sor continues its execution of independent operations.

This produces an overlap between bringing up the data

from memory and the execution of independent instruc-

tions. In (1), the authors show that a non blocking cache

can significantly improve the performances of an out-

of-order (OoO) processor. So, many high performance

OoO currently adopted this cache architecture. Embed-

ded processors do not have non-blocking caches yet be-

cause: its cost is not negligible (energy consumption and

price), and its benefit in cache of in-order processors is

not demonstrated.

In order to make a full exploitation of non blocking,

the memory architecture should also be improved. In-

deed, memory must now become fully pipelined and

multi-ported (These architectural enhancements are not

an obligation in case of blocking cache). This improve-

ment allows memory to serve multiple pending cache

misses in a pipelined way. These cache misses are stored

inside a queue (called pending load queue). The size of

this queue, that we note SPQ, is a micro-architectural pa-

Figure 3: Execution Time Distribution of ffmpeg Differ-

ent Sizes of Pending Load Queues (0, 1, 8, 16, 32)

rameter which defines the number of concurrent loads

waiting for memory service. Intuitively, when SPQ is

large, more pending cache misses can be concurrent re-

sulting in better load overlap. This section makes a

precise performance evaluation resulting from adding a

non-blocking cache inside an embedded VLIW proces-

sor (ST231). We also study the influence of SPQ, and the

influence of the instruction schedules generated by the

compiler.

In the first step, we collect the same execution statis-

tics of the blocking cache experiences i.e. the number

of cycles of effective calculation, the stall cycles due to

Dcache misses, the stall cycles due to instruction cache

misses, the cycle lost in branch and the interlock stalls.

The used binary codes are the same used in Sect. 3.

Fig. 3 shows execution distribution time of the ffm-

peg benchmark. We made distinct simulations, changing

each time the size of the pending load queue size (SPQ)

from 0 to 32 entries. A pending load queue equal to zero

means that the architecture implements a blocking cache.

A pending load queue with n entries means that at most

n cache misses can be issued concurrently by the non-

blocking cache.

For a pending load size equal to zero, Fig. 3 shows that

the results are similar to the simulation results obtained

with the blocking cache simulator (in Sect. 3, Fig. 2). The

surprise is that there is a negligible performance improve-

ment whatever the SPQ size. The performance improve-

ment is 1.62% for the whole ffmpeg application with a

SPQ equal to one! The result is similar in case of medi-

abench applications. Contrary to OoO processors, intro-

ducing a non-blocking cache in a VLIW in-order proces-

sor does not provide a performance gain, unless the codes

are recompiled with some special instruction scheduling

techniques (shown later).

Another result is shown in Fig. 3: when the SPQ is

changed from 1 to 8, 16 and 32, we obtain the same per-

77

formance gain 1.66% for the whole application. Contrary

to OoO processors, increasing the SPQ size has little im-

pact (unless we re-optimise the VLIW code as we will

show later).

The mediabench benchmark simulation gives similar

results, i.e. a weak performance improvement. this is

shown in Fig. 4.

All the observed small speed-ups are due only to

Dcache stall reduction. When considering exactly the

same binary codes as in Sect. 3, executing them on

the same VLIW processor but with changing the block-

ing cache non a non blocking one seems to do not al-

ter other dynamic performance metrics: Icache stalls,

branch penalties ans interlock stalls remain the same ex-

cept Dcache stalls. This would improve the predictability

of the execution time.

The experimental results of this section can be sum-

marized as follows:

1. A disappointing cache stall reduction when chang-

ing cache configuration from blocking to non-

blocking ones. The maximum obtained perfor-

mance gain is 2.62% in the pegwit application and

the worst one is less than 0.1% in MPEG2.

2. All the performance gains are calculated in the

whole applications, not just in functions which

make numerous Dcache misses. The performance

improvement is of course better when the amount

of Dcache misses is important.

3. The codes were not changed or tuned for the new

cache architecture, the same binaries were executed

over the two cache platforms.

4. We do not observe any speed-down due to the non-

blocking cache.

5. The negligible speed-up is observed as maximal

with a pending load queue size of 8 entries only.

All the negligible speed-ups obtained with a non-

blocking cache architecture are disappointing but can be

explained: when a Dcache miss occurs, the processor

does not stall, it still execute the next bundle (VLIW)

thanks to the non-blocking cache opportunity. However,

the consumer of the loaded data is too close (three bun-

dles later). Thus, the processor stalls too early and the

benefit of the non-blocking cache is limited. We believe

that the in-order architecture can better exploit the non-

blocking cache architecture as well as the out of order

does. However, the binary codes must be adapted to take

in consideration the cache model. To avoid the poor per-

formance improvement of the non-blocking cache archi-

tecture, we propose to reschedule the instructions by in-

creasing the static load-use distance. We change the load

instruction latency, and adapt its to each code. We must

calculate for each load instruction the most suitable la-

tency whatever it hits or misses the Dcache. For the loads

that hit the cache, we do not need to change their latency.

Figure 5: the used methodology

For the other loads, the static latency must be changed.

For instance, the latency of the delinquents loads must be

adapted.

In this section, we consider load-use intervals, where:

load-use interval = [cycle of load , cycle of the user].

Thanks to the non-blocking cache, load-use intervals

may overlap.

In order to compute a new metric each load capturing

load-use intervals overlap, we propose the next formula:

NormalizedDistance =

⌈

C2 − C1

L

⌉

(1)

where C1 and C2 are cycles when load or consumer load

instruction occurs and L is the number of overlapped

loads.

This normalized distance is our new metric that we use

as a parameter to a new static compiler optimisation op-

tion. It sets a new static load latency in whole function

scope: the normalized distance represents the number of

additional static cycles to a cache hit latency. That is, a

load that was initially scheduled with a cache hit latency

by the compiler, becomes scheduled with a new latency

equal to the cache hit plus the normalized distance. The

overlap parameter L in Equ. 1 shows that when L is high

then the normalized distance tends to zero. So, the static

distance tends to a cache hit latency. This means that

the compiler does not change its initial latency because

a good machine usage (sufficient overlapped memory re-

quests). If the value of L is low, the static load distance

is increased to allow more pending loads to be executed

in parallel during cache miss.

We have calculated this new normalized distance met-

ric for all the mediabench and also for ffmpeg functions.

We also experimented some regular usual codes such as,

matrix-vector multiplication and matrix-matrix multipli-

cation.

To decrease the Dcache stall penalty by adapting the

static loads latencies. We use an on-the-fly trace analyser

78

Figure 4: Execution Time Distribution of Mediabench with Distinct Pending Load Queue Sizes (0, 1, 8, 16, 32)

79

during the simulation to calculate the dynamic load-use

intervals, and the number overlapped loads at each pro-

cessor clock cycle. With Equ. 1, we manage to compute

the new static load distance that we should apply in a

re-compilation process. For this purpose, the regular op-

timising compiler of STmicroelectronics has been modi-

fied by the vendor to allow us such low level code opti-

misation. A new compiler version has been designed for

our study. We can now adjust load latency by a special

compiler option. Simply increasing the static load laten-

cies without careful attention may produce many impacts

in the final generated code:

Fig. 5 shows all steps of our methodology to decrease

the data cache stall penalty by adapting the static loads

latencies. We use an on-the-fly trace analyser during the

simulation to calculate the dynamic load-use distances

each processor clock cycle. With Equ. 1, we manage to

compute the adapted load distance that should be applied

in a re-compilation process. For this purpose, the regu-

lar optimising compiler of STmicroelectronics has been

modified by the vendor to allow us such low level code

optimisation. A new compiler version has been designed

for our study. We can now adjust load latency by a spe-

cial compiler option.

1. When instruction rescheduling, the code size may

increase and consequently may have negative ef-

fects on instruction cache misses. So for some

short loop, we force compiler to unroll it rather than

pipeline it. In case of pipelined loop, increasing load

latency can increase the II, however, in some case

greater II can gives better performances than smaller

one (due to cache effects which are not considered

at scheduling time).

2. For the non-loop code, if the new latencies are too

long, the compiler may not find enough ILP. To

avoid that, several methods can be applied as tail

duplication, region scheduling, Super-block instruc-

tion scheduling, trace scheduling, scheduling non-

loop code with prologue/epilogue of loop blocks.

3. Increasing load latency increases the register pres-

sure; the compiler can introduce spill code to reduce

simultaneously alive variables. So, when schedul-

ing, we must take care about register pressure.

Our normalized distance as proposed in Equ. 1 aims to re-

duce the negative impact described above. Furthermore,

we should be aware that modifying a load latency may

considerably modify the cache effects of a code: Since

load operations are reschedule, some initial cache misses

may become hits and vice-versa, because of the instruc-

tion rescheduling that modifies the spacial/temporal lo-

cality of the code. In order to guarantee that the cache

effects stay the same before and after static load modifi-

cation, we impose to the compiler (via a special pragma)

to keep the same order for the loads before and after la-

tency modification. Consequently, applying a new la-

tency to loads does not modify the relative order between

the loads, keeping the same cache effects (and thus, our

normalised distances computed via an initial program

simulation remains valid).

Also, we can see that the distance decreases while the

size of the pending load queue increases until a limit

where increasing the size of the pending load has no ef-

fect on the normalised. Not all functions are candidate

for our code optimisation methodology. We consider the

function that has two properties : 1) a considerable frac-

tion of Dcache stall in the execution time of the func-

tion, and 2) the normalised distance should be larger that

the cache hit latency (3 cycles). When we look for these

two parameters (Dcache fraction plus considerable nor-

malised calculated distance), we find that few functions

in ffmpeg and mediabench are candidate to our optimisa-

tion. For ffmpeg application, we obtained 28.28% whole

application speed-up using adapted loads latencies.

Figure 6: Original vs Optimized ffmpeg & Matrix-

Matrix Multiplication Benchmarks Results

We can now apply our optimisation method in case

of more well known benchmark such as square Matrix-

Matrix (512*512) multiplication: we use a non-naive im-

plementation, produced by ATLAS (“best” loop tiling,

each tile contains 64 * 64 elements = 16KB which are

kept by the Dcache). The obtained results are promising

and conclusive. In Fig. 6, we can observe the positive ef-

fects of using the normalized distances. The main advan-

tage of this optimisation is that it can be applied to any

control flow graph, not necessary to loops. Finally the

speed-up obtained thanks to Preloading and non blocking

cache hides the cost of the added hardware (non-blocking

cache)

5 Conclusion

Our study was based on precise full simulation of whole

embedded applications (mediabench and ffmpeg). Our

experimental study consumed many months of full sim-

ulation on tens of workstations producing tera-bytes of

data to collect and analyse. We precisely measured the

impact of a non-blocking cache inside a VLIW embed-

ded processor (ST231) compared to a blocking cache

architecture. As shown in our experimental results, if

80

the binary codes are not modified, the performance im-

provement is poor (program acceleration less than 3% in

the best case!). This situation has a concrete explana-

tion. Many current compilers schedule load instruction

too close to their consumers: this is a common heuris-

tics to decrease the register pressure. Such scheduling

heuristics assume that data reside in L1 cache, and conse-

quently loads are scheduled as cache hits. Such schedul-

ing heuristics reduces the benefit of a non-blocking cache

in case of in-order and VLIW embedded processors. This

situation is not altered when increasing the size of the

hardware pending queue associated to the non-blocking

cache.

Our experimental results are in opposition with the

case of high performance out-of-order processors, where

non-blocking caches provide positive effects in execution

performance without changing program binaries. High

performance out-of-order processors contain much more

hardware mechanisms (resulting in higher costs) that al-

low program acceleration without instruction reschedul-

ing at compile time. In the case of an embedded VLIW

processor, we showed that if the code is not re-optimised

in order to take into account the non-blocking cache, the

benefit is negligible.

Our code optimisation methodology is based on data

pre-loading. Our method performs in two steps. The first

step computes normalised load-use distances using exe-

cution trace analysis. Then, this distance is used in the

second step to reschedule the code at instruction level,

while keeping the same loads order as the one analysed

in the first step. Keeping the same loads order in the sec-

ond step guarantees that the cache effects analysed in the

first step are not altered in the second step. Our results

on matrix-matrix multiply and ffmpeg show respectively

a speed-up of 267.61% and 28.28% for the whole pro-

gram execution. This provides us promising demonstra-

tion of the effectiveness of our ideas. In the future, we

will combine pre-loading with data prefectching in order

to optimise memory requests for both regular and irregu-

lar embedded VLIW codes.

REFERENCES

[1] John L. Hennessy and David A. Patterson. Com-

puter Architecture: A Quantitative Approach, Mor-

gan Kaufman, CA, 1996.

[2] Michael E. Wolf and Monica S. Lam. A Data Lo-

cality Optimizing Algorithm . PLDI’91, pages 30 –

44, 1991.

[3] Randy Allen and Ken Kennedy.Optimizing Compil-

ers for Modern Architectures. Morgan and Kauf-

man, 2002.

[4] James Edward Sicolo. A Multiported Nonblocking

Cache for a Superscalar Uniprocessor B.S. State

University of New York at Buffalo, 1989.

[5] STMicroelectronics ADCS 7645929F ST231 Core

and Instruction Set Architecture Manual, 2005.

[6] S.-A.-A. Touati. Optimal Acyclic FineGrain

Scheduling with Cache Effects for Embedded and

Real Time Systems. ACM Proceedings of the Ninth

International Symposium on Hardware/Software

Codesign. Copenhagen, Denmark, April 25-27,

2001, IEEE.

[7] Tien-Fu Chen and Jean-Loup Baer. Reducing Mem-

ory Latency via Non-blocking and Prefetching

Caches. Proceedings of the fifth international con-

ference on Architectural support for programming

languages and operating systems. Boston, Mas-

sachusetts, United States. 1992.

[8] Koray Öner and Michel Dubois.Effects of Memory

Latencies on Non-Blocking Processor Cache Archi-

tecture. Proceedings of the 7th international confer-

ence on Supercomputing ICS. 1993.

[9] Chen Ding and Steve Carr and Phil Sweany.Modulo

Scheduling with Cache Reuse Information. Euro-

pean Conference on Parallel Processing. 1997.

[10] Abraham Sugumar, Windheiser, Rau, Gupta. Pre-

dictability of Load/Store Instruction Latencies. Pro-

ceedings of the 26th annual international sympo-

sium on Microarchitecture. Austin Texas. 1993.

[11] David Kroft. Lockup-free Instruction

Fetch/Prefetch Cache Organization . Proc. 8th

International Symposium on Computer Architec-

ture, Minneapolis, MN, May 1981, p. 81-85.

Acknowledgements

This research result has been supported by the ANR

MOPUCE project (ANR number 05-JCJC-0039) and

the French Ministry of Industry. We would like to

greatly thank Francesco PAPARIELLO and Giuseppe

DESOLI from STMicroelectronics-Milano for their valu-

able effort in implementing the non-blocking cache sim-

ulator. We would also like to greatly thank Benoit

DUPONT-DE-DINECHIN and Christophe GUILLON from

STMicroelectronics-Grenoble for their valuable effort in

implementing our pre-loading technique in the ST VLIW

compiler.

81

Non-linear Seek distance for optimal accuracy of zoned disks seek

time in Multi-RAID storage systems

Soraya Zertal1 and Peter Harrison2

1 PRiSM, Université de Versailles, 45 Av. des Etats-Unis, 78000 Versailles, France

Zertal@prism.uvsq.fr
2 Imperial College London, South Kensington Campus, London SW7 2AZ, UK

pgh@doc.ic.ac.uk

ABSTRACT

Models of multi-RAID storage systems, imple-

mented on modern zoned disks, are simplified by

using an approximation for the seek distance that as-

sumes that the number of sectors per track varies lin-

early with the cylinder number. Results obtained in

this way have matched well against simulation, but

the relationship of the number of sectors per track

against cylinder number has turned out to be reark-

ably linear for the specific RAID systems modelled

so far. This will not always be the case, necessar-

ily, and in this paper, we go a step further, calculat-

ing exactly the seek distance moments, then those of

the seek time on zoned disks for specific manufac-

turer’s specifications. This is to ensure the highest

accuracy possible for our model, especially for the

non-sequential request streams. The results show

good accuracy, even in highly non-linear systems,

and indicates a threshold for the model parameters at

which the linear approximation becomes unaccept-

able.

KEYWORDS

Multi-RAID, Zoned disks, Seek distance distribu-

tion, M/G/1 queues, I/O modeling and Simulation.

1 Introduction

A continual, heavy and increasing pressure persists

on storage systems, necessitating accurate models

of their operation, capable of analysing and predict-

ing the performance and quality of service (QoS)

these systems can deliver. To fulfill these require-

ments, models should provide detailed abstractions

of a wide range of possible real system architec-

tures. Many storage system models do exist and we

can split them into three broad categories: the first

focuses on calculating the service time for a given

RAID configuration and a specific type of work-

load [10]; the second – widely investigated – con-

cerns the analysis of the performance of a given

RAID configuration in a specific working mode [2,

3, 16, 17, 18, 11, 1, 13]; and the third category stud-

ies the effect of caching and controller optimizations

on a disk array’s performance [15, 14]. Regardless

of the main goal of a study among these categories,

the objective is always one and only one RAID con-

figuration per disk array. We proposed previously,

in [28], a Multi-RAID model which is – as far as we

know – the only one that models a RAID storage sys-

tem with multiple, coexisting RAID organisations,

using modern zoned disks. In that model, the prob-

ability distribution of the seek distance is consid-

ered to be a continuous random variable, assuming

that the number of sectors per track varies linearly

with the cylinder number. In this paper, we calcu-

late exactly the seek distance moments to provide

the highest accuracy for our model, which would be-

come applicable to arbitrary zoned disks, possibly

with a highly non-linear relationship between num-

ber of sectors and cylinder sequence number.

In the rest of the paper, section 2 considers the

technology issues in the design of RAIDs of zoned

disks as well as the details of our analytical model.

Section 3 describes the calculation of the moments

of the seek distance and their impact on our zoned

Multi-RAID model. Results are presented and dis-

cussed in section 4, and the paper concludes in sec-

tion 5 with a summary and some future related re-

search objectives.

2 Technological and modeling context

A RAID storage system consists of a disk sys-

tem manager and a collection (array) of indepen-

dent disks. The disk system manager is a soft-

ware component of the RAID controller. It is re-

sponsible for the logical to physical mapping of re-

quests according to the prevailing RAID organisa-

tion scheme [4, 5].

We proposed a dynamic Multi-RAID architec-

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

82

D
isk

−
sy

stem

M
an

ag
er

RAID

User 1

User 2

User U

Controller

Disk 1

Disk 2

Disk N

.

.

.

.

.

.

.

.

.

λ1

λ2

λN
λ′

U

λ′

2

λ′

1

Figure 1: Requests flow in a RAID storage system

ture, on which various RAID organisation schemes

coexist, with a dynamic selection of a redundancy

pattern during the data lifetime, in order to pro-

vide enhanced space use and access time, [26] .

Related requests’ independent executions on such

asynchronous disks lead to Fork-Join-type model-

ing problems. We modelled this architecture, us-

ing a collection of M/G/1 queues with various ex-

tensions to account for the parallel disk (physical)

accesses corresponding to a logical request [27, 8].

The response time of each physical request, to an

individual disk, is composed of four components:

the queueing time (Q), the seek time (S), the rota-

tional latency (R) and the transfer time, which it-

self is divided into two components, t and Tbus, cor-

responding to the transfer time between the disk’s

cylinder and its buffer, and between this buffer and

the controller via the bus, respectively. We first con-

sidered uniform disks1 to validate our model [9] and

extended our initial model to modern zoned disks us-

ing more accurate access time functions [28].

On zoned disks (see figure 2), the number of sec-

tors per cylinder is variable. Consecutive cylinders

are collected into groups, called zones, such that

within each zone, the track capacity (number of sec-

tors) and the transfer rate are fixed. However, these

two parameters decrease from the outer to the in-

ner zones. These disks have become very popular

due to their greater storage capacitiy and transfer

rate. Their average rotational latency is constant but

the variable seek and transfer times necessitate more

complex calculations in terms of the assumed sta-

tistical workload and disk operation principles in a

storage model [20, 21].

The model we presented in [28] deals with an as-

sumed linear relationship between the number of

sectors per track and the cylinder number. This gives

a good approximation to the seek distance distribu-

tion on such modern zoned disks in the context of a

Multi-RAID system. As far as we know, there is no

analytical model for a non-linear seek distance dis-

1Sectors are uniformly distributed across the tracks and all the

tracks have the same number of sectors.

Same sectors number in every track of the same zone

Sector

Zone

Outer zone

Inner zone

Figure 2: Zoned disk technology

tribution on zoned disks. We approximated it using a

linear function in [28], rather than by using interpo-

lation, as in [24], or using parameters based solely

on preliminary simulations, as in [19]. An approxi-

mation for seek time in terms of seek distance is pro-

posed in [7]: proportional to the square root of seek

distance, when below some threshold value, other-

wise linear in the seek distance. A Chernoff bound

on the transfer time of a ‘sweep’ of N requests is

found, assuming equidistant seek positions, giving a

constant total seek time for the sweep. Further, this

model assumes that all zones have the same number

of tracks and that the track capacity increases lin-

early, which is much more restrictive than our ap-

proximation in [28]. Here, we calculate the mo-

ments of seek distance exactly, for uniform address

accesses, and hence of seek time, allowing highly

non-linear regimes to be investigated. A glossary of

the notation used is provided by Table 1.

3 The non-linear seek distance

Seek time is one of the main components of a

disk’s access time. The morphology of a zoned disk

improves its performance but makes its modelling

much more complicated because of having to deal

with a non-constant (here, not even linear) seek dis-

tance between the read/write head’s current position

and its target one in any disk access. We assume

that the incoming logical requests’ addresses are in-

dependent random variables, uniformly distributed

over the disk-address space. This does not mean

that the accesses are uniformly distributed over the

disk’s physical space, of course – the access distribu-

tion over the physical space follows its density, i.e.

higher on the outer zone and decreasing towards the

83

Param. Description

N Number of disks in the storage system.

C Number of cylinders on a disk.

SEC Number of sectors on the disk.

Nz Number of zones in the disk.

SECc Number of sectors on cylinder c.

spb Number of sectors per block.

B Logical request size (transfer block).

Ki The number of blocks generated by a

logical request at disk i
Di Seek distance on a disk i.
Si Seek time on a disk i.

buffer and its cylinder.

λ Logical request arrival rate to

the storage system.

pi Probability that disk i is used.

λi Physical request arrival rate to disk i.
λRj Physical request arrival rate to

the RAIDj area.

λiRj Physical request arrival rate to a

RAIDj area on disk i.
Praidj

RAIDj area’s proportion in the

whole storage system space.

pw Probability that a request is a write.

pr Probability that a request is a read.

ps Probability of a sequential access.

zi The probability to access a sector

in zone i.
Ci The first cylinder’s number of zone i.
di The number of cylinders in zone i.

Table 1: Notation for the RAID model’s parameters

inner zone. Since the number of cylinders C is large,

the seek distance D can be well approximated by a

continuous random variable. On Uniform disks, the

seek distance density function is [9]:

fD(x) = psδ(x) + (1 − ps)
2(C − x)

(C − 1)2

for 0 ≤ x ≤ C − 1, where ps is the probability that

consecutive accesses are sequential, i.e. on the same

track, requiring no seek for the second access.

The term
2(C−x)
(C−1)2 is the probability density func-

tion of the difference between two uniform random

variables on [0, C − 1], and δ(x) is the Dirac delta-

function (unit impulse). Turning now to zoned disks,

assuming that the number of sectors (and hence

blocks) per track varies linearly with the cylinder

number, the density function of D can be shown to

be [28]:

fD(x) = A + Gx + Ex3 (0 ≤ x ≤ C − 1)

Thus, the nth moment of the seek distance D can be

calculated as:

Mn = (C−1)n+1[
A

n + 1
+

G(C − 1)

n + 2
+

E(C − 1)3

n + 4
]

where

A =
V (C − 1)

3γ2

G = −
V + β2(C − 1)2

3γ2

E =
β2

3γ2

V = 6α2 + 6αβ(C − 1) + 2β2(C − 1)2

γ = α(C − 1) + β(C − 1)2/2

α = SECC−1/spb,

β = (SEC0 − SECC−1)/(spb(C − 1))

We implemented this linear approximation and the

obtained results showed good agreements when ap-

plied to a real disk device : Fujitsu-MAN3397

disk [6], as we can see in figure 3. This figure plots

the exact number of sectors per track (as specified in

the disk’s technical data) against cylinder sequence

number (with the higher numbered, inner cylinders

on the left) over the whole disk. This graph is com-

pared with the model’s linearised version in the same

figure, showing close agreement. However, we can-

not rely on such an approximate linear relationship

holding good on all zoned disks (see section 4). The

reason is that on such disks, the streaming bandwith

varies by over 50% from one part of the disk to an-

other [22], showing clear non-linearity.

Very few applications writers exploit this non lin-

earity, however, specifying explicitly the data place-

ment so that the behaviour of an application can be

predicted [23, 25]. Most programmers completely

ignore the data placement that their applications will

use. Models of such applications that employ (ap-

proximately) linearized seek time distributions do

not, therefore, represent real system behaviour faith-

fully, and so predict performance poorly. This mo-

tivated our exact seek distance calculation, using

real zoned disks’ published hardware characteristics.

This results in seek time moments being estimated

by the formulae given in the proposition below:

Proposition 1 Consider a disk with Nz zones, num-
bered 0, 1, . . . , Nz − 1 and C cylinders, counting
from the outside of the disk. Let the first cylinder in
zone i be numbered Ci, so that the number of cylin-
ders in zone i is di = Ci+1 − Ci. Then the nth mo-
ment Mn of seek distance, assuming uniform access
to sectors over the whole disk, is

Mn =
2

(n + 1)(n + 2)

Nz−1
∑

0≤j<i

zizj

(di − 1)(dj − 1)
×

84

[(Ci − Cj+1 + 1)n+2 + (Ci+1 − Cj − 1)n+2

− (Ci − Cj)
n+2 − (Ci+1 − Cj+1)

n+2]

+
2

(n + 1)(n + 2)

Nz−1
∑

i=0

z
2
i (di − 1)n

where zi = di×SECi

SEC is the probability of a single

request accessing a sector in zone i.

Proof Let the random variable D denote the seek
distance for an access on the disk, assuming that all
accesses are uniformly distributed over the sectors.
Then, the probability that a given access is to a sector
in zone i is zi, as defined. Hence we have:

Mn = E[Dn]

= E[E[Dn | seek between cylinders i and j, i ≥ j]]

=
∑

j<i

zizj

(di − 1)(dj − 1)
×

∫ di−1

x=0

∫ dj−1

y=0

(Ci − Cj + x − y)ndxdy

+

Nz−1
∑

i=0

z2
i

(di − 1)2

∫ di−1

x=0

∫ di−1

y=0

|x − y|ndxdy

=
2

(n + 1)(n + 2)

Nz−1
∑

0≤j<i

zizj

(di − 1)(dj − 1)
×

[(Ci − Cj+1 + 1)n+2 + (Ci+1 − Cj − 1)n+2

− (Ci − Cj)
n+2 − (Ci+1 − Cj+1)

n+2]

+ 2

Nz−1
∑

i=0

z2
i

(di − 1)2

∫ di−1

x=0

∫ x

y=0

(x − y)ndxdy

The result follows on evaluating the integral. ♦

The seek time is calculated according to the
widely accepted formula of Lee [12] :

Si(D) =

{

0 if Di = 0
a
√

Di + b(Di − 1) + c otherwise

where a, b, c are hardware-related constants :

a = (−10 × MinSeek + 15 × AvgSeek

−5 × MaxSeek)/(3 ×
√

C)

b = (7 × MinSeek − 15 × AvgSeek

+8 × MaxSeek)/(3 × C)

c = MinSeek

and the three first moments required for the response

time moment calculation on the Multi-RAID system

are, as in [28]:

S = (c − b) + aM1/2 + bM1

S = (c − b)2 + 2a(c − b)M1/2

+[a2 + 2b(c − b)]M1 + 2abM3/2 + b2M2

S = (c − b)3 + a(c − b)2M1/2

+3(c − b)[a2 + b(c − b)]M1

+[a3 + 6ab(c − b)]M3/2

+3[a2b + b2(c − b)]M2 + 3ab2M5/2 + b3M3

4 Results and discussion

We calculated and compared the first three moments

of the seek time using the linear seek distance

approximation [28], the non-linear seek distance

calculation of proposition 1 and real system simula-

tion using our Multi-RAID system simulator. The

system modelled was composed of 16 disks with

200,000 simulated small logical requests arriving at

different rates from 10req/s to 1000req/s. For our

experiments, two kinds of zoned disks were used: a

fujitsu-MAN3367 and a fictitious one with a highly

non-linear relationship between sectors per track

and cylinder number – see the characteristics in

table 2.

It is not unusual to use a fictituous component to

validate an extreme case. For example, [22] used

a hypothetical fast disk, called Uberdisk, the pa-

rameters of which were scaled from contemporary

disks, to approximate the performance of a MEM-

store. Here, we use a fictitious disk as well, param-

eterized in terms of capacity (total number of Giga-

bytes and number of sectors), performance (rotation

time and minimum/average/maximum seek times)

and morphology (numbers of data heads and cylin-

ders). These were scaled from a real disk (Fujitsu-

MAN3367), apart from a reduced number of zones,

to yield a significantly non-linear distribution of seek

distance. This is to show the accuracy of the approx-

imation as well as the value of the exact calculation

for disks with a non-linear morphology. Figures 3

and 4 show that the number of zones changes from

18, on the Fujitsu disk, to 4, on the fictitious disk, but

that the distribution of storage density changes dras-

tically from linear to clearly non-linear, as intended.

The three first seek moments using the Fujitsu-

MAN3367 disk in table 3 highlight the accuracy

of the linear approximation for this kind of device.

In fact, on such devices with a certain linearity of

the recorded density distribution, the distribution of

sectors across the zones shows consequently a cer-

tain linearity which makes the linear approximation

and the non linear ‘exact’ calculation close to each

other, matching very well with the simulation re-

sults. However, we notice the small advantage of

the latter, nonlinear calculation.

85

Param. value value

Fuj-MAN3367 Fictif

capacity 36,74 GB 36,74 GB

Sectors 18, 37× 107 18, 37× 107

Rotation 10000 rpm 10000 rpm

Cylinders 29950 29950

Min Seek 0,4 - 0,6 ms 0,4 - 0,6 ms

Avg Seek 4,5 - 5 ms 4,5 - 5 ms

Max Seek 11 - 12 ms 11 - 12 ms

Data Heads 4 4

Zones nbr 18 4

Table 2: Fujitsu-MAN3367 Vs Fictitious disks char-

acteristics

 450

 500

 550

 600

 650

 700

 750

 0 5000 10000 15000 20000 25000 30000

cylinders number

secteurs per track

Disk characteristics
Linear model

Figure 3: Sectors per track (FujitsuMAN3367)

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000

cylinders number

secteurs per track

Disk characteristics
Linear model

Figure 4: Sectors per track (Fictitious disk)

This linear distribution of sectors across the zones

is not always respected, however. Even when it is,

the seek time does not depend solely on the seek dis-

tance but also on the start position (or end position)

of a seek. This is more important when these two

positions belong to different zones, which is gener-

ally the case for non-sequential accesses. For such

an access profile, using an approximation for the

seek time calculation introduces a delay, accumu-

Model approx. Model calc. Simul.

linear Di Non linear Di

S 4.7 4.72 4.73

S 28.54 28.56 28.61

S 200.35 199.98 199.21

Table 3: Seek time moments comparison (Fujitsu-

MAN3367

lating along the request stream and so generating a

larger discrepancy against the real system. Even if

we can consider the seek time approximation accu-

rate enough for sequential access, we certainly can-

not consider it thus for non-sequential access, due

to the cumulative delays introduced in a sequence of

accesses. The more these non-sequential accesses

appear, the more significant is the re-positioning de-

lay and the less accurate is the seek time approxima-

tion.

Hence, the linear approximation cannot always

give accurate results regardless of the device’s mor-

phology. Consequently, we used the fictitious disk,

with the same space storage capacity and perfor-

mance characteristics, but with a non linear distribu-

tion of sectors on zones to calculate the superiority

of the non-linear seek distance calculation against its

linear counterpart, with the Multi-RAID system sim-

ulation as a reference. The results obtained in table 4

confirm this superiority.

Model approx. Model calc. Simul.

(linear Di) (Non linear Di)

S 4.47 4.41 4.36

S 26.00 24.90 24.56

S 176.26 163.85 161.35

Table 4: Seek time moments comparison (Fictitious

disk)

5 Conclusion

In this paper, we have compared our previously pub-

lished model for the moments of seek distance in

RAID models, which approximated the number of

sectors on a track as a linear function of the track’s

sequence number, against an exact, explicit calcula-

tion. We showed that the proposed approximation is

86

still accurate for devices showing a certain degree of

linearity in the density of storage over zones. How-

ever, the results obtained show the clear superiority

of the non-linear moments calculation, regardless of

the disk morphology. Using this result, we can guar-

antee almost perfect accuracy in the seek time cal-

culation for uniform disk block accesses, which is

a major component of the I/O response time, espe-

cially for non-sequential request streams.

We thereby constructed an accurate disk array model

and in the near future, we expect to extend it to ac-

count for the operation of the bus that connects disks

to the controller, which is subject to congestion and

a consequent bus-queue, introducing further delay at

high request arrival rates.

REFERENCES

[1] E. Bachmat and J. Schindler. Analysis od

methods for scheduling low priority disk drive

tasks. In ACM Sigmetrics, 2002.

[2] S. Chen and D. Towsley. The design and eval-

uation of raid5 and parity striping disk array

architectures. Parallel and distributed comput-

ing, 17, 1993.

[3] S. Chen and D. Towsley. A performance evalu-

ation of raid architectures. IEEE Transactions

on Computers, 45(10), October 1996.

[4] G. Gibson D. A. Patterson and R. H. Katz. A

case for redundant arrays of inexpensive disks

(RAID). In Proceedings of SIGMOD Confer-

ence, June 1988.

[5] G. Gibson D. A. Patterson, P. M. Chen and

R. H. Katz. Introduction to redundant arrays

of inexpensive disks (RAID). In IEEE COMP-

CON, 1989.

[6] Fujitsu. Disk Drives. Products/Maintenance

Manual. Fujitsu, 2001.

[7] Peter Muth Guido Nerjes and Gerhard

Weikum. Stochastic service guarantees for

continuous data on multi-zone disks. In Sym-

posium on Principles On Database Systems,

1997.

[8] P.G. Harrison and S. Zertal. Queueing models

with maxima of service times. In Proceedings

of TOOLS Conference, 2003.

[9] P.G. Harrison and S. Zertal. Queueing mod-

els of RAID systems with maxima of waiting

times. Performance Evaluation, 2007.

[10] M. Y. Kim and A.N. Tantawi. Asynchronous

disk interleaving: approximating access de-

lays. IEEE Transactions on Computers, 40(7),

1991.

[11] A. Kuratti and W. H. Sanders. Performance

analysis of the raid5 disk array. In Proc. IEEE

Int’l Computer Performance and dependability

Symp., 1995.

[12] E.K. Lee. Perfomance modelling and analysis

of disk arrays. ph.D. thesis, University of Cal-

ifornia, Berkeley, USA, 1993.

[13] E.K. Lee and R.H. Katz. An analytic perfor-

mance model of disk arrays. In Proc. ACM

SIGMETRICS, May 1993.

[14] G. A. Alvarez M. Uysal and A. Merchant.

A Modular, Analytical Throughput Model for

Modern Disk Arrays. In Proceedings of the In-

ternational Symposium onModelling, Analysis

and Simulationof Computer and Telecommuni-

cations Systems (MASCOTS), August 2001.

[15] J. Menon. Performance of raid 5 disk arrays

with read and write caching. Distributed ND

Parallel Databases, 2(3), July 1994.

[16] A. Merchant and P.S. Yu. An analytical model

or reconstruction time in mirrored disks. Per-

formance evaluation, 20, May 1994.

[17] A. Merchant and P.S. Yu. Analytic modeling

and comparisons of striping strategies for repli-

cated disk arrays. IEEE Transactions on Com-

puters, 44(3), March 1995.

[18] A. Merchant and P.S. Yu. Analytic modeling

of clustered raid with mapping based on nearly

random permutation. IEEE Transactions on

Computers, 45(3), March 1996.

[19] R. Nelson and A. N. Tantawi. Approximate

analysis of fork-join synchronisation in parallel

queues. In IEEE Trans. Computers, volume 37,

June 1998.

[20] S. Christodoulakis P. Triantafillou and C. A.

Georgiadis. A Comprehensive Analytical Per-

formance Model for Disk Devices Under Ran-

dom Workloads. IEEE Transactions on Knowl-

edge and data Engineering, 14(1), 2002.

[21] Sangsoo Park and Heonshik Shin. Rigourous

Modeling of Disk Performance for Real-Time

Applications, volume 2986. Springer Berlin,

2004.

87

[22] Steven W. Scholosser and Gregory R. Ganger.

Mems-based storage devices and standard disk

interfaces: A square eg in a round hole. Techni-

cal Report CMU-PDL-03-102, Carnegie Mel-

lon University, December 2003.

[23] seon ho kim Shahram Ghandeharizadeh and

cyrus Shahabi. Continuous display of video

objects using multi-zone disks. Technical Re-

port 94-592 USC, University of South Califor-

nia, April 2003.

[24] S. Varma and A. M. Makowski. Interpola-

tion approximations for symmetric fork/join

queues. In Performance Evaluation Journal,

volume 20, 1994.

[25] Jun Wang and Yiming Hu. Profs -

performance-oriented data organization for

log-structured file system on multi-zone disks.

In 9th Internantional Symposium on Model-

ing, Analysis and Simulation on Computer and

Telecommunication Systems, 2001.

[26] S. Zertal. Dynamic redundancy mechanisms

for storage customisation on multi disks stor-

age systems. ph.D. thesis, University of Ver-

sailles, France, January 2000.

[27] S. Zertal and P.G. Harrison. Multi-level raid

storage system modelling. In Proceedings

of 2003 International Symposium on Perfor-

mance Evaluation of Computer and Telecom-

munication Systems (Spects), 2003.

[28] S. Zertal and P.G. Harrison. Multi-raid queue-

ing model with zoned disks. In High Perfor-

mance Computing and Simulation, 2007. Best

paper Award.

88

VIRCONEL: A NEW EMULATION ENVIRONMENT FOR EXPERIMENTS
WITH NETWORKED IT SYSTEMS

Yacine Benchaïb and Artur Hecker

Department of Computer Science and Networking
TELECOM ParisTech (ENST)

37-39, rue Dareau, 75014 Paris, France
E-mail: {benchaib, hecker}@enst.fr

KEYWORDS
Modeling, Simulation and Evaluation Techniques ; Grid
and Cluster Computing.

ABSTRACT

In this paper we present VIRCONEL, a new, open-
source emulation environment for experiments with and
evaluation of networked IT systems. Based on previous
open-source projects, VIRCONEL proposes a graphical
modeling interface with node template support, entity
cloning, IP configuration auto-completion and an easy
scenario definition with label-based multiple role
assignment and local script execution on virtual
machines. Moreover, VIRCONEL has a graphical
interface for the control of the deployed virtual network,
allowing in particular one click logins, monitoring and
value recording, as well as link and node fault injection.
Most importantly, VIRCONEL easily installs on typical
PC hardware and features explicit support for multiple
physical hosts, thus providing a better scaling. Multiple
physical hosts are seamlessly supported both in the
virtual network design and operation phases.

INTRODUCTION

The evaluation of large, networked IT systems often
raises questions with regard to the best evaluation
environment. This is a known issue in the evaluation of
performance, robustness and assurance properties of
distributed systems and applications, new distributed
maintenance algorithms, middleware architectures, P2P
proposals, etc. (Jiang and Xu 2003). The problem is that
formal approaches are either very difficult to apply or
need certain assumptions that are difficult to verify in
practice. The alternative is the experimental evaluation.
Real testbeds are attractive because they are often more
representative than other experimental evaluations.
However, they inflict a high administrative burden
(deployment, maintenance, operational effort). In
practice, this results in prohibitive limitations of
evaluable system sizes. On the other hand, classic
simulation techniques can easily deal with thousands of
nodes. Yet, they impose a controversial tradeoff
between precision, complexity and control (Bavier et
al., 2006). When left at the consideration of the author
alone, this deserves doubts with respect to the
trustworthiness of the results (Pawlikowski, 2002).

Emulation using virtual networks and virtual machines
represents an interesting alternative to the experimental
evaluation techniques (Ruth et al. 2005). Note that in
this paper, we do not distinguish between different
virtualization technologies and use the terms
virtualization and emulation in their broad sense. See
(Nanda and Chiueh, 2005) for background details.
Essentially using the same software as real testbeds but
in virtual execution environments, emulation is very
close to real, at least regarding local node behavior.
Differences are in the performance and capacities of
virtual nodes, especially when several virtual machines
share one physical host. More importantly, there can be
substantial differences in the link behavior. This is
essentially comparable to simulation issues: e.g.
accepted models are necessary to simulate a wireless
link. Still, emulation can represent an attractive
alternative to real testbeds and simulations. First,
emulation by virtualization features binary compatibility
with the real testbed and therefore, unlike simulations,
does not need an additional model programming. This
also permits for closed-code execution as emulated
instances, thus allowing evaluation of commercial
software whose behavior might be not completely
known. Besides, since model programming is not
necessary, and the software to be evaluated can be used
directly, this avoids a potential error or imprecision
source, thus yielding results closer to real than the
simulation. Second, emulation can be used to evaluate
networked IT environments composed of several
hundreds of nodes with a relatively low deployment and
operations effort in comparison to a full testbed, and this
in a fully controlled environment. However, to do this,
we need to supply the evaluator with a toolbox
permitting to easily set up and control different virtual
environments spanning over several real hosts.
In this paper, we present the design and implementation
of Virtual Computer Network Lab (VIRCONEL), an
open-source, easy-to-use, multi-host, networked
emulation environment for the evaluation of large,
networked IT systems with the help of several off-the-
shelf PCs. VIRCONEL features a very easy installation
method and explicitly supports several physical hosts
for better scalability. VIRCONEL features graphical
interfaces for the design of the system, emulated service
deployment, scenario definition and emulation control.
In operation, VIRCONEL can record typical parameters
and the data as requested from the emulated network.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

89

The rest of the paper is organized as follows. In the next
section, we present our rationale and the resulting
requirements. We then present previous work in this
area and explain the motivation for the design and
development of VIRCONEL. Then, we explain its
architecture and justify some of our decisions by
providing insights on the related development effort.
Next, we present the possibilities already provided for
emulated system design, control and measurement.
After that, we demonstrate the resource usage of
VIRCONEL when running typical scenarii on our
hardware and try to estimate its limits. Finally, we give
an outlook to our future work.

RATIONALE AND REQUIREMENTS

The main drive for this work comes from the need for
the setup and evaluation of large, distributed IT systems
within the scope of the ICT FP6 DESEREC project. The
DESEREC testbed needs to be capable of hosting
different types of networked enterprise IT systems,
often running complex, commercial closed-source
software. Typical services within such systems include
VoIP sessions between different locations, Web-based
access to SQL/LDAP databases etc., provided over
several LANs connected by routers over VPNs and the
Internet and completed by obligatory security, reliability
and management subsystems.
In practice, this translates to very close to real testbed of
potentially several hundreds of nodes and a strong
accent on the local applications and node behavior, i.e.
being capable of running common open and commercial
software under close-to-real constraints (Unix-like OS,
TCP/IP plus NAT+DHCP, firewalls, NAS and AAA,
etc.). Besides, to evaluate system behavior and
resilience faced with node and communication
breakdowns, we needed a possibility for a scenario
generation, including failure scenarios. Finally, to allow
collaborative partner work, the ease of installation of the
emulation environment per se and the support for the
interconnection of several local environments are
considered important.
In summary, we distilled our wish list for an emulation
package for large IT system evaluation to the following
concrete MUST requirements:
-- Open-source emulation software: the emulation
toolbox itself should not involve complicated licensing
issues and be based on open-source software;
-- Relative ease of installation: complex installations on
real hosts would be unattractive since the goal is to
install the testbed and not to maintain the physical host;
-- Support of several physical hosts: one physical host
usually cannot run more than several dozens of virtual
machines. To support scaling to several hundreds of
emulated nodes, we therefore need a possibility to easily
support multiple, networked physical hosts. This
support also needs to be integrated with the modeling of
the network, i.e. it should be possible to assign virtual
nodes to physical hosts;
-- Ease of scenario definition: the modeling of the
emulated system and services upon it should be easy,

preferably supported by an easy-to-use graphical tool. It
should be possible to start the defined emulated network
upon the available physical hosts;
-- Binary compatibility with the existing software: it
should be possible to evaluate the existing software
without understanding how it works (Ruth et al., 2005).
As explained before, this has a double advantage of
permitting direct usage of the existing software, e.g.
closed source. What is more, it significantly reduces the
modeling time, since one does not need to model local
node behavior. This removes a potential error source.
-- Running emulation monitoring and control: it should
be possible to influence a running emulation by
provoking node and communication breakdowns,
starting and stopping software on virtual machines,
reconfiguring interfaces, etc. On the other hand, it
should be possible to see what is happening within the
emulation and, in particular, capture and record values
of different interesting variables, limiting the
perturbation of the emulated virtual reality.
In principle, our list corresponds to the requirements
stated in (Bavier et al., 2006), which mainly underlines
realism (real software, realistic conditions, real traffic)
and controllability.

RELATED WORK

Network experiments are conducted today mainly
through simulations with NS-2, OMNET++, Glomosim
or commercial tools like Opnet. As discussed above,
without a substantial additional effort, the simulation
tools do not allow direct execution of closed-source,
(e.g. commercial) software.
PL-VINI (Bavier, 2006) running over PlanetLab has
been proposed for similar purposes, but access to
PlanetLab is not always suitable.
Different “local” virtualization environments with
networking support have been proposed, including
commercial environments like VMWare and Parallels,
and open-source projects like Qemu (Bellard, 2005),
openVZ (http://openvz.org/), Xen (Barham, 2003) and
User-Mode Linux (UML) (Dike, 2006) . Besides the
previously cited survey (Nanda and Chiueh, 2005), an
up-to-date comparison of these can be found in
Wikipedia under “Comparison_of_virtual_machines”.
A substantial work has been done on server
virtualization and containment (see e.g. Padala, 2007).
However, the aim of this work is on the one hand on the
performance and high availability of any single server,
and on the hand, on the management of such servers.
We would like to place as many virtual or paravirtual
instances on any single physical host so as to make our
network emulation scale. We also need the control, but
focus on scenario control and monitoring, rather than on
the service management (patches, security updates,
user/account management, etc.), typical for real servers.
Besides, we need a tool to graphically define virtual
topologies.
Several open-source projects add virtual networking
support to virtual machines. For instance, Netkit
(http://www.netkit.org/) is a collection of shell scripts

90

for instantiating a virtual network of UML-based virtual
machines. VN-UML (Galan, 2004) and MLN
(http://mln.sourceforge.net/) support structured
descriptions of the network to be set up on one machine,
with MLN also supporting Xen and UML combinations.
Graphical editors emerged for such structured
descriptions, like NetGUI (Nemesio, 2006), vnumlgui
(http://pagesperso.erasme.org/michel/vnumlgui/)
producing VN-UML’s XML. Marionnet (Loddo, Saiu
2007), principally accentuating on didactics and
dedicated to teaching, adds dynamic network
reconfiguration support.
Having studied the related work, we concluded that very
interesting building blocks exist in the open-source
community. On the other hand, no proposal permitted to
fulfill all of our requirements. Especially the graphical
editors building upon VN-UML generally come close to
our requirements. However, all of them are limited to
one physical host, both in the modeling and in the
emulation execution phases. Second important point
(Bavier et al., 2006): they generally do not integrate
monitoring and control utilities. Marionnet features
support for topology changes in operation. However, it
targets education purposes and is rather committed to
realism when working with small networks, while we
would like to simplify modeling work.

DESIGN AND IMPLEMENTATION OF
VIRCONEL

Profiting from previous experiences and trying to
reduce precious development time, VIRCONEL relies
upon and extends VN-UML (Galan, 2004).
VN-UML uses UML as virtual machines. UML is in
principle a Linux kernel started in the user-space, as any
other process. It can thus be stopped and interrupted at
any time. For networking support, the VMs make use of
the Linux kernel’s ability to provide virtual network
interfaces (tun and tap devices). The interface of the
UML VM (eth0) connects to such a virtual interface of
the host Linux. By defining proper IP forwarding and/or
bridging rules, any VM can get customized network
access. To simplify the necessary configuration, VN-
UML introduces a virtual switch and a structured
definition language, which defines the interconnects of
VMs with each other and the physical host. Isolation is
possible through the use of VLANs (see Figure 1, PC1).

Figure 1: System architecture of VIRCONEL

In VIRCONEL, the VN-UML virtual switch is currently
bridged to the real network device of the host Linux in a
VLAN. If available physical hosts are interconnected by
a real network (e.g. switch, router, VPN gateway, the
Internet), the virtual network can span over these hosts,
as shown in Figure 1. Currently this is done with
limitations on topology but in principle, different
isolated virtual networks can be set up with known real
network separation measures (e.g. VLAN or VPN).
However, this is not an urgent requirement for us.
Besides, any VM can be configured with several
interfaces. An interesting point in VN-UML is the
explicit presence of an additional interface, used for
direct communications with the hosting physical
machine. We call this interface “management interface”.
In VIRCONEL, we use it for operational control,
scenario deployment, measurement traffic, etc.
The emulated machines are Linux kernels working over
a specific file on a host PC as a shared partition. By
installing software in this “partition” and preparing
different partition files, we provide VM templates. The
software installed within the latter can also be started
and controlled over the management interface.
In principle, to run an emulation, four phases are
necessary in VIRCONEL after it has been installed:
-- virtual network modeling,
-- virtual scenario definition and setup,
-- deployment of virtual entities to physical hosts, and
-- virtual network operations.
For modeling, we use a popular open-source graphical
editor called Dia that produces XML output
(http://www.gnome.org/projects/dia/). We integrated
Dia by adding a VIRCONEL-specific workbench,
permitting the choice of different typical entities
(switches, routers, hosts). VIRCONEL’s parser
processes Dia’s XML output and translates it into a VN-
UML XML input file, producing one XML file per
specified physical host as mentioned in the graphical
model. Scenario setup is described in the next section.
In the deployment phase, these files are then distributed
to and executed on the available physical hosts, as
specified in the model file. We use SSH for that.
In the operational phase, VIRCONEL starts a control
panel that displays the emulated network within one
graphical interface (developed in Tcl/Tk), permitting
scenario start, local login to every virtual machine,
activating/deacting links, etc.
This design and the reuse of the previous work have
permitted us to accomplish a first working version of
VIRCONEL in about five men-months of integration
work. In the following, we describe the usage and
features of VIRCONEL.

USAGE AND FEATURES OF VIRCONEL

Local Installation

Similarly to VN-UML, we use the Live-DVD concept
permitting a very easy local deployment on a spare
physical host. This allows concentrating on the
essential, emulation-related things.

91

However, since UML, unlike other virtualization
technologies, does not necessarily require host machine
changes, VIRCONEL can also be installed and executed
on an available Linux host used for other tasks.

Modeling: Virtual Topology Definition

Modeling is done within the integrated graphical editor
(Dia, slightly modified). Currently, VIRCONEL comes
with switch, router and host templates. The existing
templates, available as icons in Dia, can be positioned
on the screen and interconnected by links as necessary.
Graphical links represent emulated network links.
The provided host template comes with a variety of
typical applications, including Web server, client, SIP
instances, etc. It is possible to change the existing/to add
new VM templates at any time (and to integrate them
into the graphical tool).
To further simplify things, we explicitly support starting
and stopping processes on any operational VM from the
modeling phase on. This is used for assigning roles for
the scenario definition (see below), but also renders any
usage of the existing templates more flexible, since the
same template can be used to instantiate semantically
different VMs (e.g. a server and a client).

Setup: Scenario Definition

To assign such roles and/or configuration parameters,
we use a simple labeling technique. Designer can attach
a number of text labels to any existing basic entity.
When all labels are assigned, the designer simply
groups all labels with the original entity using Dia’s
grouping function. This attaches the labels to this
specific entity. Therefore, designer can define IP
addresses, specify which processes should be started,
etc. We also provide some support for rapid modeling,
namely IP-configuration auto-completion and simple
entity cloning. The auto-completion function can
automatically find the responsible router from the XML
topology file. Hence, attaching an IPv4 address in CIDR
to each host is sufficient. Cloning is very useful to
produce high numbers of identical hosts. Currently, it is
possible to attach a <clone=N> label to a well-defined
host in order to clone the latter N times (thus resulting
in N+1 identical entities with the same behavior). The
IP addresses of the emulated interfaces are
automatically renumbered within the subnetwork space.
The scenario per se is defined through labels, which
identify scripts to be executed on each concerned
modeled entity. More precisely, the <*-Client> and <*-
Server> labels are interpreted as parameters to a
launcher script. The latter searches and executes the
script with the same name within the targeted VM.
Thus, the scenario definition needs a machine pre-
provisioning with all required executables (template, or
copying by hand in the operational machine), various
script placements on the machine (with names
corresponding to the labels) and the definitions of

resource consumption models (e.g. period, number of
bytes to send, etc.) within the scripts.
Such scripts can be developed by the designer and are
very flexible (basically, shell script, perl, python etc.).
They permit to define any typical scenario, for instance
a number of Web clients accessing a multi-tiered Web
server with certain distributions, etc. (Padala, 2007).
Since any script and binary execution is supported on
virtual machines, this approach does not constrain the
possibilities. A list of currently supported labels with
their semantical meaning is given in Table 1 but is being
constantly worked on.

Table 1 Currently supported VIRCONEL labels
Label
*-Client Used to start a client script on the VM
*-Server Used to start a server script on the VM
Clone Clone a specified virtual machine.
IP address Define the VM’s IP address (IP/mask)

Deployment

We support multiple physical hosts in modeling, setup
and execution phases. The designer needs to assign
virtual machines to physical servers. In VIRCONEL,
this can be done by enclosing a required number of
subnets/hosts and a router into a graphical rectangle in
Dia. The designer then specifies the IP address of the
physical host as shown in Figure 2. Once these phases
are accomplished, the emulation can be started by
parsing the produced output file. This locally starts the
operational GUI, which exactly represents the whole
modeled topology hiding the physical hosts as can be
seen in Figure 3. It permits to start/stop both the
virtualization and the defined scenario and has some
other features to be described in the next phase.
Driven over this GUI, which uses SSH from the
designer host to physical hosts, VIRCONEL first
distributes the designed virtual topology within the
specified testbed and then initiates the virtual network
entities necessary to combine the subnetworks hosted on
different physical machines. The testbed is composed of
PCs, each of which is running VIRCONEL. The virtual
machines are started on the physical hosts of the
emulation platform as identified by their IP addresses.

Operation

Furthermore, the same GUI also permits to control the
operation of the emulation. It is possible to launch and
stop the defined scenario. Commands are sent over SSH
from the designer host to each VM as specified.
Second, the operation GUI features a one-click-login to
any virtual machine, which opens an SSH session from
the designer host to the virtual machine’s management
interface. This is very practical for manual error
introduction or for tests/measures and slight changes
within the operational virtual environment.

92

Figure 2: VIRCONEL modeling interface

Figure 3: Control of the emulated network

93

The management interface permits to collect various
measurements without perturbing the emulated network
traffic. Per default, VIRCONEL assesses typical data,
like overall CPU consumption and overall network
traffic on every emulated interface, and represent these
with gnuplot. Yet, more complicated measurements can
be defined in the setup phase. In principle, whatever can
be measured in the real network can be measured in
VIRCONEL. The assessed data is either sent over the
management interface to the operational GUI, or it is
stored in the virtual or physical host partition. Resource
usage measurements are also possible from the host PC.

EVALUATION RESULTS

Evaluation Testbed

The testbed on which we install VIRCONEL and run
our evalution is composed of three servers (PC), each
equipped with 4GB of RAM and a 2.6GHz QuadCore
Intel CPU. The servers are running Ubuntu Linux 7.04
Feisty Fawn, kernel version 2.6.20 patched with the
SKAS3 patch for better UML performance.

Evaluated Scenarios

We use three scenarios to evaluate VIRCONEL. The
first scenario evaluates the computational penalty
experienced by a process within the virtual machine.
We want to find answers as to how much performance
we lose per VM when running several VMs on the same
host. This gives an estimate on how many concurrent
VMs we can put on one Linux host.
We use openssl to symmetrically encrypt a 20MB
binary file. We first sample the host Linux performance
and then repeat the exact same command within the VM
with concurrent 6, 11 and 16 VMs on the same host
Linux. On our hardware, the host Linux performs this
task (measured with time) in an average time of 1.048s
with a standard deviation of 0.114 s. The VMs take an
average of 2.5s (0.447) for 6, 3.265s (0.432) for 11 and
6.702s (1.381) for 16 concurrent VMs on one physical
host respectively (standard deviation in brackets). The
results of these measurements as percentage, normalized
to fixed host performance, are shown in Figure 4.

Figure 4: Computation performance penalty per VM on

one host PC with the increasing number of VMs

We can see that at least up to 11 VMs can be used for
this computationally intense task with a reasonable and
stable penalty. For 16 VMs the results start varying too
much because of complex interactions of concurrent
processes with the task scheduling. Note that while the
performance per VM decreases, the overall performance
for at least up to 16 VMs is better than for the single
process at the host Linux: while the host Linux takes
1.0457s per file encryption, 6 VMs take only 0.42s per
file, 11 VMs take 0.296s per file and 16 VMs take 0.42s
per file. We can see that 11 concurrent VMs have the
best performance in that scenario.
In the second scenario, we use three physical hosts
connected by a real switch (100BaseT). We emulate
HTTP traffic from virtual clients (wget) to one virtual
webserver (Apache). This roughly represents a mixed
resource usage typical for a modern distributed
application. Using Unix at, HTTP client starts on all
client VMs simultaneously, sends an HTTP request to
the webserver for a hosted file of 50kB and exits
immediately. We use the topology as illustrated in
Figure 2: we use 3 host Linux PCs, with the webserver
and router being the only VMs on the host deserec2.
There are 11 concurrent HTTP clients on deserec1 (plus
router VM) and 16 HTTP clients on deserec4 (idem).
We measure the delay for a succcesfull transaction from
within the VM, i.e. the time from the start to the exit of
wget. The averaged results for physically identitical
hosts deserec1 (11 clients) and deserec4 (16 clients) in
20 experiments are illustrated in Figure 5.

Figure 5: Time for a complete execution of an emulated

HTTP transaction with 11 and 16 concurrent VMs

Third scenario is similar to the second one. We use
HTTP traffic from virtual clients to one virtual server in
the same topology (Figure 2). However, we start the
clients periodically, with the inter-process invocation
time from a uniform distribution in the interval [1s..2s],
independent for every VM. The client starts, sends an
HTTP request to the Web server for a hosted file of
50kB and exits. The concurrent process start/end
produces a considerable I/O activity.
Under these conditions, we vary the overall number of
client VMs on deserec1 and deserec4 host PCs and
measure the CPU consumption on the physical host.
The limit is reached for 27 VMs due to the frequent

94

process starts and stops on the concurrent VMs. In
Figure 6, we show CPU utilization on the host Linux
under the number of concurrent VMs. For scenario 3 the
increase is linear. Hence, in similar scenarios, it is
possible to maintain a ratio of about 20 VMs per
physical host.

Figure 6: CPU usage on one physical host (Y axis) with

different number of UML virtual machines (X axis)

Current VIRCONEL Limits

The usage of VN-UML and of UML technology imply
several limits. First, VIRCONEL is a Linux-only
environment, both for physical and virtual machines.
Second, if with VIRCONEL it is possible to use several
physical hosts, in practice this will reach management
limits. Also, the assignment of VMs to physical hosts is
done manually. However, the main limitation is within
the topological constraints: it is currently necessary to
specify a virtual router per physical host. For our work
in DESEREC, this is not a serious problem. But we may
consider this point in our further work.

CONCLUSION

VIRCONEL is a very easy to install and rather simple to
use emulation environment for experiments with IT
systems. Compared to the existing work, our main
contributions are the intrinsic support for multiple
physical hosts and integrated monitoring and control.
With VIRCONEL, it is interesting to combine real and
emulated entities. In that manner, resource-demanding
entities can be treated separately, while numerous small
entities can be easily cloned in the emulation.
In future we plan to improve the functionalities of
VIRCONEL, namely its monitoring capabilities, tying
these to the modeling. VIRCONEL can be freely (GPL)
downloaded from http://www.infres.enst.fr/~deserec.

ACKNOWLEDGMENTS

This work is supported in part by the EC ICT FP6
DESEREC (CN 026600, www.deserec.eu) project. The
authors are thankful to the anonymous reviewers whose
valuable remarks helped to improve this work.

REFERENCES

Barham P.; Dragovic, B.; Fraser, K.;, Hand, S.; Harris, T.; Ho,
A.; Neugebauer, R.; Pratt, I.; Warfield A. “Xen and the

Art of Virtualization”, in proc. ACM HotNets-I, ACM
Press, 2003, pp. 59-64.

Bavier, A; Feamster, N.; Huang, M.; Peterson, L.; and
Rexford, J. “In VINI Veritas: Realistic and Controlled
Network Experimentation”, in proc. ACM SIGCOMM
2006, Pisa, Italy.

Bellard, F. “Qemu, a Fast and Portable Dynamic Translator”,
in proc. FREENIX Track of USENIX 2005 Annual
Technical Conference, pp. 41-46.

Dike, J. “User Mode Linux”, Prentice-Hall, April 2006.
Galan, F.; Fernandez, D.; Ruiz, J.; Walid, O.; de Miguel, T.

“Use of Virtualization Tools in Computer Network
Laboratories”, in proc. 5th IEEE ITHET, June 2004.

Jiang, X.; Xu, D.. “vBET: a VM-Based Emulation Testbed”,
in proc. ACM SIGCOMM 2003, Karlsruhe, Germany.

Loddo, J.-V.; Saiu, L. “Status Report: Marionnet. How to
implement a Virtual Network Laboratory in Six Months
and Be Happy”, in proc. ACM ML’07, Freiburg,
Germany, October, 2007.

Nanda, S.; Chiueh, T.. “A Survey on Virtualization
Technologies,” the Research Proficiency Report, Stony
Brook, ECSL-TR-179, February 2005.

Nemesio, S. C.; de las Heras Quiros, P.; Barbero, E. M. C.;
Gonzalez, J. C. “Early Experiences with NetGUI
Laboratories”, SIIE’06, Leon, Spain, October 2006.

Padala, P.; Zhu, X.; Wang, Z.; Singhal S.; Shin, K. G.
“Performance Evaluation of Virtualization Technologies
for Server Consolidation”, HP Laboratories Technical
Report, April 2007 (available online).

Pawlikowski K.; Jeong, H.-D. J. and Lee, J-S. R. “On
Credibility of Simulation Studies Of Telecommunication
Networks”, IEEE Communications Magazine, January
2002, pp. 132-139.

Ruth, Paul; Jiang, Xuxian; Xu, Dongyan; Goasguen,
Sebastien. “Virtual Distributed Environments in a Shared
Infrastructure”, IEEE Computer, May 2005, pp. 63-69.

AUTHOR BIOGRAPHIES

YACINE BENCHAÏB holds a Master in Computer
Science from the Université d’Amiens,
France. In 2007, he joined the
networking and computer science
department of TELECOM ParisTech
(ENST), where he currently works as
research engineer. His research work
includes virtualization and network

security. Contact him under benchaib@enst.fr.

ARTUR HECKER holds a diploma in Computer

Science (Dipl.inform.) from the
University of Karlsruhe (TH),
Germany and a PhD degree in
Computer Science and Networking
from the ENST, France. He worked
as CTO of Wavestorm SAS, which he

co-founded in 2003. Since 2006, he is Associate
Professor at the INFRES department at the ENST. His
present research interests are wireless access security,
autonomous networking and security assurance of
complex systems. Dr. Hecker is actively involved in
several IST FP6 and EUREKA CELTIC research
activities. Contact him under hecker@enst.fr.

95

96

Resource Allocation, Sharing and
Management in HPC Systems

97

98

Resource Sharing Usage Aware Resource Selection Policies for Backfilling Strategies

F. Guim 1, J. Corbalan 2 and J. Labarta 3

Barcelona Supercompuning Center

Jordi Girona 13, Barcelona, Spain
1francesc.guim@bsc.es

2julita.corbalan@bsc.es 3jesus.labarta@bsc.es

KEYWORDS

Resource Selection Policies, Resource Sharing Consid-

eration, Backfilling, Job Scheduling

1 ABSTRACT

Job scheduling policies for HPC centers have been ex-

tensively studied in the last few years, specially backfill-

ing based policies. Almost all of these studies have been

done using simulation tools. All the existent simulators

use the runtime (either estimated or real) provided in the

workload as a basis of their simulations. In our previous

work we analyzed the impact on system performance of

considering the resource sharing of running jobs includ-

ing a new resource model in the Alvio simulator.

In this paper we present two new Resource Selection

Policies that have been designed using the conclusions

reached in our preliminary work. First, the Find Less

Consume Distribution that attempts to minimize the job

runtime penalty that an allocated job will experience.

Based on the utilization status of the shared resources

in current scheduling outcome and job resource require-

ments, the LessConsume policy allocates each job pro-

cess to the free allocations in which the job is expected

to experience the lowest penalties. Second, we have also

described the Find Less Consume Threshold Distribu-

tion selection policy which finds an allocation for the job

that satisfies the condition that the estimated job runtime

penalty factor is lower than a given value Threshold.

2 INTRODUCTION

Several works focused on analyzing job scheduling poli-

cies have been presented in the last decades. The goal

was to evaluate the performance of these policies with

specific workloads in HPC centers. A special effort

has been devoted to evaluating backfilling-based (Chi-

ang et al. (2002)Tsafrir et al. (2005)) policies because

they have demonstrated an ability to reach the best per-

formance results (i.e: Feitelson et al. (2004) or Talby and

Feitelson (1999)). Almost all of these studies have been

done using simulation tools. To the best of our knowl-

edge, all the existent simulators use the runtime (either

estimated or real) provided in the workload as a basis of

their simulations. However, the runtime of a job depends

on runtime issues such as the specific resource selection

policy used or the resource jobs requirements.

In Guim et al. (2007) we evaluated the impact of con-

sidering the penalty introduced in the job runtime due to

resource sharing (such as the memory bandwidth) in sys-

tem performance metrics, such as the average bounded

slowdown or the average wait time, in the backfilling

policies in cluster architectures. To achieve this, we de-

veloped a job scheduler simulator (Alvio simulator) that,

in addition to traditional features, implements a job run-

time model and resource model that try to estimate the

penalty introduced in the job runtime when sharing re-

sources. In this work we have only considered in the

model the penalty introduced when sharing the memory

bandwidth of a computational node.

Results showed a clear impact of system performance

metrics such as the average bounded slowdown or the av-

erage wait time. Furthermore, other interesting collateral

effects such as a significant increment in the number of

killed jobs appeared. Moreover the impact on these per-

formance metrics was not only quantitative.

In this paper we describe two new resource selection

policies that are designed to minimize the saturation of

shared resources. The first one, the Find Less Consume

Allocation (henceforth referred to as LessConsume) at-

tempts to minimize the job runtime penalty that an al-

located job will experience. It is based on the utiliza-

tion status of shared resources in the current scheduling

outcome and the job resource requirements. The sec-

ond once, the Find Less Consume Threshold Distribution

(henceforth referred to as LessConsumeThreshold) , finds

an allocation for the job that satisfies the condition that

the estimated job runtime penalty factor is lower than a

given value Threshold. This resource selection policy has

been designed to provide a more sophisticated interface

between the local resource manager and the local sched-

uler in order to find the most appropriate allocation for a

given job.

The rest of the paper is organized as follows: section

3 briefly introduce the resource and runtime models that

we proposed; next, the two resource selection policies we

propose are described; in section 6 we present their eval-

uation; and finally in section 7 we present the conclusions

of this work.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

99

3 MODELING RUNTIME PENALTY IN ALVIO

In this section we provide a brief characterization for the

runtime model that we designed for evaluate the resource

sharing in the Alvio simulator. In Guim et al. (2007) we

present a detailed description of the model and its evalu-

ation.

3.1 The Job Scheduling Policy

The job scheduling policy uses as input a set of job

queues and the information provided by the Local Re-

source Manager (LRM) that implements a Resource Se-

lection Policy (RSP). It is responsible to decide which of

the jobs that are actually witting to be executed have to

be allocated to the free resources. To do this, consider-

ing the amount of free resources it selects the jobs that

can run and it requires to the LRM to allocate the job

processes.

3.2 The Resource Selection Policy

The Resource Selection Policy, given a set of free pro-

cessors and a job α with a set of requirements, decides to

which processors the job will be allocated. To carry out

this selection, the RSP uses the Reservation Table (RT).

The RT represents the status of the system at a given mo-

ment and is linked to the architecture. The reservation

table is a bi dimensional table where the X axes represent

the time and the Y axes represent the different processors

and nodes of the architecture. It has the running jobs al-

located to the different processors during the time. One

allocation is composed of a set of buckets1 that indicate

that a given job α is using the processors {p0, .., pk} from

start time until end time.

An allocation is defined by: allocation{α} =
{

[t0, t1] ,P =
{

p
{g,nh}

, ..p
{s,nt}

}}

and indicates that the

job α is allocated to the processors P from the time t0
until t1. The allocations of the same processors must sat-

isfy that they are not overlapped during the time.

3.3 Modeling the conflicts

The model that we have presented in the previous section

has some properties that allows us to simulate the behav-

ior of a computational center with more details. Differ-

ent resource selection policies can be modeled. Thanks

to the Reservation Table, it knows at each moment which

processors are used and which are free.

Using the resource requirements for all the allocated

jobs, the resource usage for the different resources avail-

able on the system is computed. Thus, using the Reserva-

tion Table, we are able to compute, at any point of time,

the amount of resources that are being requested in each

node.

1The b(i,ti0
,ti1

) bucket is defined as the interval of time [tx, ty] associ-

ated to the processor pi

In this extended model, when a job α is allocated dur-

ing the interval of time [tx, ty] to the reservation table to

the processors p1, .., pk that belong to the nodes n1, ..,n j,

we check if any of the resources that belong to each node

is overloaded during any part of the interval. In the affir-

mative case a runtime penalty will be added to the jobs

that belong to the overloaded subintervals. To model

this properties we defined the Shared Shadows and the

penalty function associated to it.

The Shared Windows

A Shared Window is an interval of time [tx, ty] associated

to the node n where all the processors of the node sat-

isfy the condition that: either no process is allocated to

the processor, or the given interval is fully included in a

process that is running in the processor.

The penalty function

This function is used to compute the penalty that is asso-

ciated with all the jobs included to a given Shared Win-

dow due to resources overload. The input parameters for

the function are:

• The interval associated to the Shared Window [tx, ty].

• The jobs associated to the Shared

Window{α0, ..,αn}

• The node n associated to the Shared Window with

its physical resources capacity.

The function used in this model is defined as 2:

∀res ∈ resources(n) → demandres =

{α0,..,αn}

∑
α

rα,res (1)

Penalty =

res

∑
resources(n)

(
max(demandres,capacityres)

capacityres

−1)

(2)

PenlizedTime = (ty − tx)∗Penalty (3)

First for each resource in the node the resource usage

for all the jobs is computed. Second, the penalty for each

resource consumption is computed. This is a linear func-

tion that depends on the overload of the used resource.

Thus if the amount of required resource is lower than the

capacity the penalty will be zero, otherwise the penalty

added is proportional to the fraction of demand and avail-

ability. Finally, the penalized time is computed by multi-

plying the length of the Shared Window and the penalty.

This penalized time is the amount of time that will be

added the node penalized time to all the jobs that belong

to the Window. This model has been designed for the

2Note that all the penalty, resources, resource demands and capac-

ities shown in the formula refer to the node n and the interval of time

[tx, ty]. Thereby, they are not specified in the formula

100

memory bandwidth shared resource and can be applica-

ble to shared resources that behave similar. However, for

other typology of shared resources, such as the network

bandwidth, this model is not applicable. Future work will

be focused on modelizing the penalty model for the rest

of shared resources of the HPC local scenarios that can

impact in the performance of the system.

For compute the penalized time that is finally associ-

ated to all the jobs that are running: first, the shared win-

dows for all the nodes and the penalized times associated

with each of them are computed; second the penalties of

each job associated with each node are computed adding

the penalties associated with all the windows where the

job runtime is included.

4 THE LESSCONSUME RESOURCE SELEC-

TION POLICY

The core algorithm of this selection policy is similar to

the the First Fit resource selection policy. This last one

selects the first α
{CPUS,p} where the job can be allocated.

However, in contrast to this previous algorithm, the Less-

Consume policy, once the base allocation is found, the

algorithm computes the penalties associated with the dif-

ferent processes that would be allocated in the reserva-

tion. Thereafter it attempts to improve the allocation by

replacing the selected buckets (used for create this initial

allocation) that would have higher penalties with buckets

that can be also selected, but that have not been evaluated.

The LessConsume algorithm will iterate until the rest of

the buckets have been evaluated or the penalty factor as-

sociated to the job is 1 (no penalty). 3

The LessConsume policy, given a required start time

treq and given the job α with a requested runtime

of α
{RunTime,rt} and number of requested processors

α
{CPUS,p}, finds in the reservation table the α

{CPUS,p}

processor allocation that tries to minimize the job run-

time penalties due to resource sharing saturation closest

to the treq. To do this, the selection policy follows these

steps:

1. For each processor pi in the reservation table, the

resource selection policy selects the interval of time

[txi
, tyi

] that is closest to the treq that satisfies it: no

process is allocated to the processor during the inter-

val and its length is equal or greater to α
{RunTime,rt}

. All the buckets associated to the selected intervals

of time are added to the set Buckets where they are

strictly ordered by the interval start time.

2. Given all the different buckets
{

b(1,t10
,t11

), ..,b(N,tN0
,tN1

)

}

associated with the

reservation table that are included in the set Buck-

ets, the resource selection policy will select the first

α
{CPUS,p} buckets that satisfy the condition that

3The penalty factor is computed:

PenaltyFactorα =
α
{RunTime,rt}+α

{PenalizedRunTime,prt}

α
{RunTime,rt}

their interval of time shares at least the runtime

required by the job.

3. In the case that in step 2 the number of buckets that

satisfied the required conditions was lower than the

required processors, this implies that there were not

enough buckets which shared the required amount

of time. In these situations, the first bucket b(i,ti0 ,ti1)

with start time greater than to treq is selected, the treq

is updated as treq = ti0 and the steps 1, 2 and 3 are

iterated again.

At this point, from the buckets obtained in the first

step we will have three different subsets:

• The buckets Πdisc =

{

b(k,tk0
,tk1

), ..,b(l,tl0
,tl1

)

}

that have already been selected since they can-

not form part of a valid allocation for the spec-

ified requirements.

• The buckets Πsel =

{

b(m,tm0
,tm1

), ..,b(n,tn0
,tn1

)

}

that have been selected for the base allocation

and that conform to a valid allocation which

satisfy the requirements for the job. In the

case that the penalties of this allocation can-

not be improved by a valid allocation, this set

of buckets will be used.

• The buckets ΠtoCh =
{

b(o,to0
,to1

), ..,b(p,tp0
,tp1

)

}

that have not

already been evaluated. These buckets will

be used to try to improve the base allocation.

Thus, the LessConsume policy will try to find

out if any of these buckets could replace any

of the already selected buckets reducing the

estimated penalty factor of the job.

4. For each of the buckets in the set of the selected

buckets Πsel , the algorithm checks the estimated

penalty that a process of the given job would achieve

if it were allocated to the given bucket. Each of the

selected buckets has an associated penalty factor. If

all the buckets have an associated penalty of 1 the al-

location definition based on these buckets is defined

and returned. Otherwise, the last valid allocation is

initialized based on this set of buckets and the selec-

tion process goes ahead.

5. For each bucket b(r,tr0
,tr1

) in the set of buckets ΠtoCh:

(a) If the number of buckets in the set Πsel is lower

than the number of requested processors, the

bucket is added to the set and the next iteration

continues.

(b) Similar to the previous step, the algorithm

evaluates the penalty penaltyr that a process

of the job would have if this bucket were used

to allocate it.

(c) The bucket bMax(p,tp0
,tp1

) of the set Πsel with

the highest penalty penaltyp is selected.

101

(d) In case that the penalty that penaltyr is lower

than the penalty penaltyp, on one hand the

bucket b(r,tr0
,tr1

) is added to the set Πsel and re-

moved from the set ΠtoCh. On the other hand,

the bucket bMax(p,tp0
,tp1

) is removed from the

Πsel and added to the set Πdisc. Note that at

this point the inserted bucket may not share the

interval required to allocate the job to the rest

of the buckets of the set Πsel .

i. The buckets of the set Πsel that do not

share the required time are removed from

this set and added to the Πdisc.

ii. If the number of buckets of the Πsel it

is the number of requested processors the

last valid allocation is built based on this

set. If the current penalty of all the buck-

ets is 1, the current set of buckets is re-

turned as the allocation. Otherwise the

algorithm goes ahead with the next iter-

ation to evaluate the next bucket of the set

ΠtoCh.

6. The last valid allocation is returned.

As an example, suppose that the current scheduling

outcome is the one presented in the figure 1 and that an

allocation has to be found for a job with requested pro-

cessors α
{CPUS,3} and runtime α

{RunTime,20secs}.

1. Firtsly, in the step 1 the LessConsume

algorithm would define the set ΠtoCh =

{b1−3,b7,b17,b4−6,b11−12,b14−16,b13,b18}.

2. In the step 2 the three buckets 1, 2 and 3 would be

selected. Note that all of them satisfy the condition

that they all share an interval of time greater than

the required runtime.

3. In the step 3 a valid allocation is created with the

buckets selected in the previous step. Thus, the set

of buckets Πsel is composed of Πsel = {b1,b2,b3}.

Note that these buckets are removed from the set

ΠtoCh.

4. In the step 4 the penalty associated with each of the

buckets is computed. In the example, due to the

resource saturation, the three buckets have an as-

sociated penalty of penalty1,penalty2 and penalty3

greater than one (marked with a gray area in the fig-

ure 2). With these buckets the basic allocation is

created because they share the required amount of

time.

5. In step 5 the algorithm has to evaluate whether the

current allocation can be improved by replacing any

of the buckets of {b1,b2,b3} by any of the buckets

that have not been evaluated ΠtoCh.

(a) As the current number of buckets in Πsel is

equal to the requested processors the algo-

rithm continues the iteration.

(b) The bucket with the maximum penalty is se-

lected b1 (> 1).

(c) In the first iteration the bucket b7 is evalu-

ated. The penalty factor that processing the

job α would experience if it were allocated us-

ing this bucket would be penalty7 = 1.

(d) As the penalty penalty7 is lower than the

penalty1, on one hand the bucket b1 is re-

moved form the Πsel and inserted to Πdesc. On

the other hand the bucket b7 is removed from

the ΠtoCh and inserted in Πsel . The reservation

table at this point is shown in figure 3. Since

not all the penalties of the selected buckets

are 1 the algorithm goes ahead with the next

bucket.

(e) As in the first iteration, since the current num-

ber of buckets in Πsel is equal to the requested

processors the algorithm continues the itera-

tion.

(f) The bucket with the maximum penalty is se-

lected b2.

(g) In the second iteration, bucket b17 is evalu-

ated. The penalty factor that a process of the

job α would experience if it were allocated us-

ing this bucket would be penalty17 = 1.

(h) As the penalty penalty17 is lower than the

penalty2, on one hand the bucket b2 is re-

moved form the Πsel and inserted to Πdesc. On

the other hand the bucket b17 is removed from

the ΠtoCh and inserted in Πsel . The reservation

table at this point is shown in figure 4. Since

all the penalties of the selected buckets is 1, the

algorithm returns the allocation based on the

currently selected buckets, because they pro-

vide the minimum penalty.

Figure 1: Less Consume Example

In the previous example, the start time for the alloca-

tion computed using the LessConsume resource alloca-

tion policy is the same as would have been obtained by

using a First Fit resource selection policy. Thus, in the

102

Figure 2: Less Consume Example - General Step 1

Figure 3: Less Consume Example - General Step 2

previous example, the start time remained equal to the

First Fit RSP, and the penalty associated with the job has

been reduced. However, in some situations, the Less-

Consume policy may provide allocations with later start

times than those using First Fit. For instance, if in this

example the process allocated to the bucket b17 had ex-

perimented a penalty of 1.5 the LessConsume algorithm

would have iterated again looking for an allocation with

less penalty factor but later start time.

5 THE LESSCONSUME THRESHOLD RE-

SOURCE SELECTION POLICY

As we have shown in the example, in some situations this

policy not only minimizes the penalized factor of the al-

located jobs, but it also provides the same start times as

the first fit allocation policy, which in practice provides

the earliest possible allocation start time. However, in

many situations the allocation policy of the lower penalty

factor provides a start time that is substantially later than

that achieved by a FirstFit allocation. To avoid circum-

stances where the minimization of the penalty factor re-

sults in delays in the start time of scheduled jobs, we

have designed the LessConsumeThreshold RSP. This is a

Figure 4: Less Consume Example - General Step 3

parametrized selection policy which determines the max-

imum allowed penalty factor allocated to any given job.

This resource selection policy has been mainly de-

signed to be deployed in two different scenarios. In the

first case, the administrator of the local scenario speci-

fies in the configuration files the penalty factor of a given

allocated job. This factor could be empirically deter-

mined by an analytical study of the performance of the

system. In the second, more plausible, scenario, the local

scheduling policy is aware of how this parametrized RSP

behaves and how it can be used by different factors. In

this second case the scheduling policy can take advantage

of this parameter to decide whether a job should start in

the current time or whether it could achieve performance

benefits by delaying its start time. In the following sub-

section we describe a backfilling based resource selection

policy that uses the LessConsumeThreshold RSP to de-

cide which jobs should be backfilled and how to allocate

the jobs.

The main differences between the two policies is that

in the steps 4) and 5.d.2) if the number of buckets of the

set Πsel is the required processors for the job, and they

have an associated penalty factor lower or equal to the

specified Threshold, then the allocation will be defined

and returned based on the current set. Note, that in the

LessConsume policy the algorithm would iterate evalu-

ating the rest of the free buckets. On the other hand, note

that policy enforces that the job allocation penalty must

be lower than the provided threshold. Thus if in the step

6) of the algorithm an allocation is found but has a higher

penalty the treq will be updated as in the step 4) and the

process would be iterated again. Note that the LessCon-

sume would be stopped at this point due to it has a valid

allocation with the lowest penalty that could achieve by

optimizing the First First allocation.

EXPERIMENTS

In this paper we evaluate the effect of considering the

memory bandwidth usage when simulating the Shortest

Job Backfilled Firts policy under several workloads and

both LessConsume resource selection policies (the Less-

103

Center M. FF LC 1 1,15 1,25 1,5

CTC

H 8,8 8 7,6 7,8 7,9 8,1

M 4,8 3,8 3 3,5 4,0 3,9

L 0,9 0,7 0,5 0,7 0,6 0,8

SDSC

H 12 11 8,3 10 11 12

M 6,7 6,1 4,7 4,8 5,6 5,9

L 1,4 1,1 0,7 0,8 0,9 1,1

Table 1: Percentage of Penalized Runtime - 95th Per-

centile

Center M. FF LC 1 1,15 1,25 1,5

CTC

H 4,2 5,9 7,92 6,1 5,3 5,2

M 2,8 3,5 4,22 3,8 3,6 3,5

L 2,2 3,12 3,62 3,8 3,4 3,5

SDSC

H 99 110 128 115 109 106

M 55 68 74 72 71 68

L 37 45 57 52 42 42

Table 2: Bounded-Slowdown - 95th Percentile

ConsumeThreshold with the thresholds 1, 1,15, 1,25

and 1,5). Two different workloads from the Feitelson

workload archive have been used. For each of them

we have generated three different scenarios: with high

(HIGH), medium (MED), and low (LOW) percentage of

jobs with high memory demand.

5.1 Workloads

For the experiments we used the cleaned Tsafrir and Feit-

elson (2003) versions of the workloads SDSC Blue Hori-

zon (SDSC-BLUE) and Cornell Theory Center (CTC)

SP2. For the evaluation experiments explained in the

following section, we used the first 10000 jobs of each

workload. Based on these workload trace files, we gener-

ated three variations for each one with different memory

bandwidth pressure:

• HIGH: 80% of jobs have high memory bandwidth

demand, 10% with medium demand and 10% of low

demand.

• MED: 50% of jobs have high memory bandwidth

demand, 10% with medium demand and 40% of low

demand.

• LOW: 10% of jobs have high memory bandwidth

demand, 10% with medium demand and 80% of low

demand.

5.2 Architecture

For each of the workloads used in the experiments we de-

fined an architecture with nodes of four processors, 6000

MB/Second of memory bandwidth, 256 MB/Second of

Network bandwidth and 16 GB of memory. In addition

to the SWF Chapin et al. (1999) traces with the job defini-

tions we extended the standard workload format to spec-

ify the resource requirements for each of the jobs. Cur-

rently, for each job we can specify the average memory

bandwidth required (other attributes can be specified but

are not considered in this work). Based on our experi-

ence and the architecture configuration described above,

we defined that a low memory bandwidth demand con-

sumes 500 MB/Second per process; a medium memory

bandwidth demand consumes 1000 MB/Second per pro-

cess; and that a high memory bandwidth demand con-

sumes 2000 MB/Second per process.

6 EVALUATION

Table 2 present the 95th percentile of the bounded slow-

down for the CTC and SDSC centers for each of the

three workloads for the FirstFit, LessConsume and Less-

ConsumeThreshold resource selection policy. The last

one was evaluated with four different factors: 1, 1,15,

1,25 and 1,5. In both centers the LessConsume policy

performed better than the LessConsumeThreshold with a

factor of 1. One could expected that the LessConsume

should be equivalent to use the LessConsumeThreshold

with a threshold of 1. However, note that this affir-

mation would be incorrect. This is caused due to the

LessConsume policy at the step 6) of the presented al-

gorithm will always stop. The goal of this policy is to

optimize the First Fit allocation but without carry out a

deeper search of other possibilities. However, the Less-

ConsumeThreshold may look further in the future in the

case that the penalty is higher than the provided thresh-

old. Thereby, this last one is expected to provide higher

wait time values. On the other hand, as we had expected,

the bounded slowdown decreases while increasing the

factor of the LessConsumeThreshold policy. In general,

the ratio of increment of using a factor of 1 and a factor

of 1,5 is around a 20% in all the centers and workloads.

The performance of these two resource policies, com-

pared to the performance of the First Fit policy, shows

that LessConsume policies give an small increment in the

bounded slowdown. For instance, in the CTC high mem-

ory pressure workload the 95th percentile of the bounded

slowdown has increased from 4,2 in the First Fit to 5,94

in the LessConsume policy, or to 7,92 and 5,23 in the

LessConsumeThreshold with thresholds of 1 and 1,5 re-

spectively.

The 95th percentage of penalized runtime is presented

in the table 1. The penalized runtime clearly increases by

incrementing the threshold. For instance, the 95th Per-

centile of the percentage increases from 8,31 in the SDSC

and the high memory pressure workload with a factor of

1 until 11,64 with a factor of 1,5. The LessConsume,

different from to the two previously described variables,

shows similar values to the LessConsumeThreshold with

a factor of 1,5. This percentage of penalized runtime was

reduced with respect to the First Fit when using all the

104

Center M. FF LC 1 1,15 1,25 1,5

CTC

H 428 120 57 70 87 97

M 247 101 76 77 102 99

L 64 45 36 38 58 52

SDSC

H 475 105 87 130 127 130

M 255 89 76 79 103 145

L 51 34 22 27 33 41

Table 3: Number of Killed Jobs 95th Percentile

different factors in both centers.

Figure 5: BSLD versus Percentage of Penalized Runtime

- CTC Center

The number of killed jobs is the performance variable

that showed most improvement in all the memory pres-

sure workloads. The number of killed jobs is qualita-

tively reduced with the LessConsumeThreshold with a

factor of 1: for example with the high memory pressure

workload and the CTC center, the number of killed jobs

was reduced from 428 with the First Fit to 70. The other

threshold factors also showed clear improvements; the

number was halved. As to the LessConsume policy, the

number of killed jobs was reduced by a factor of 4 com-

pared to the First Fit and the high and medium memory

pressure workloads of both centers.

The LessConsume policy shows how the percentage

of penalized runtime and number of killed jobs can be

reduced in comparison to the First Fit and First Continu-

ous Fit, by using this policy with EASY backfilling. Fur-

thermore, the LessConsume threshold shows how, with

different thresholds, performance results can also be im-

proved. Relaxing the penalty factor results in better per-

formance of the system, and in an increase in the number

of killed jobs and the percentage of penalized runtime.

The LessConsume policy shows similar performance re-

sults as the LessConsumeThreshold with factors of 1,25

and 1,5.

Figures 6 and 7 present the BSLD of the LessCon-

sume policies against the percentage of penalized run-

time of the jobs and the number of killed jobs. The goal

of these figures is to show the chance that the LessCon-

sumeThreshold and LessConsume policies have to im-

Figure 6: BSLD versus Killed Jobs - CTC Center

prove the performance of the system while achieving an

acceptable level of performance. As can be observed in

figures 6 and 5 a good balance is achieved in the CTC

center using the threshold of 1,15 where both the num-

ber of Killed Jobs and the percentage of penalized run-

time converge are in acceptable values. In the case of

the SDSC center, this point of convergence is not as

evident as the CTC center. Considering the tendency

of the bounded slowdown, it seems that the LessCon-

sumeThreshold with a factor of 1 is an appropriate con-

figuration for this center, due to the fact that the penalized

runtime and the number of killed jobs presents the lowest

values, and the bounded slowdown shows values that are

very close to the factors of 1,15 and 1,25.

Figure 7: BSLD versus Killed Jobs - SDSC Center

7 Conclusions

In this paper we have shown how the performance of the

system can be improved by considering resource sharing

usage and job resource requirements by using the two

LessConsume resource selection policies that consider

the resource sharing when the jobs are allocated.

We have described the Find Less Consume Distribu-

tion that attempts to minimize the job runtime penalty

that an allocated job will experience. Based on the uti-

lization status of the shared resources in current schedul-

ing outcome and job resource requirements, the Less-

Consume policy allocates each job process to the free al-

105

locations in which the job is expected to experience the

lowest penalties. We have also described the Find Less

Consume Threshold Distribution selection policy which

finds an allocation for the job that satisfies the condition

that the estimated job runtime penalty factor is lower than

a given value Threshold. This resource selection policy

has been designed to provide a more sophisticated inter-

face between the local resource manager and the local

scheduler in order to find the most appropriate allocation

for a given job. Thus, this RSP can be used by the sched-

uler to find an allocation for a given job in an iterative

process until the most appropriate allocation is found.

We have evaluated the impact of using the LessCon-

sume and LessConsumeThreshold (Thresholds 1, 1.15,

1.25 and 1.5) with the Shortest Job Backfilled first. In

this evaluation, we have used the workloads described

in the previous chapter where we evaluated the impact

of memory bandwidth sharing on the performance of the

system. Both resource allocation policies show how the

performance of the system can be improved by consid-

ering where the jobs are finally allocated. The bounded

slowdown of both policies show slightly higher values

than those achieved by a First Fit resource allocation pol-

icy. However, they show a very important improvement

in the percentage of penalized runtimes of jobs, and more

importantly, in the number of killed jobs, showing a very

good balance in the increment of the BSLD. Both have

reduced by four or even six times the number of killed

jobs in all the evaluated workloads. Note that each of

the indicated thresholds depends on the center. In the

SDSC the a threshold of 1 or 1.15 shows a good balance

of performance (BSDL) and number of killed jobs and

percentage of penalized runtime, and in the CTC center

the appropriate threshold is 1.5.

ACKNOWLEDGEMENTS

This paper has been supported by the Spanish

Ministry of Science and Education under contract

TIN200760625C0201, the under grant BES-2005-7919

and the IBM/BSC MareIncognito project.

REFERENCES

Chapin, S. J., Cirne, W., Feitelson, D. G., Jones, J. P.,

Leutenegger, S. T., Schwiegelshohn, U., Smith, W.,

and Talby, D. (1999). Benchmarks and standards for

the evaluation of parallel job schedulers. Job Schedul-

ing Strategies for Parallel Processing, vol 1659:pp.

66–89.

Chiang, S.-H., Arpaci-Dusseau, A. C., and Vernon, M. K.

(2002). The impact of more accurate requested run-

times on production job scheduling performance. 8th

International Workshop on Job Scheduling Strategies

for Parallel Processing, Vol. 2537:103 – 127.

Feitelson, D. G., Rudolph, L., and Schwiegelshohn, U.

(2004). Parallel job scheduling - a status report. Job

Scheduling Strategies for Parallel Processing: 10th In-

ternational Workshop, JSSPP 2004, 3277 / 2005:9.

Guim, F., Corbalan, J., and Labarta, J. (2007). Modeling

the impact of resource sharing in backfilling policies

using the alvio simulator. MASCOTS.

Talby, D. and Feitelson, D. (1999). Supporting priorities

and improving utilization of the ibm sp scheduler us-

ing slack-based backfilling. Parallel Processing Sym-

posium, pages pp. 513–517.

Tsafrir, D., Etsion, Y., and Feitelson, D. G. (2005). Back-

filling using runtime predictions rather than user esti-

mates. Technical Report 2005-5, School of Computer

Science and Engineering, The Hebrew University of

Jerusalem.

Tsafrir, D. and Feitelson, D. G. (2003). Workload

flurries. Technical report, School of Computer Sci-

ence and Engineering and The Hebrew University of

Jerusalem.

106

ENERGY EFFICIENT REAL TIME SCHEDULING OF DEPENDENT TASKS
SHARING RESOURCES

Abdullah M. Elewi, Medhat H. A. Awadalla, and Mohamed I. Eladawy

Computer Engineering Department
Helwan University
11421,Cairo, Egypt

E-mail:{ abdullahelewi@gmail.com, awadalla_medhat@yahoo.co.uk }

KEYWORDS
Energy efficient scheduling, dynamic voltage scaling,
real time, embedded systems, dependent tasks.

ABSTRACT

In the design of embedded systems, it is very important
to reduce energy consumption and thus prolong battery
life in everywhere existed battery-powered embedded
systems. Dynamic voltage scaling (DVS) processors,
which support many operating voltages and speeds, can
efficiently reduce energy consumption by making
appropriate decisions on the processor speed/voltage
during the scheduling of real time tasks. This paper
addresses the problem of energy efficient real time task
scheduling where the tasks are dependent due to
exclusive access shared resources. Furthermore, the
paper proposes enhancements over the existing dual
speed switching algorithm (DSA) where the proposed
algorithm achieves more energy saving and has the
capability to function with both SRP and DPCP
protocols.

INTRODUCTION

Recently, embedded systems are seen in everywhere
especially the portable ones such as cell phones, pocket
PCs, multimedia devices, PDAs (personal digital
assistants), wireless sensors, and medical implants,
which all are battery powered. As the applications on
these devices are being complicated, the energy
consumption is also effectively increasing. So,
minimizing energy consumption is a critical issue in the
design of embedded systems, and techniques that reduce
energy consumption have been studied at different
levels in details (Chen and Kuo 2007).
Dynamic Voltage Scaling (DVS) is a new technology
used to reduce power consumption in real time
embedded systems, where the power consumption has
two essential components: dynamic and static power.
The dynamic power consumption, which is the main
component (Gruian 2002), has a quadratic dependency
on supply voltage and can be represented as:

Pd = C ef . V2
dd . F (1)

Where Cef is the switched capacitance, Vdd is the supply
voltage, and F is the processor clock frequency

(sometimes referred as speed S) which can be expressed
in terms of supply voltage Vdd and threshold voltage Vt
as following:

F = k . (Vdd – Vt)2 / Vdd (2)

The static power consumption is primarily occurred due
to leakage currents (Ileak) and the static (leakage) power
(Pleak) can be expressed as:

Pleak = Ileak . Vdd (3)

When the processor is idle, a major portion of the power
consumption comes from the leakage. Currently the
leakage power significantly increases with the new
generations of processors, and much work has been
done to address this problem (De and Borkar 1999,
Butts and Sohi 2000).
So, lowering supply voltage is one of the most effective
ways to reduce both dynamic and leakage power
consumption. As a result, it reduces energy
consumption where the energy consumption is the
power dissipated over time:

Energy = ∫ Power dt (4)

However, DVS aims at reducing energy consumption
by reducing the supply-voltage/speed of the processor
provided that timing constraints are guaranteed. In other
words, DVS makes use of the fact that there is no
benefit of finishing a real time job earlier than its
deadline.
A good review has been introduced in (Chen and Kuo
2007) about types and current trends of energy efficient
real time scheduling techniques on dynamic voltage
scaling (DVS) platforms.
DVS processors have two types: ideal and non-ideal.
An ideal processor can operate at any speed in the range
between its minimum available speed and maximum
available speed. A non-ideal processor has only discrete
speeds with negligible or non-negligible speed
transition overheads.
Well-known examples of DVS processors are Intel
StrongARM SA1100 processor which supports 12
voltage/speed levels, the Intel XScale which supports 4
voltage/speed levels, the Transmeta TM5400 processor
which supports 6 voltage/speed levels, and the 1.6 GHz

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

107

Intel Pentium M processor which supports 6
voltage/speed levels.

RELATED WORK

During the last decade much work has been done in the
field of energy efficient real time scheduling, but the
authors of (Weiser et al. 1994) are considered the
pioneers in this field, where they expected the amazing
DVS technique, then Yao et al. (Yao et al. 1995) have
proposed an optimal static (offline) scheduling
algorithm by considering a set of aperiodic jobs on an
ideal processor. Furthermore, many dynamic and static
scheduling algorithms (Hu and Quan 2007, Pillai and
Shin 2007, Shin and Kim 2004) have been proposed
and applied on uniprocessor systems. Also
multiprocessor and distributed systems have been
considered (Andrei et al. 2007, Mishra et al. 2003).
However, the problem of DVS with dependent tasks
because of shared resources has been first addressed in
(Zhang and Chanson 2002, Jejurikar and Gupta 2002a).
Jejurikar and Gupta (Jejurikar and Gupta 2002a) have
proposed two algorithms for scheduling fixed priority
(RM scheduler) tasks using priority ceiling protocol
(PCP) described in (Sha et al. 1990) as resource access
protocol. They have computed static slowdown factors
which guarantee that all tasks will meet their deadlines
taking into account the blocking time caused by the task
synchronization to exclusive access shared resources. In
their first algorithm, critical section maximum speed
(CSMS), they have let the critical sections (sections deal
with shared resources) to be executed at maximum
processor speed and they have computed slowdown
factors for executing non critical sections. The second
algorithm, constant static slowdown (CSS), computes a
uniform slowdown factor for all tasks and for all
sections (critical and non-critical) saving speed switches
occurred in the first algorithm (CSMS).
Then the same authors (Jejurikar and Gupta 2002b)
have extended their previous algorithms (CSMS and
CSS) to handle dynamic priority (EDF scheduler) tasks
using dynamic priority ceiling protocol (DPCP) shown
in (Chen and Lin 1990). The dynamic priority ceiling
protocol is an extension of original priority ceiling
protocol to deal with dynamic priority tasks (EDF
scheduling).
Jejurikar and Gupta (Jejurikar and Gupta 2006) have
also proposed a generic algorithm that works with both
EDF and RM schedulers, and they have introduced the
concept of frequency inheritance in their algorithm.
Zhang and Chanson (Zhang and Chanson 2002) have
worked on the same problem, and proposed three
algorithms for energy efficient scheduling of dependent
tasks with shared resources, but they made use of stack
resource policy (SRP) proposed by Baker (Baker 1991)
as resource access protocol. The SRP can handle static
and dynamic priority tasks (EDF and RM schedulers),
reduces context switches over PCPs, and is easy
implemented.

The first algorithm is the same as CSS for EDF
scheduler proposed in (Jejurikar and Gupta 2002b)
because they all have derived the static slowdown factor
directly from the EDF schedulability test with blocking
time:

(5)

Where C is the computation time (worst case execution
time WCET), D is the task relative deadline, and B is
the blocking time that can be defined as the maximum
time within which a high priority task can be blocked by
a low priority task due to mutual exclusion shared
resource.
The second algorithm, which is the interest of this
paper, is the dual speed switching algorithm. The main
concept of this algorithm is using two speeds (H, L) and
switching between them. Initially the algorithm operates
at the low speed L and switches to the high speed H as
soon as a blocking occurs.
The last algorithm is the dual speed dynamic (online)
reclaiming algorithm which dynamically collects the
residue time from early completed jobs and redistributes
it to the other pending jobs for further reducing of the
processor speed and achieving more energy saving.

SYSTEM MODEL

Task Model
In this paper, real-time periodic tasks are considered. A
periodic task is a sequence of jobs released at constant
intervals (called the period). Each task τ is characterized
by the following parameters (Cottet et al. 2002):
• The release time (r): the time when the task first

released.
• The period (T): the constant interval between jobs.
• The relative deadline (D): the maximum acceptable

delay for task processing.
• The computation time (C): the worst case execution

time (WCET) of any job.
• The blocking time (B): the maximum time a task

can be blocked by another lower priority task.
In this paper we consider well formed tasks that satisfy
the condition: 0 ≤ C ≤ D ≤ T.
A 3-tuple τ ={C, D, T} represents each task. The
relative deadline is assumed to be the same as the period
in all illustrative examples.

Processor Model

The tasks are scheduled on a single DVS processor that
can operate at any speed/voltage in its range (ideal). Of
course, practical DVS processors supports discrete
speed/voltage levels (non ideal). So, the desired
speed/voltage of the ideal DVS processor is rounded to
the nearest higher speed/voltage level the practical DVS
processor supports.

108

The time required to change the processor voltage/speed
is very small compared to that required to complete a
task. It is assumed that the voltage change overhead,
similar to the context switch overhead, is incorporated
in the task computation time.
In this paper, it is assumed that the processor’s
maximum speed is 1 and all other speeds are normalized
with respect to the maximum speed.

DUAL SPEED SWITCHING ALGORITHM

Dual speed algorithm (DSA) proposed in (Zhang and
Chanson 2002) is a blocking aware scheduling
algorithm with non-preemptible critical sections using
SRP as resource access protocol.
The authors have noted that the static speed in the
constant static slowdown (CSS) algorithm is higher than
the required, and CSS consumes a lot of energy, but it is
extremely effective when a task is blocked to avoid
deadline miss. So, if it is possible to switch between two
speeds: high H and low L (where L ≤ H ≤ 1), the
algorithm will be more energy efficient, and this is the
concept behind DSA.
The high speed is the same as the static speed in CSS,
and it is the speed that satisfies all tasks to meet their
deadlines when a blocking occurs. The high speed is
derived directly from the EDF schedulability test with
shared resources and SRP protocol:

(6)

The low speed is the optimal lowest speed with which
all tasks can be scheduled without missing any deadline
(no blocking occurs), and it is derived from the plain
EDF schedulability test without shared resources:

(7)

Initially, DSA starts with the low speed L, then it
switches to the high speed H as soon as a task is
blocked.

An Illustrative Example

An example presented in (Jejurikar and Gupta 2006) is
implemented to illustrate the dual speed algorithm and
the contribution of this paper. A hard real time system
with two tasks is considered as following:

τ1= {2, 5, 5}, τ2= {4, 40, 40}

The arrival times and critical sections of the two tasks
within the least common multiple (LCM) of periods are
shown in Figure 1(a). τ1 may be blocked by the critical
section of the lower priority τ2, so the blocking time of
τ1 is the length of τ2's critical section, i.e. B1=3, and in
the same manner B2=0 because there are no lower
priority tasks to block τ2.
According to (6) the static (high) speed is H= max
(2/5+3/5, 2/5+4/40) =1 which is used to schedule the

tasks in CSS algorithm as shown in Figure 1(b), then
using (7) let us calculate the low speed L=
2/5+4/40=0.5 to use it with the high (static) speed
calculated earlier in the scheduling of the two tasks
(τ1,τ2) using DSA as shown in Figure 1(c).
The rectangles represent the processing of tasks, where
the vertical dimension represents the processor speed,
and the horizontal dimension represents the execution
time elapsed for processing tasks according to their
WCETs and the processor speed. It is clearly noted that
the area of the rectangles that represent the jobs of the
same task is the same because these jobs always take
the same number of execution cycles which equals to
processor speed multiplied by elapsed time.

1 6 11 16 21 26 31 36 41

T1

T2

Processor idle
Task blocked Task blocked

H speed interval H speed interval

T1

T2

Non critical section

Critical section

T1

T2

T1{2,5,5} , B1=3
T2{4,40,40} , B2=0

Processor idle

(a)

(b)

(c)

46

Task release

Task deadline

Figure 1: (a) Task Set Description: Arrival Times,
Computation Times, and Critical Sections. (b) CSS.

(c) DSA.

It is clear in this example that the CSS does not save
any energy because it has used the maximum speed.
Due to such situations DSA has been developed to
achieve more energy savings.

Enhanced Dual Speed Algorithm

It is obvious in Figure 1 that DSA has used the low
speed just for one second, and then it has switched to
the high speed and continued until the blocking task
(the low priority task) deadline which is mostly further
than the blocked task (the high priority task) deadline.
This highlights the key idea of the first contribution of
the enhanced DSA (EDSA) proposed in this paper to
end the high speed interval by the blocked task deadline
which is mostly earlier.
To test the performance of EDSA, the previous example
has been performed using DSA and EDSA. As shown
in Figure2, the processor idle time is reduced from 49%
in DSA to 12.5% in EDSA which reflects the
improvements achieved in the system performance.

109

1 6 11 16 21 26 31 36 41

T1

T2

Processor idle
Task blocked Task blocked

H speed interval H speed interval

T1

T2

Processor idle
Task blocked Task blocked

H speed
interval

H speed
interval

Non critical section

Critical section

T1

T2

T1{2,5,5} , B1=3
T2{4,40,40} , B2=0

(a)

(b)

(c)

46

Figure 2: (a) Task Set Description. (b) DSA. (c) EDSA.

To validate the effect of EDSA, Another hard real time
system with three tasks is addressed:

τ1={1 ,4 ,4 }, τ2={2 ,8 ,8 }, τ3={3 ,10 ,10 }.

The arrival times and critical sections of the three tasks
within the least common multiple (LCM) of periods are
shown in Figure 3(a). τ1 may be blocked by the critical
section of the lower priority τ2 or τ3, so the blocking
time of τ1 is the length of longest critical section in the
worst case, i.e. B1= max (1.5, 2.5) =2.5, and in the same
manner B2=2.5 because τ2 can be blocked by τ3, while
B3=0 because there are no lower priority tasks to block
τ3.
According to (6, 7), the high speed H=max (1/4+2.5/4,
1/4+2/8+2.5/8, 1/4+2/8+3/10) =0.875, and the low
speed L =1/4+2/8+3/10=0.8.

T1

T2

Task blocked

T1

T2

Non critical section

Critical section

T1

T2

T1{1,4,4} , B1=2.5
T2{2,8,8} , B2=2.5
T3{3,10,10} , B3=0

(a)

(b)

(c)

105 15 20 25 30 35 40

T3

T3

T3

H speed
interval

Task release

Task deadline

H speed
interval

H speed
interval

Task blockedTask blocked

Processor idle

Task blocked

H speed
interval

H speed
interval H speed interval

Task blockedTask blocked
Processor idle

Figure 3: (a) Task Set Description. (b) DSA. (c) EDSA.

Even though the high speed and low speed are close to
each other in this example, there is again an
improvement in the system performance based on
EDSA compared with DSA where the processor idle
time is reduced from 4.28% to 2.8%.

DSA and Priority Ceiling Protocols

Jejurikar and Gupta (Jejurikar and Gupta 2006) have
shown that the success of DSA requires that the critical
sections be non-preemptible, and DSA may cause
deadline miss when it is used with dynamic priority
ceiling protocol(DPCP) because a high priority task can
preempt a critical section of another low priority task if
the high priority task does not need to use the shared
resource. However, the blocking occurs at the moment
when the high priority task needs to access the resource,
and the switching to high speed H is delayed until this
moment causing deadline miss as shown in Figure 4.

1 6 11 16 21 26 31 36

T1

T2

Processor idleTask blocked

H speed interval

Non critical section

Critical section

T1

T2

T1{2,5,5} , B1=3
T2{4,40,40} , B2=0

(a)

(b)

Deadline miss (J1)

Figure 4: (a) Task Set Description. (b) Deadline Miss
When DSA Is Used With DPCP.

At the moment t=1, task τ1 is released, and task τ2 that
executes its critical section is preempted by the high
priority task τ1. Task τ1 is just blocked when it needs to
access the shared resource, i.e. at the moment t=4,
where the high speed interval starts, and τ2 resume
executing until it ends its critical section to be
preempted again by τ1. Then, task τ1 resume executing,
but it can not meet the deadline, where the first job (j1)
misses its deadline because of delaying the start of the
high speed interval(blocking instant) due to using DPCP
as resource access protocol as shown in Figure 4(b).
It is clear that to avoid the occurrence of deadline miss,
the switching to the high speed must occur earlier as in
using SRP as resource access protocol, and this is the
second contribution of EDSA. To achieve that, EDSA
proposes that the switching to the high speed should
occur when a critical section is preempted or a blocking
takes place.
Figure5 shows the adaptation of EDSA with DPCP as
resource access protocol to avoid deadline misses and
achieve energy saving as done with SRP, where the
switching to the high speed occurs not only when the
high priority task is blocked, but also when a critical
section is preempted. Unlike SRP, DPCP increases the
context switches as it is obvious in Figures 2(c) and 5,
and this is the key advantage of SRP over PCPs as
mentioned earlier.

110

Figure 5: (a) Task Set Description. (b) Deadline
Meeting When EDSA Is Used With DPCP.

Figure6 shows the proposed algorithm EDSA which
achieves more energy saving and works with SRP and
DPCP as resource access protocols.

/* Initially the processor speed is L. End_H indicates
the end of the high speed interval. If the system isn't in a
high speed interval, End_H = -1. Initially End_H = -1 */

When job J i,j arrives:
 if Priority(J i,j) > Priority(current job)
 if Preempt_Current_Job() is successful
 if Preempt_Critical_Section() is successful
 Set_Speed(H); /* Set the processor speed at H*/
 End_H = max(End_H, d i,j);
 /* d is the deadline of the job */
 end if
 Execute J i,j ;
 else /* J i,j is blocked */
 Set_Speed(H); /* Set the processor speed at H*/
 End_H = max(End_H, d i,j);
 end if
 end if

when the end of high speed interval is reached:
 End_H = -1;
 Set_Speed(L); /* Set the processor speed at L */

Figure 6: The Enhanced Dual Speed Algorithm (EDSA)

RESULTS AND DISCUSSION

Referring to Figures 2 and 3, reducing the time during
which the processor is idle comes from lowering the
processor speed for longer time intervals. This, in turn,
reduces the energy consumption dramatically due to
quadratic dependency between power and processor
speed. To verify that, a comparison study has been
performed by computing the energy consumed in CSS,
DSA, and EDSA using the simplified power model
P=S2 used in (Jejurikar and Gupta 2002), where the
blocking time B changes from 0 to the highest amount
at which the task set is schedulable (when H=1).

Of course, the high speed H changes from H=L (when
B=0) to H=1, while the low speed L does not change.
As it is clear from Figure7, EDSA is the most energy
efficient algorithm especially with high blocking times,
where the difference between the low and high speeds
(L, H) increases significantly.

Figure 7: Energy Consumption Versus Blocking Time

Changes In Example1

The comparison is repeated for the second example, it is
noticed that, as shown in Figure 8, EDSA exhibits a
slight improvement over DSA with the highest blocking
time due to the small difference between high and low
speeds (H, L).
As a result, when the blocking time is low (the high
speed is almost the same as the low speed), the three
algorithms exhibit the same performance. When the
blocking time increases (the difference between the
high and low speeds also increases), EDSA behaves
better than the other two algorithms (CSS and DSA)
especially when this difference is significant.

Figure 8: Energy Consumption Versus Blocking Time
Changes In Example2

1 6 11 16 21 26 31 36 41

Task blocked

T1

T2

Processor idle

Task blocked

H speed
interval

H speed
interval

Non critical section

Critical section

T1

T2

T1{2,5,5} , B1=3
T2{4,40,40} , B2=0

(a)

(b)

46

Preempt critical section Preempt critical section

111

Furthermore, EDSA has the advantage over DSA that it
can work with SRP and DPCP as resource access
protocols as shown in Figures 2 and 5.

CONCLUSIONS

The paper has addressed the problem of real time
scheduling of dependent tasks due to exclusive access
shared resources taking into account the reducing of
energy consumption as a main goal. The paper has
proposed improvements over the existing dual speed
switching algorithm (DSA), where the proposed
algorithm, EDSA, has shown more energy saving than
DSA. furthermore, it has adaptation to work not only
with SRP but also with DPCP as resource access
protocols.

REFERENCES

Andrei, A., P. Eles, Z. Peng, M. Schmitz, and B. M. Al-
Hashimi. 2007. “Voltage Selection for Time-
Constrained Multiprocessor Systems” In Proc. Of
Designing Embedded Processors – a Low Power
Perspective, 259–284.

Baker, T. P. 1991 “Stack-based scheduling of real time
processes,” Journal of Real-Time Systems, Vol. 3,
No. 1, 67– 99.

Butts, J.A. and G.S. Sohi. 2000. “A static power model
for architects” In Proceedings of the 33rd annual
ACM/IEEE international symposium on
Microarchitecture, Monterey, CA, USA, 191-201.

Chen, M. and K. Lin. 1990. “Dynamic priority ceilings:
A concurrency control protocol for real-time
systems” Real Time Systems Journal, Vol. 2, No. 1,
325–346.

Chen, J. and C. Kuo. 2007. “Energy-Efficient
Scheduling for Real-Time Systems on Dynamic
Voltage Scaling (DVS) Platforms”. 13th IEEE
International Conference on Embedded and Real-
Time Computing Systems and Applications
(RTCSA).

Cottet, F., J. Delacroix, C. Kaiser,and Z. Mammeri.
2002. Scheduling in Real-Time Systems, John
Wiley & Sons Ltd, England.

De, V. and S. Borkar. 1999. “Technology and Design
Challenges for Low Power and High Performance”.
In Proceedings of the International Symposium on
Low Power Electronics and Design, San Diego, CA,
USA, 163-168.

Gruian, F. 2002. Energy-Centric Scheduling for real
time systems, PhD thesis , Lund Institute of
Technology, Lund University,

Hu, X. and J. Quan. 2007. “Fundamentals of Power-
Aware Scheduling”. J. Henkel and S. Parameswaran
(eds.), Designing Embedded Processors – A Low
Power Perspective, 219–229..

Hu, X., J. Quan. 2007. “Static DVFS Scheduling.” J.
Henkel and S. Parameswaran (eds.), Designing
Embedded Proc.of A Low Power Perspective, 231–
242.

Jejurikar, R. and R. Gupta. 2002. “Energy aware task
scheduling with task synchronization for embedded
real time systems”. In Proc. of International
Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 164–
169.

Jejurikar, R. and R. Gupta. 2002. “Energy aware edf
scheduling with task synchronization for embedded
real time operating systems,” Technical report #02-
24. Department of Information and Computer
Science, University of California at Irvine, (Aug).

Jejurikar, R. and R. Gupta. 2006 “Energy aware task
scheduling with task synchronization for embedded
real time systems”. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems,
Vol. 25, No. 6, 1024 – 1037

Mishra, R., N. Rastogi, D. Zhu, D. Moss´e, and R.
Melhem. 2003. “Energy aware scheduling for
distributed real-time systems”. In International
Parallel and Distributed Processing Symposium, 21-
30.

Pillai, P. and K. G. Shin. 2007. “Dynamic DVFS
Scheduling.” J. Henkel and S. Parameswaran (eds.),
Designing Embedded Processors – A Low Power
Perspective, 243–258.

Sha, L., R. Rajkumar, and J. P. Lehoczky. 1990.
“Priority inheritance protocols: An approach to real-
time synchronization,” IEEE Transactions on
Computers, Vol. 39, No. 9, 1175–1185.

Shin, D. and J. Kim. 2004. “Dynamic voltage scaling of
periodic and aperiodic tasks in priority-driven
systems”. ASPDAC, 635– 658.

Weiser, M., B. Welch, A. Demers and S. Shenker.
1994. “Scheduling for reduced cpu energy”. In Proc.
of Symposium on Operating system Design and
Implementation (OSDI), 13–23.

Yao, F., A. Demers and S. Shenker. 1995. “A
scheduling model for reduced cpu energy”. In
Proceedings of IEEE Annual Symposium on
Foundations of Computer Science, 374–382.

Zhang, F. and S. T. Chanson. 2002. “Processor voltage
scheduling for real-time tasks with non-preemptible
sections”. In Proceedings of the 23rd IEEE Real-
Time Systems Symposium (RTSS’02), 235–245.

AUTHOR BIOGRAPHIES

ABDULLAH M. ELEWI graduated from
the Electrical and Electronic Engineering
Faculty of Aleppo University, Syria, where
he studied computer engineering and
obtained his Bachelor degree in 2005 and
graduate studies Diploma in 2006, then he

moved to Egypt to complete his graduate studies. He is
currently a master student at the computer engineering
department at Helwan University. His research interests
include energy efficient real time scheduling
techniques, embedded systems and real time operating
systems. His e-mail address is:
abdullahelewi@gmail.com

112

MEDHAT H. A. AWADALLA has
obtained his B.Sc. from Helwan
University, 1991 in electronics and
communications department and got
his M.Sc in the field of reconfigurable
computer architecture in 1996 from

Helwan university and His PhD from Cardiff university,
UK in the filed of mobile robots in 2005. He has a post
Doc. at Cardiff university in 2006 and currently he is
working as a lecturer in local and private universities in
Egypt as Helwan university, Misr international
university, and Misr university for science and
technology. His research interests include real time
systems, multi-core processors, computing grid, mobile
robots, and sensor networks. His e-mail address is :
awadalla_medhat@yahoo.co.uk

MOHAMED I. ELADAWY graduated
from the Department of Electrical
Engineering, Faculty of Engineering of
Assiut University in May 1974; M.Sc.
from Cairo University in May 1979; Ph.D.
from Connecticut State University, School

of Engineering, in May 1984. He worked as an
Instructor at the Faculty of Engineering, Helwan
University since 1974. Currently he is a Professor at the
Department of Communication and Electronics
Engineering and the Vice Dean for Student Affairs in
the same faculty. He was working for the general
organization for technical and vocational training for 6
years from 1989 to 1995 in Saudi Arabia. His main
research interests include signal processing and its
medical applications, real time systems, and image
processing.

113

114

Partitioning and Scheduling Schemes for
Grid and Cluster Systems

115

116

SCHEDULING STRATEGIES IN FEDERATED GRIDS

Katia Leal
Universidad Rey Juan Carlos

Dep. de Sistemas Telemáticos y Computación
Escuela Sup. de Ciencias Experimentales y Tec.

Tulipán SN, Mósteles, Madrid, Spain
Email: katia.leal@urjc.es

Eduardo Huedo, Rubén S. Montero, Ignacio M. Llorente
Univ. Complutense de Madrid

Dep. Arquitec. de Comp. y Automática
Facultad de Informática 28040, Spain

Email: contact@dsa-research.org

KEYWORDS
Federated Grids, Scheduling

ABSTRACT
The GridWay Metascheduler enables efficient sharing
of computing resources managed by different LRM
(Local Resource Management) systems, not only within
a single organization, but also across several administra-
tive domains. The possibility to access to the services
available in different Globus based grids allows the
union of grids to create a federation. This scenario has
particular characteristics, possibly the most important
one is that it has different types of users: internal users,
external users, and direct users. Basically, all these
users compete for the resources of the federated grid to
achieve their own particular goals. However, GridWay
is not providing the best scheduling strategy under this
scenario, because its current scheduling policy does not
take into account resource ownership. In this paper we
introduce a variation of GridWay’s current scheduling
strategy suitable to this new scenario. This variation
is based on the parameters provided by a previously
proposed performance model. In addition, the results
obtained by simulation lead us to conclude that there
is a real necessity to enhance scheduling policies in
federated grids.

INTRODUCTION
A Federated Grid can be formed of several grid infras-
tructures. However, the participants in the Federated
Grid do not collaborate to achieve the same goal, like
the participants of a Global Grid. Here the idea is
that each participant shares resources with the rest,
but always having in mind that the main user of those
resources is the participant itself. GridWay (Huedo
et al. (2004)) provides the technology to build Federated
Grids, both directly and through GridGateWays. A
GridGateWay is a WS-GRAM (Web Services Grid
Resource Allocation and Management) service hosting a
GridWay workload manager that enables remote access
to GridWay’s metascheduling capabilities through a
WSRF (Web Services Resource Framework) interface.
However, GridWay applies scheduling strategies that

are better fitted to Partner and Enterprise Grids. There
is a huge ongoing research effort on grid scheduling
(Dong and Akl (2006); Andrieux et al. (2003)), but it is
mainly centered on Partner Grids. With this paper we
want to drive attention to the particular characteristics of
Federated Grids, and in the necessity of new scheduling
policies to support them. Thus, we propose an alterna-
tive to GridWay’s current scheduling policy based on a
performance model (Montero et al. (2006)) that allows
to parametrize and compare different Grids.

The rest of the paper is structured as follows: we first
present and compare other scheduling approaches with
our solution. Then, we explain the mapping strategy used
by our scheduling proposal to maximize the throughput.
Next, we present the design and implementation of the
scheduling model. We also show some experimental
results. Finally, we explain the conclusions and future
work.

RELATED WORK
It is well known that the general scheduling problem is
NP-complete (Ullman (1975)). A large number of algo-
rithms have been applied to schedule jobs in computa-
tional grids. However, none of them seems suitable to
federated grids. Here we enumerate some scheduling al-
gorithms and the drawbacks they present under this sce-
nario.

The Opportunistic Load Balancing (OLB), the Min-
imum Completion Time (MCT), the Min-min, and the
Max-min are similar algorithms and also have very simi-
lar drawbacks under a federated grid. The first is a prob-
lem of scalability: the time to calculate the selected node
increases with the number of nodes. The second prob-
lem is that in a federated grid nodes are different, so we
should not simply assign a job to the next available node.

The main disadvantage of the Weighted meta-
scheduling (Song et al. (2005)), and of the QoS guided
Min-Min (He et al. (2003)) algorithms is that the former
is specific of data intensive applications, and the latter
focuses in long-term applications.

More close to our problem is the work of (Wiriyaprasit
and Muangsin (2004)) that analyzes the impact of local
policies on the performance of grid scheduling on a com-
putational grid. However, their simulated scenario has

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

117

certain drawbacks: it is not based in a real testbed, it can
only be applied to computational grids, and it doesn’t re-
flect the effects of including the algorithm in a real sched-
uler, like GridWay. In contrast, we show experimental re-
sults obtained from a simulated federated grid based on a
real testbed, and using GridWay as the scheduler.

A NEW SCHEDULING MODEL TO MAXIMIZE
THE THROUGHPUT
In this section we first analyze the environment condi-
tions of Federated Grids, and then we introduce our pro-
posal of a new scheduling model.

Federated Grid
In a Federated Grid the different participants collaborate
by sharing their resources with the whole Grid. How-
ever, they do not try to achieve the same goals as they
have to satisfy their own users demands. In doing so,
each participant can use his own internal resources, but
also the grid resources that the rest of participant are will-
ing to share. Each participant decides which resources to
contribute with, who can use those resources, and the ac-
cess policy to them. Of course, all these restrictions can
change dynamically, and brokers should be prepared for
that. A possible Federated Grid schema could be like the
one shown in the Figure 1. As it can be seen, there are
different types of resources and users. We have identified
two types of resources:

Ê Internal Resources: these are the resources directly
accessible by the broker through the corresponding
local workload manager. That is, the resources
owned by the particular research center, laboratory
or company.

Ë External Resources: we can classify Enterprise
Grids, Partner Grids, and Utility Grids provided by
third part companies in this category.

Also, we have identified internal, external, and direct
users. They differ in the way, and in the rights they have
to access resources:

Ê Internal Users: the jobs submitted by these users
through GridWay can be executed in both the inter-
nal and the external resources. Depending on di-
fferent parameters, such as the local load, GridWay
will decide to which resource submit the job.

Ë External Users: all the jobs received by GridWay
through the GRAM interface will be from external
users. GridWay will apply different policies to de-
cide whether to accept or not the jobs received.

Ì Direct Users: GridWay cannot control the jobs sub-
mitted by this type of internal users. However, they
are important since they have an influence in the
load of the resources.

As a result, each type of user introduces its own re-
quirements that will affect GridWay scheduling policies.

Globus

GridWay

TERAGrid

SGE PBS

Globus

GridWay

DSA

PBS SGE

External
Users

Direct
Users

Internal
Users

DSA Internal resources or users
DSA External resources or users
DSA Direct Users

Direct
Users

Internal
Users

Figure 1: Example of a Federated Grid.

The mapping strategy
GridWay receives jobs directly through the command
line interface from internal users, and through the GRAM
interface from external users. In this way, GridWay can
differentiate the jobs submitted by internal users from
those submitted from external users. However, GridWay
currently operates in the same way, and applies the same
policies for both internal and external jobs.

Next, we explain the modifications already included in
our simulated GridWay to support the restrictions intro-
duced by the different type of users on a federated grid.
Our simulated GridWay will work in different ways de-
pending on the type of job received.

In scheduling an internal job
Our simulated GridWay almost includes all the configu-
rable restrictions of a real GridWay: i.e. the maximum
number of jobs that will be dispatched at each scheduling
action and the period (in seconds) between two schedu-
ling actions. In scheduling an internal job, the normal
version of the simulated GridWay firstly checks if there
are free nodes available in internal resources. If there are
free internal nodes, GridWay schedules the job to an in-
ternal resource. In contrast, if there are no free internal
nodes but free external ones, GridWay schedules the job
to an external resource. However, we want to improve
the normal scheduling policy to maximize the number of
jobs that can be executed while maintaining makespan
value. Thus, the scheduling policy should take into ac-
count not only which is the next available node. To max-
imize the throughput we need to obtain the number of
jobs that should be submitted to internal resources and to
external resources. We have used the equation that repre-
sents the best characterization of the Grid to obtain these
numbers. The characterization can be obtained if we take

118

the line that represents the average behavior of the sys-
tem, as proposed by Hockney, and Jesshope (Hockney
and Jesshope (1988)):

n(t) = r∞t− n1/2 (1)

In the Equation 1 n represents the number of com-
pleted tasks as a function of time t. The other parameters
are:

p Asymptotic performance r∞: is the maximum rate
of performance in tasks executed per second. In the
case of an homogeneous array of N processors with
an execution time per task T, we have r∞= N/T.

p Half-performance length n1/2: is the number of
tasks required to obtain the half of the asymptotic
performance. This parameter is also a measure of
the amount of parallelism in the system as seen by
the application.

The linear relation represented by Equation 1 can
be used to define the performance of the system (tasks
completed per second). We explain later how we can
also use this linear equation to obtain the number of jobs
that should be submitted to internal resources and to
external resources to maximize the throughput.

In scheduling an external job
As soon as GridWay receives an external job, it has to
decide whether to accept it or not. By default, the simu-
lated GridWay accepts all the external jobs received from
external users.

When GridWay has to schedule an external job, it em-
ploys a different strategy than when scheduling an inter-
nal job. In the case of an external job, GridWay applies
it’s current scheduling policies. That is, it schedules the
external job to the next internal resource with free nodes.
In this way we avoid the situations on which a participant
of the Federated Grid can receive from another one a job
previously submitted to it.

DESIGN AND IMPLEMENTATION
We have previously (Vázquez et al. (2008, 2007)) set up
a simple, but real infrastructure, where a client runs an
instance of the GridWay Metascheduler interfacing inter-
nal resources in an enterprise grid, the DSA (Distributed
System Architecture) enterprise grid at Complutense of
Madrid University, based on Globus Toolkit 4 (GT4) WS
interfaces, and a GridGateWay that gives access to re-
sources from a partner grid (fusion VO of the EGEE),
based on GT pre-WS interfaces found on gLite 3.0. How-
ever, prior to run our enhanced scheduling algorithm on a
real production infrastructure, we have first implemented
the modified algorithm on a simulated environment. The
deployment on a real environment will require involve-
ment of a large number of active users and resources,
which is very hard to coordinate and build. Thus, the

simulation appears to be the easiest way to analyze the
modified scheduling policy. Based on the simulation re-
sults, we can later encourage or discourage the deploy-
ment on a real production environment.

We have used the well known GridSim toolkit (http:
//www.gridbus.org/gridsim/) to simulate our
test scenario.

Test Scenario
Since the idea is to finally deploy the new GridWay on
a real infrastructure, the simulation results have to be as
realistic as possible. Thus, the simulated scenario has to
be close enough to reality. We will start with the simple,
but more or less realistic scenario depicted in Figure 2.

Globus

GridWay GridWay

LCG ResourcesDSA Resources

LCG

cygnus

hydrus

draco

aquila

DSA Internal resources or users
DSA External resources or users
LCG Direct Users

External
Users

Internal
Users Direct

Users

GridWaySim

Figure 2: A simple test scenario.

As it can be seen, in this test scenario there are
only two grid resources: the DSA (Distributed System
Architecture) and the LCG (LHC Computing Grid). The
DSA testbed represents the resources of the Distributed
System Architecture research group at the Complutense
of Madrid University. In the same way, the LCG testbed
represents the Large Hadron Collider (LHC) Computing
Grid. From the point of view of a DSA internal user,
the DSA GridWay is her broker, the DSA resources are
internal resources, and the LCG resources are external
resources. In the same way, all the jobs received by the
LCG GridWay through the Globus GRAM interface are
from external users. While the GridWay on the DSA
site has to apply a policy to submit jobs to internal
and/or external resources, the LCG GridWay has to de-
cide whether or not to accept the jobs from external users.

Table 1 shows the number of computing elements, aka
PEs (Processing Elements), and MIPS (Millions Instruc-
tions Per Second) of each machine in the DSA infrastruc-
ture. The Table 2 shows the same values for the machines

119

http://www.gridbus.org/gridsim/
http://www.gridbus.org/gridsim/

in the LCG resource. We have calculated the MIPS value
based on machine’s model, and number of MHz. We use
all these characteristics to simulate resources in order to
obtain as realistic as possible results.

Machine PEs MIPS/PE

hydrus 4 9787
aquila 5 9787
orion 1 9787
cygnus 2 6536
draco 1 6536

Table 1: Characteristics of the machines in the DSA re-
search testbed.

Machine PEs MIPS/PE

machine0 800 9787
machine1 640 6536
machine2 560 4902

Table 2: Characteristics of the machines in the LCG re-
search testbed.

GRIDWAYSIM ENTITIES

We have called GridWaySim to our simulation of the sce-
nario shown in Figure 2. We explain the different parti-
cipating entities of GridWaySim in the next sections.

GridWaySim
This entity represents the whole simulation, and is res-
ponsible of the creation of the main simulated entities:
GridWay brokers, users, DSA and LCG resources, and
workload (or LCG direct users).

GridWay
The GridWay entity represents a generic GridWay meta-
scheduler. Since we need to interconnect the DSA, and
LCG grids to form a federation, we have to instantiate
two GridWay brokers: one for DSA, and the other for the
LCG. Thus, from the point of view of the DSA GridWay,
DSA resources are internal resources, and LCG is an ex-
ternal resource. On the other hand, for the LCG GridWay,
DSA is an external resource, and LCG is an internal re-
source. For this first test scenario, the flow of jobs is
only from DSA GridWay to LCG GridWay. However,
communication can be done in both directions. Also, the
DSA GridWay only receives experiments (a collection of
jobs) from her internal users, and the LCG GridWay only
receives jobs from DSA GridWay. Finally, to simulate a
real environment, we have also introduced direct users in
the LCG resource by means of the Workload entity.

Testbed: DSATestbed, LCGTestbed
A Testbed represents a generic set of grid resources.
The resources of the DSA research group are repre-
sented y the DSATestbed entity, and the LCG ones by
the LCGTestbed entity. Each follows the configurations
depicted in Tables 1 and 2, respectively. The main differ-
ence between these two entities is that the LCG resources
are represented by an unique resource, while DSA ones
are represented as they really are, that is, by five re-
sources. We have instantiated all the resources to use the
spaced-shared policy as the internal management. As de-
fined in the GridSim API, this policy uses the First Come
First Serve (FCFS) algorithm.

User
The User models an user that submits experiments to a
GridWay broker. We use this entity to represent internal
as well as external users. The functionality of each user
includes the submission of experiments to the correspon-
dent broker, and waiting for it completion.

Experiment
An Experiment is a collection of jobs. We use this entity
to recover important information about the experiment
(such as the start and end times), and of all its jobs.

Job
The Job entity represents a generic job submitted to the
grid. This entity provides specific information about each
job: start time, end time, and CPU time among others.
We can represent jobs of different computation times,
and with different input and output file sizes.

Workload: The LCG Grid log
Since the main purpose of our simulation is to create a
realistic environment, we have used the Workload en-
tity in our tests. The Workload entity submits jobs by
reading resource traces from a file. Thus, our jobs are
competing with the jobs submitted by the Workload en-
tity. For this reason, the LCG grid resources might not be
available at certain times. The file follows the standard
workload format as specified in http://www.cs.
huji.ac.il/labs/parallel/workload/. As
trace file, we have used the LCG Grid Log that contains
11 days of real activity from multiple nodes that make
up the LCG (Large Hadron Collider Computing Grid,
http://lcg.web.cern.ch/LCG/). Next, we enu-
merate some details about this testbed:

p Number of jobs submitted: 188,041. The log
specifies the submit time and the run time of each
job.

p Start time: Sun Nov 20 00:00:05 GMT 2005.

p End time: Mon Dec 05 10:30:24 GMT 2005.

p Maximum number of machines: 170.

120

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://lcg.web.cern.ch/LCG/

p Maximum number of computing elements:
24,515.

Although the number of PEs of the real LCG testbed is
24,515, we do not know the real number of PEs involved
in this experiment. So, after running some simulations,
we decided to reduce the number of PEs in our simulated
LCG testbed to those in the Table 2. We have reduced
the number of PEs in order to force LCG saturation sce-
narios.

EXPERIMENTS

We have implemented two versions of GridWaySim that
only differ in the scheduling policy they implement: the
normal, and the enhanced scheduling policy. As a result,
the scheduling policy is the only factor that can cause
throughput variations between the different GridWaySim
versions. Apart form that, all versions rely on the same
configuration, with the same number of users that submit
at the same time the same experiment with the same
number of jobs (each with the same length, and input and
output files size) to the same broker. Also, the number
of brokers and resources is the same across the different
GridWaySim versions.

Next we describe the exact configuration of the simu-
lation:

p Entities: when we start the simulation GridWaySim
creates 11 Users, 2 GridWay brokers, 1 DSAT-
estbed, 1 LCGTestbed, and 1 Workload. Each of
which is an independent thread attending petitions
in their body() method.

p Experiment: every Experiment is a collection of
300 equal Jobs.

p Job: the main parameters of each Job are the length
or size (in Million of Instructions, MI) of the Job to
be executed, the input files (in bytes), and the output
files (also in bytes) to be submitted to the correspon-
ding resource. All Jobs have the same values for the
three parameters: the size is 6,000,000 MI, the input
file size is 1,000,000 bytes, and the output file size
is 2,000,000 bytes.

p User: when we create the User, we have to indicate
a submit time for her Experiment. Each user only
submits one Experiment. In this simulation, each
User submits her Experiment 24 hours after the pre-
vious one. The first User submits her Experiment at
12:00 of the first day of the simulation. Thus, each
User submits her experiment to the DSA GridWay
at 12:00 of the corresponding day of simulation.

p Workload: the Workload entity submits 188,041
jobs to the LCGTestbed at the time specified in the
trace file.

p DSATestbed: simulates the resources described in
Table 1. All the DSA resources uses the spaced-
shared policy as the internal management policy (as
defined in the GridSim API, this policy uses the
First Come First Serve (FCFS) algorithm).

p LCGTestbed: simulates the resource with the ma-
chines described in Table 2. The LCG resource also
uses the spaced-shared policy as the internal man-
agement policy.

As we mentioned before, to maximize the throughput
we need to obtain the number of jobs that the DSA Grid-
Way should submit to internal resources and to partner
resources. We have used the equation that represents the
best characterization of the Grid to obtain these num-
bers (Montero et al. (2006)). Thus, we need to run Grid-
WaySim to obtain the linear equations of each infrastruc-
ture. Figure 3 shows throughput achieved by using the
normal scheduling policy in DSA, LCG, and Federated
Grid infrastructures for User-0 and User-3. It can be also
seen the linear equations of both, DSA and LCG infras-
tructures (as function of time). We can represent the tasks
executed by DSA, and LCG as follows:

tDSA(x) = mDSAx + bDSA (2)

tLCG(N − x) = mLCG(N − x) + bLCG (3)

The minimum number of tasks that should execute
DSA infrastructure is the point of intersection of these
two lines. To determine this point we have to equal the
linear Equations 2 and 3, which are functions of the com-
pleted tasks, and work out the values of m and b from
Equation 1, which is function of time,

min =
rDSA
∞ nLCG

1/2 − nDSA
1/2 rLCG

∞

rDSA
∞ + rLCG

∞
+

rDSA
∞

rDSA
∞ + rLCG

∞
N

(4)
Being N the total number of jobs (300), in the

Equation 4 the min represents the maximum number of
tasks that should be executed in the DSA infrastructure
without increasing the makespan. Consequently, N − x
is the number of tasks that should be executed in the
LCG infrastructure. Since there are only 2 participants
in our proposed test scenario, the minimum method is
enough to calculate the number of tasks to be executed
in each infrastructure. However, in case of having 2
or more participants, we can determine the number of
tasks to be executed in each participant by using the
aggregation or federation model proposed in Vázquez
et al. (2008).

Table 3 summarizes the number of executed and esti-
mated tasks of User-0 and User-3. As mentioned before,
the simulation creates 11 Users each one submitting 1
Experiment with 300 Jobs to the DSA GridWay. Instead

121

y = 1,3378x - 8,4761

y = 13,082x - 144,66

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40

Time (min)

C
om

p
le

te
d
 J

ob
s

DSA LCG Federated Grid Lineal (DSA) Lineal (LCG)

y = 1,0984x - 5,6311

y = 1,5706x + 0,5159

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

Time (min)

C
om

pl
et

ed
 J

ob
s

DSA LCG Federated Grid Lineal (DSA) Lineal (LCG)

Figure 3: Throughput achieved by using the normal scheduling policy in DSA, LCG, and Federated Grid infrastructures
for User-0 (left) and User-3 (right).

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40

Time (min)

C
om

p
le

te
d
 J

ob
s

DSA LCG Federated Grid

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

Time (min)

C
om

pl
et

ed
 J

ob
s

DSA LCG Federated Grid

Figure 4: Throughput achieved by using the enhanced scheduling policy in DSA, LCG, and Federated Grid infrastructures
for User-0 (left) and User-3 (right).

of providing the results of every User, we concentrate in
two of them that represent different LCG saturation sce-
narios. Thus, simulation results show that User-0 repre-
sents an ideal scenario in which the LCG infrastructure
always presents free PEs: low saturation scenario. As it
can be seen in the column Normal - DSA of Table 3 the
normal scheduling policy submits only 13 of 300 jobs to
the DSA infrastructure. The medium saturation scenario
is the one suffered by User-3, in this case the LCG re-
source has less free PEs, therefore 108 of 300 jobs are
executed in the DSA infrastructure.

Normal Estimated
DSA – LCG DSA – LCG

User-0 13 – 287 34 – 266
User-3 108 – 192 121 – 179

Table 3: Summary of the number of executed and of es-
timated jobs in both resources.

Column Estimated of Table 3 summarized the number
of tasks that should be submitted to both infrastructures
to increase the throughput, as depicted in Figure 4. Since
we have changed the scheduling goal of GridWay, but not
how GridWay achieves it, the completion time of the Ex-

periments of every User obtained in the normal as well
as in the enhanced scheduling simulation were the same,
as you can see in Table 4. Thus, the estimation enhances
GridWay normal scheduling policy: it maximizes DSA
throughput while maintaining the makespan. Moreover,
the enhanced algorithm not only maximizes the through-
put of the DSA infrastructure under the same conditions,
it also provides a fairness distribution of jobs between
both resources compared with the normal policy: instead
of abusing of the external grids, the DSA GridWay sub-
mits more jobs to its internal resources.

Normal Enhanced
Makespan (min.) Makespan (min.)

User-0 36.05 35.52
User-3 110.27 111.75

Table 4: Experiment completion time for User-0 and
User-3 in the normal and enhanced scheduling simula-
tion.

122

CONCLUSIONS AND FUTURE WORK
In this paper we have presented two variations of Grid-
Way’s current scheduling policy that adapt to Federated
Grids. Thus, the new scheduling policies has been
built having in mind restrictions, such as the different
types of users, and resources. We have also included
the GridWaySim simulated environment to demonstrate
that our enhanced scheduling strategy maximizes the
throughput of internal resoruces, but without increas-
ing the computational time, and provides a fairness
distribution of the jobs by means of the r∞, and r1/2

parameters. Finally, the simulation results provided by
GridWaySim show that the enhanced scheduling policy
proposed improves GridWay’s normal one.

Our current work focuses on the implementation of a
scheduling policy that dynamically works out the values
r∞ and n1/2. Also, we are adding more entities to our
testbed to simulate more complex scenarios.

ACKNOWLEDGE
This research was supported by Consejerı́a de Educación
de la Comunidad de Madrid, Fondo Europeo de De-
sarrollo Regional (FEDER) and Fondo Social Europeo
(FSE), through BIOGRIDNET Research Program
S-0505/TIC/000101, and by Ministerio de Educación y
Ciencia and through the research grant TIN2006-02806.

Research work also supported by the Madrid Regional
Research Council under project TIC-000285-0505.

REFERENCES

Andrieux, A., Berry, D., Garibaldi, J., Jarvis, S., Ma-
cLaren, J., Ouelhadj, D., and Snelling, D. (2003).
“Open Issues in Grid Scheduling”. Technical Report
ISSN 1751-5971, UK e-Science Institute.

Dong, F. and Akl, S. G. (2006). “Scheduling Algorithms
for Grid Computing: State of the Art and Open Prob-
lems”. Technical Report 2006-504, Ontario Queens
University.

He, X., Sun, X., and von Laszewski, G. (2003).
“QoS guided min-min heuristic for grid task schedu-
ling”. Journal of Computer Science and Technology,
18(4):442–451.

Hockney, R. and Jesshope, C. (1988). “Parallel Comput-
ers 2: Architecture, Programming, and Algorithms”.
Adam Hilger Ltd.

Huedo, E., Montero, R. S., and Llorente, I. M. (2004). “A
Framework for Adaptive Execution on Grids”. Soft-
ware – Practice and Experience, 34(7):631–651.

Montero, R. S., Huedo, E., and Llorente, I. M. (2006).
“Benchmarking of High Throughput Computing Ap-
plications on Grids”. Parallel Computing, 32(4):267–
269.

Song, J., Koh, C.-K., See, S., and Leng, G. K.
(2005). “Performance Investigation of Weighted
Meta-scheduling Algorithm for Scientific Grid”. In
Proceedings of the 4th International Conference on
Grid and Cooperative Computing(GCC 2005), vol-
ume 3795, pages 1021–1030. LNCS.

Ullman, J. D. (1975). “NP-Complete Scheduling Prob-
lems”. Journal of Computer and System Sciences,
10(3):384–393.

Vázquez, C., Fontán, J., Huedo, E., Montero, R. S., and
Llorente, I. M. (2008). “A Performance Model for Fe-
derated Grid Infrastructures”. In Proceedings of the
16th Euromicro International Conference on Paral-
lel, Distributed and network-based Processing (PDP
2008), pages 188–192.

Vázquez, C., Huedo, E., Montero, R. S., and Llorente,
I. M. (2007). “Evaluation of A Utility Computing
Mode based on Federation of Grid Infrastructures”.
In 13th International Euro-Par Conference (Euro-Par
2007). Lecture Notes in Computer Science (LNCS).

Wiriyaprasit, S. and Muangsin, V. (2004). “The Impact
of Local Priority Policies on Grid Scheduling Perfor-
mance and an Adaptive Policy-based Grid Scheduling
Algorithm”. In Proceedings of the Seventh Interna-
tional Conference on High Performance Computing
and Grid in Asia Pacific Region (HPCAsia04), volume
0-7695-2138-X/04. IEEE.

123

SIMPLE NEAR OPTIMAL PARTITIONING APPROACH TO PERFECT TRIANGULAR
ITERATION SPACE

Nedal Kafri
Department of Computer Science

Al–Quds University
Palestine

Email: nkafri@science.alquds.edu

Jawad Abu Sbeih
Department of Computer Science

Al Quds Open University
Palestine

Email: jabusbeih@qou.edu

KEYWORDS

Parallel Computing, Nested Loops, Static Partitioning,
Load Balancing.

ABSTRACT

One of the most critical issues in parallel computing
is the efficient distribution of a workload and data
(workload balancing) amongst networked processors in
multiprocessor and multicomputer systems to achieve
optimal performance. Vast large scale scientific com-
puting, such as numerical and Digital Signal Processing
(DSP) problems have the nested loops as the main
parallelized code segment. The main concern in par-
titioning the iteration space is the trade off between
load balance, data locality, and minimizing scheduling
overheads. Therefore, it is important to study and
implement efficient decomposition techniques, which
play an important role in achieving optimal performance
and efficient use of multiprocessor and multicomputer
systems. In this work, we focus on static decomposition
of perfect triangular iteration space to achieve load
balancing across given processors in a homogenous
system. This paper introduces an intuitive near-optimal
partitioning approach to triangular iteration space of a
loop nest along the outermost loop index. Furthermore,
the obtained partitions thus consist of contiguous non-
overlapping parts which preserve data locality.

INTRODUCTION

Parallel computing is an efficient technique used to
achieve high performance and efficient use of multi-
processor and multicomputer systems which speedup
many applications over sequential processing on a single
processor. The major goal of parallelization is to min-
imize the elapsed time (ie., overall computation time)
by distributing the computation workload amongst the
available processors evenly. This distribution can be
done automatically by compilers (Chaundhary et al.,
1996; Haghighat and Polychronopoulos, 1996; Hudak
and Abraham, 1990; Jialin, 1998; Petkov et al., 2002), or
manually by programmers using compiler directives and

other different decomposition programming techniques
(Fahringer, 1998; Hancock et al., 2000b; Kejariwal et al.,
2005; Li et al., 2000; Sakellariou, 1996).

Significant amount of applications such as numerical,
large scale scientific problems, Digital Signal Process-
ing (DSP) (Li et al., 2000), computer vision, high-
definition television medical imaging, remote sensing
and many cryptographic algorithms, such as unchained
Skipijak and DES (Petkov et al., 2002), are consid-
ered to be multi-dimensional problems. It is gener-
ally agreed by researchers that most of the computa-
tion time is spent in loops, which can be single (one-
dimensional) or nested ones (multidimensional). In the
case of nested loops, the iteration space (number of iter-
ations of the loop body or workload) of these loops can
be of constant, or iteratively either increasing or decreas-
ing size. Thus, nested loops (loop nest) are the most im-
portant portion of these applications. Therefore, most
researchers pay much of their attention to loop paral-
lelization (D’Hollander, 1992; Chaundhary et al., 1996;
Haghighat and Polychronopoulos, 1996; Hancock et al.,
2000b; Hudak and Abraham, 1990; Jialin, 1998; Kejari-
wal et al., 2004, 2005; Li et al., 2000; Petkov et al., 2002;
Polychronopoulos et al., 1986; Sakellariou, 1996; Xue
et al., 2005).

Efficient parallel execution of these applications re-
quires efficient partitioning and mapping of the itera-
tion spaces of these nested loops across available proces-
sors to achieve perfect load balance. Therefore, it is
important to study effective mapping techniques to gain
significant speedup from parallelization. Thus, map-
ping of loop nests have received extensive attention in
literature; mapping of loop nests with rectangular it-
eration spaces has received coverage in (D’Hollander,
1992; Polychronopoulos et al., 1986), whereas partition-
ing of loop nests with non-rectangular iteration space
has been covered in (Haghighat and Polychronopoulos,
1996; Kejariwal et al., 2005; Sakellariou, 1996). How-
ever, (Haghighat and Polychronopoulos, 1996; Sakellar-
iou, 1996) do not partition the iteration space uniformly
across different processors and have several limitations,
such as trade-off between parallelism and data locality.
Furthermore, these approaches do not address the prob-
lem of partitioning iteration spaces with variable densi-
ties, i.e., loops with non-constant strides. Whereas in

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

124

(Kejariwal et al., 2005), they address the distribution of
iteration spaces with variable densities based on geomet-
ric approach for computing the iteration space before
mapping.

Based on whether the workload is distributed before
or during run-time, loop partitioning can be classified
as static, (where, usually partitioning is the most im-
portant aspect) or dynamic (Hancock at al., 2000a; Han-
cock et al., 2000b) (where, usually scheduling is the most
important aspect), respectively. It should be noted that
dynamic scheduling techniques may require additional
communication and (runtime) overheads to achieve the
load balanc. Furthermore, the static load balancing on
heterogeneous systems, where the processors have dif-
ferent speeds and capacities is discussed in (Beaumont
et al., 2002).

This paper focuses on static partitioning of loop nest
with perfect triangular iteration space in homogenous
platforms. It introduces an approximation–based ap-
proach that partitions the iteration space along the axis
corresponding to the index of the outermost loop to
achieve near optimal load balancing. The analytical and
experimental results show that the proposed approach
competes the best known techniques by its simplicity.
Furthermore, the partition thus obtained consists of con-
tiguous and disjoint subsets, which facilitates exploita-
tion of data locality.

The rest of this paper is organized as follows: The
next section presents a background relevant to the loop
nest iteration space, partitioning problem, the terminol-
ogy, notions, and definitions used in this paper. There-
after, we introduce a new approximation–based near op-
timal partitioning approach to perfect triangular iteration
space (ANOP). Next to that section, evaluation and ex-
perimental results are presented. Finally, we conclude
and propose directions for future research.

BACKGROUND

In some applications, the workload balancing of the iter-
ation space is primitive. This can be achieved by divid-
ing the iteration space among P processors evenly into
P parallel tasks (possibly into embarrassingly or trivially
parallel tasks i.e., tasks that can be done independently
of any other computation, without any communication
among them). In other words, the load balance can be
achieved by the decomposition of the iteration space into
a collection of equivalent disjoint subsets (parts) of the
iteration space, whose union is all of the iteration space
(Scott et al., 2005). To illustrate this definition, consider
a very simple summation example.

A =
N∑

i=1

ai

This kind of operation is called reduction; it reduces
the vector (a1, a2, . . . , aN) to the scalar A. Assume for

simplicity that P divides N (P |N) i.e., N is an integer
multiple, c, of P processors: N = c.P . Then we can di-
vide the reduction operation into P disjoints partial sums:

Ak =
ck∑

i=(k−1)c+1

ai, for k = 1 . . . P, Then (1)

A =
P∑

k=1

Ak (2)

Considering Equation (1) and (2), we have managed to
create P embarrassingly parallel tasks, having c = N/P
addition operations (workload) to do on c data points.

Similarly, one can use this simple decomposition tech-
nique of the workload of loop nests having a rectangu-
lar structure. Such loop nests and their iteration spaces
can be represented by the pseudocode and its representa-
tion as a polytope in Figure 1(a). This geometric shape
approach i.e., polytope representation, which has been
used often since the early years of Lamport’s hyperplane
method (Lamport, 1974), allows us to deal with the prob-
lem from a geometric point of view hoping to provide
a clearer understanding. Partitioning an iteration space
along an axis corresponding to the outermost loop can
achieve a perfect workload balance. More detailed dis-
cussion on rectangular loop partitioning techniques can
be found in (D’Hollander, 1992; Polychronopoulos et al.,
1986; Sakellariou, 1996).

However, those simple decomposition approaches in
parallelizing cannot lead to workload balancing in many
problems containing non-rectangular nested loops, such
as triangular loop nests Figure 1(b). Vast number of tri-
angular loop nests can be found in some matrix opera-
tions, for example, adding lower/upper triangular matri-
ces, LU factorization problems, and prime numbers dis-
covery.

Triangular Loop Nests
Triangular loop nests (or triangular iteration space)
means a loop nest consisting of an outer loop and an in-
ner loop having bounds dependent on the index of the
outer loop. Moreover, the operation(s) in the inner loop
can be done independently of all others. Such triangular
loop nests and their iteration spaces can be represented
by the pseudocode and its representation as a polytope
in Figure 1(b) (Haghighat and Polychronopoulos, 1996;
Kejariwal et al., 2005; Sakellariou, 1996), where dots in-
dicate the number of iterations of the inner loop.

It should be noted that the operation(s) in the inner
loop can be as simple as shown in Figure 1(b), which
adds two lower triangular matrices, constant sequence of
operations or a multidimensional/multilevel independent
nested loops with constant iteration spaces i.e., invariant
iterator (Kejariwal et al., 2005).

125

for i = 1, N
for j = 1, N

(independent operations)
(eg., C[i,j]=A[i,j]+B[i,j])

enddo
enddo

for i = 1, N
for j = 1, i

(Independent operations)
(e.g., C[i,j]=A[i,j]+B[i,j])

enddo
enddo

(a) Rectangular (b) Triangular

j j

i i

Figure 1: An Example to Illustrate Iteration Space of
Loop Nests (a) Rectangular (b) Triangular

It is known that the total workload W (loop itera-
tions) of such triangular loop nest shown in Figure 1(b) is
equivalent to the sigma notation in Equation (3), where c
represents the constant number of operations in the inner
loop body (which can be assumed 1 for simplicity), and
l and u are the lower and upper bounds of the outermost
loop (i.e., along the i axis), respectively.

W =
u=N∑

i=l=1

i∑

j=1

c = c
N∑

i=1

i = c
N(N + 1)

2
(3)

Detailed work on nested loops and computing loop it-
erations can be found in (Sakellariou, 1996).

Static Load Partitioning and Load Balancing
Partitioning the workload amongst processors of a mul-
tiprocessors or a multicomputer system plays a critical
role in parallel processing. One of the requirements for
decomposition is that the workload to be balanced across
all the processors. If the work is not distributed equally,
then one processor may end up taking longer time than
the others. Since we are doing a cooperative project, the
overall job cannot be accomplished until the slowest sub-
task is finished. Thus, Workload balancing is one of the
critical issues and goals which plays an important role in
parallel computing. Efficient and perfect distribution of
the workload will enable to achieve this goal, and conse-
quently will affect the overall performance and the effi-
ciency of the parallel processing. The author in (Sakel-
lariou, 1996) discusses the necessary conditions for par-
titioning a loop nest into equal workload. It should be

noted that this work discusses static workload partition-
ing on homogenous systems, where the processors have
equal speeds and capacities.

Assume that a set of P parallel tasks (indexed by
k = 1, . . . , P), executes its assigned workload Wk

in an amount of time tk. Furthermore, assuming that
W ′

k represents the set of those operations whose work-
load is Wk, then W ′ = ∪p

k=1W
′
k and, for any two sub-

sets, W ′
i ,W

′
j , 1 ≤ i, j,≤ P, i 6= j, it must be the case

that W ′
i ∩ W ′j = θ. Consequently, it is clear that

W =
∑p

k=1 Wk.

In (Scott et al., 2005) they define the average execution
time and the load balance in term of time. Since we rarely
predict the exact execution time in advance which is al-
most a factor of the workload in homogenous platform
(i.e., tk = cWk), whereas we can frequently predict the
workload in advance, we can redefine the average work-
load:

ave{Wk : 1 ≤ k ≤ P} =
1
P

P∑

k=1

Wk

Furthermore, one can define the load balance β, result-
ing from a predetermined decomposition strategy, to be
the ratio of the average workload to the maximum work-
load (i.e., to the biggest task):

β =
ave{Wk : 1 ≤ k ≤ P}
max{Wk : 1 ≤ k ≤ P} (4)

Therefore; a set of tasks is said to be load balanced if β
is closed to one. The optimal (perfect) load balance Wopt

is achieved if, for all k, 1 ≤ k ≤ P ,

Wk =
W

P
= Wopt (5)

in this case, β equals one.

On the other hand, inefficient distribution leads to load
imbalance D. Whenever there is a process k for which
the difference or deviation Dk = Wk−W/p is non-zero,
then the workload assigned to k-th processor exhibits an
imbalance equal to Dk. Negative value of Dk means that
k-th processor is assigned less workload than the average
share, while positive value of Dk indicates that processor
k is assigned more workload than the average workload
and can be considered ‘overloaded’. As a result of this
overload, the latter processor determines the overall par-
allel computation time. Consequently, the exhibited load
imbalance, D, resulting from a given distribution of the
workload W amongst P processors (Sakellariou, 1996),
given by

D = max
1≤k≤p

(Dk) = max
1≤k≤p

(Wk − W

p
) = Wmax − W

p
(6)

126

In order to assess the impact of the load imbalance
D on the overall parallel elapsed time, Sakellariou in
(Sakellariou, 1996) introduces a relative load imbalance
DR:

DR =
D

Wmax
=

Wmax − W
P

Wmax
= 1− W

PWmax
(7)

It is clear that DR takes values in the interval [0, 1 −
1/p]. Values close to zero denote perfect load balance
and a closed to linear-speedup is obtained. Whereas,
non-zero values denote load imbalance, values closed to
1 − 1/p denote highly imbalanced workload decompo-
sition, and no significant speedup from parallelization
can be expected. Thus, in order to increase the gains
from parallelization, the workload requires distribution
of the workload as evenly as possible. Therefore, we
must search for a strategy for mapping the workload such
that the relative load imbalance will be close to zero, and
the load balance β will be close to one.

In order to achieve static workload balance in a ho-
mogenous architecture, several approaches were intro-
duced in the literature. The most common approaches
for static loop partitioning on homogenous systems are:

• Block Partitioning (BP) (Kruskal and Weiss, 1985):
A simple way to distribute the iteration space (work-
load) of a single loop or a rectangular loop nest is
block partitioning BP. Assume that P is the number
of processors and N is the iteration determined by
the outer loop, where (P |N), one can gain perfect
workload partitioning using this technique. Block
partitioning distributes contiguous equal iterations
onto processors in a consecutive manner, which in
turn preserve data locality. Thus, Processor 1 exe-
cutes iterations 1 through N/P . Process 2 executes
iterations N/P + 1 through 2N/P . In general the
k-th processor, for all k, 1 ≤ k ≤ P executes itera-
tions ((k − 1)N/P + 1) through (kN/P).

• Cyclic Partitioning (CP): The second common dis-
tribution approach that can be used to distribute loop
workload is called cyclic partitioning CP or stride
mapping. Stride technique is a widely used tech-
nique, to decompose the loop iterations as evenly as
possible with each process being assigned a fixed
number of iterations of the outer loop in a round
robin fashion; process 1 executes iterations 1, P +1,
2P + 1,.., process 2 executes iterations 2, P+2,
2P+2, In general, the k-th processor, for all
k, 1 ≤ k ≤ P executes iterations k + iP , i =
0, 1, 2, . . . , (N/P − 1). Similar to BP approach,
the partitions of a rectangular iteration space thus
obtained consist of equal workload. However, CP
generates a fragmented partition (i.e. each individ-
ual set is a collection of non-contiguous subsets).
Consequently, this approach may exhibit poor per-
formance in many applications due to false sharing

(a well known phenomenon in computer architec-
ture).

With triangular loop nest partitioning, (BP) and
(CP) approaches are no longer sufficient; These ap-
proaches may generate unequal parts. More effi-
cient approaches for partitioning triangular iteration
space consisting of independent loops are:

• Balanced Chunk Scheduling (BCS) (Haghighat and
Polychronopoulos, 1993): Unlike block and cyclic
partitioning which distribute only the iterations of
the outer loop, BCS attempts to partition the total
number of iterations of the loop nest body among
processors as evenly as possible. An example of
the latter is shown in Appendix B of (Sakellariou,
1996). However, Haghighat and Polychronopolous
restrict their discussion to double loop. Moreover,
requires predetermination of the total number of in-
dex points in the iteration space.

• Canonical Loop Partitioning (CLP) (Sakellariou,
1996): Sakellariou introduces a notion of canonical
loop nest for loop mapping. CLP assumes that the
outermost loop can be partitioned into 2Pm−1 equal
parts, where P is the number of processors, and m is
the depth of a loop nest. However, this may gener-
ate empty subsets which lead to a load imbalance.
Moreover, CLP generates a non-contiguous parti-
tion. CLP employs an enumeration-based approach
to determine the total number of index points in an
iteration space. It relies on loop normalization in
the presence of non-unit strides. However, the intro-
duction of floors and ceilings renders this approach
nonviable in practice. Furthermore, determination
of the set boundaries in CLP is very cumbersome.

• Weight-Based Partitioning WBP (Kejariwal et al.,
2005): This approach discusses the partitioning of
loop nest with N-dimensional non rectangular itera-
tion space, with variable densities following a geo-
metric approach. Based on the assumption that there
do not exists any invariant iterator, it introduces a
procedure for partitioning an iteration space. The
procedure consists of three major steps. First, it
computes a partial weight of the convex polytope
as a function of the outermost index variable. They
follow a weight-based approach for estimating the
number of index points in a polytope. Next, the
algorithm computes the total weight of the convex
polytope corresponding to loop nest. Finally, it de-
termines the breakpoints along an axis correspond-
ing to the outermost index. WBP algorithm achieves
near-optimal and contiguous partitions of an itera-
tion space.

APPROXIMATION–BASED PARTITIONING

This work focuses on a perfect loop nest of depth 2 as
shown in Figure 1(b), where the bound of the inner loop

127

depends on the index of the outer loop. We attempt to dis-
cover an efficient, intuitive, and simple approach to dis-
tribute total iteration space among P processors as evenly
as possible (i.e., optimizing the load balance), so that the
load balance β is maximized, and the load imbalance D
as well as the relative load imbalance DR are minimized
as a result.

For simplicity, assume that the constant c = 1 (in
Equation 3), our goal becomes equivalent to finding the
optimal workload (Equation 5) for all k, 1 ≤ k ≤ P such
that

Wk = Wopt =
W

P
=

N(N + 1)
2P

Now, Consider Figure 1(b) and the corresponding
workload in Equation (3). Partitioning such loop nest
(along the axis corresponding to the outermost loop,
where the lower bound l = 1 and the upper bound u = N
into equi-workload (Ek) across P processors, is equiva-
lent to discovering the perfect lower bound lk and the
upper bound uk of the outer loop assigned to the k-th
processor (i.e., the k-th partition), for all k, 1 ≤ k ≤ P ,
such that

|Ek − W

P
|

is minimized (Sakellariou, 1996), where

u=N∑

i=l=1

i∑

j=1

1 =
P∑

k=1

uk∑

i=lk

i∑

j=1

1 =
P∑

k=1

Wk

l1 = l = 1, up = u = N

E1 =
u1∑

i=l1

i =
u1(u1 + 1)

2
(8)

and, for all 2 ≤ k ≤ P , lk = uk−1 + 1

Ek =
uk∑

i=lk

i∑

j=1

1 =
uk(uk + 1)

2
− uk−1(uk−1 + 1)

2
(9)

Recalling that l1 = l = 1 and lk = uk−1 + 1, for all
2 ≤ k ≤ P , we can express the problem of finding the
perfect load balance as that of finding integer uk, 1 ≤
k ≤ P , such that

Ek =
uk∑

i=lk

i∑

j=1

1 ≈ W

P

Based on Equation (9), it is clear that

k∑

j=1

Ej =
uk∑

i=l1

i =
uk(uk + 1)

2

and

k

P
W =

k

P

N(N + 1)
2

,

we can formulate the following approximation equa-
tion:

k∑

j=1

Ej =
uk∑

i=l1

i =
uk(uk + 1)

2
≈ k

P
W =

k

P

N(N + 1)
2

Consequently, we obtain

u2
k + uk =

k

p
N2 +

k

p
N (10)

Assuming that the difference between the terms uk and
k
pN in Equation (10) is very small (i.e., uk ≈ k

pN), it
has no significant impact on the equation in front of the
exponent terms (u2

k and k
pN2). Therefore, they can be

omitted from the equation, for the purpose of simplicity.
Thus, the direct solution for the k-th upper bound uk is

uk = N

√
k

p

Clearly, it appears that integer solutions for uk are not
common; thus rounding uk to nearest integer, the formula
becomes:

uk = round(N

√
k

p
) (11)

In the following section, we introduce an example us-
ing this approach with the gained analytical and experi-
mental results.

EVALUATION AND EXPERIMENTAL RESULTS

To illustrate and evaluate the proposed partitioning ap-
proach, consider the code segment shown in Figure 1(b)
for N = 800, which adds two upper triangular matri-
ces (800x800 matrices). A similar example was pro-
vided in (Sakellariou, 1996)(sec. 2.3.1.1), to illus-
trate Balanced Chunk Scheduling originally approached
in (Haghighat and Polychronopoulos, 1996). In order to
partition the iteration space along the outer loop (i loop)
across 8 processors, the iterations are distributed us-
ing the proposed approach following Equation (11). As
shown in Table 1, processor 1 executes iteration l1 = 1
through u1 = 283 , processor 2 executes iterations 284
through 400, and so on. Also, the table shows the corre-
sponding workload Ek using Equations 8 and 9, the load
deviation assigned to the k-th processor (Dk = Ek−W

P),

128

Table 1: Partitioning Loop Nest (for N = 800) Across 8
Processors, Corresponding Workload Ek, Workload De-
viation Dk, and Dk/Emax

Iteration Distribution
Pk lk − uk Ek Dk D′

k

1 1-283 40186 136 0.0034
2 284-400 40014 -36 -0.0009
3 401-490 40095 45 0.0011
4 491-566 40166 116 0.0029
5 567-632 39567 -483 -0.0119
6 633-693 40443 393 0.0097
7 694-748 39655 -395 -0.0098
8 749-800 40274 224 0.0055

and the ratio of the k-th workload deviation to the maxi-
mum workload D′

k (where D′
k = Dk

Emax
).

As a result of this distribution, the achieved average
workload is equal to the perfect workload W

P = 40050,
and the maximum assigned workload Wmax = W6 =
40443. Consequently, the exhibited load balance β =
0.994438 (equation 4) is close to 1, which indicates
that the near-optimal partitioning of the workload W
amongst P processors is achieved.

Similarly, it is clear that the resulting load imbalance
is equal to (D = 393), according to Equation 6 and the
relative load imbalance DR using Equation 7 is equal to
(0.0097), which can be considered close to zero.

It should be noted that when implementing our ap-
proach in the provided example in (Haghighat and Poly-
chronopoulos, 1993) (for Balanced Chunk Scheduling
BCS approach), as well as in the provided case study
in (Kejariwal et al., 2005) for Weight-Based Partitioning
WBP approach, it obtains same results.

In order to illustrate the Weight-Based Partitioning
WBP technique for a triangular non-uniform iteration
space (Kejariwal et al., 2005), they consider the well
known Sieve of Eratosthenes (TSoE) algorithm that iden-
tifies all prime numbers up to a given number M . The
following shows the kernel (loop nest) of the (TSoE) for
N =

√
M :

doall i = 3, N, 2
doall j = i, M, 2*i

LOOP BODY
end doall

end doall

To distribute the workload amongst P processors ac-
cording to the WBP, we have to follow several steps:
begin with checking the existence of an invariant itera-
tor. If exists, then determine a partial weight of the con-
vex polytope corresponding to the iteration space using
a geometric approach. Next, determine the total weight
of the convex polytope. Finally, the breakpoints (i.e.,

bounds) for the partitions can be determined. Table 2,
shows a comparison of the determined upper bounds (uk,
for 1 ≤ k ≤ P) (before rounding the results into integer
numbers for comparison purpose) using WBP and our
proposed (ANOP) mapping approaches for M = 10000
and N = 32 on different number of processors P .

Table 2: The Determined Upper Bounds (uk) for Parti-
tioning Loop Nest (of N = 32) Across 2 Processors, 3
Processors, and 4 Processors

Determined Upper Bounds (uk)
P = 2

k ANOP WBP
1 22.63 22.66
2 32.00 32.00

P = 3
k ANOP WBP
1 18.48 18.57
2 26.13 26.14
3 32.00 32.00

P = 4
k ANOP WBP
1 16.00 16.13
2 22.63 22.67
3 27.71 27.72
4 32.00 32.00

The results of the provided examples show that the
obtained partitions using our ANOP, the BCS, and the
WBP mapping approaches are almost the same. Thus,
we can expect equivalent performance of these mapping
approaches and better performance than the BP and the
CP techniques.

To analyze and evaluate the complexity of parallel
computing, a number of performance metrics have been
used over the years. The most common being elapsed
time, speedup, and efficiency. The elapsed time (parallel
runtime), TP , is the time elapsed from the start of par-
allel computation to the moment when the last processor
finishes execution. Beside workload W (problem size),
it depends on the number of processors, P , the archi-
tecture of the parallel computing platform, and the al-
gorithm. Therefore, the parallel runtime is measured by
counting computational time and various classes of over-
heads: unparallelised code, parallel start-up, synchro-
nization, load imbalance, and communication (routing)
overheads (Sakellariou, 1996). The speedup, S, is de-
fined as the ratio of the time taken to solve a problem on
a single processor, TS , using the best known version of a
program to the time required to solve the same problem
on a set of P parallel processors TS/TP . Finally, effi-
ciency is defined as the ratio of of speedup to the number
of processors S/P .

In order to evaluate the performance gains of the parti-
tioning approach introduced in this work, several experi-

129

ments have been conducted. Our goal has been to justify
and assess the effectiveness of the load balance achieved
by the proposed approach, and to justify the theoretical
results.

In essence, three mapping techniques have been eval-
uated; namely Cyclic Partitioning CP, Block Partition-
ing, and our ANOP technique. The benchmark used
in our experiments contains a loop nest shown in Fig-
ure 1(b) (for N = 300000). These experiments were
implemented using the Java Parallel Virtual Machine
(JPVM) (Ferrari, 1997), which is an explicit message–
passing based parallel programming interface library and
similar to the well known (PVM) library. Furthermore,
the experiments were carried out on a platform that con-
sists of 8 personal computers (PC’s). These computers
were of 3000 Mhz Pentium 4 processors with 512 MB
of DDR2-RAM and each runs its own Windows XP op-
erating system. The nodes were interconnected using
100Mbps Ethernet local area network (LAN).

The experiments were run several times on different
number of computers. Figure 2 shows the average to-
tal parallel computational time (elapsed time) of the loop
nest (for N = 300000) on single, 2, 4, 6, and 8 com-
puters. The figure depicts the performance of the three
tested mapping approaches. It is clear that the proposed
approach ANOP performs better than the BP and CP ap-
proaches.

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

E
x
e

c
u

ti
o

n
T

im
e

 (
s
e

c
)

Number Of Processors

ANOP
CP
BP

Figure 2: Execution Time by Different Partitioning Ap-
proaches and Number of Processors

Furthermore, Figure 3 reveals the speedup obtained by
increasing number of processors by different approaches.
It is clear that the ANOP achieves linear speedup and per-
forms better than the other techniques. Though there is
no interprocess communication and synchronization dur-
ing runtime of the used benchmark program, the speedup
is significantly lower than the number of processors,
which is obvious. This can be related to the communica-
tion overhead caused by the used network platform. On
the other hand, these figures show the impact of the load
imbalance overhead, when using the BP and the CP tech-
niques, on the elapsed time and speedup.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number Of Processors

ANOP
CP
BP

Figure 3: Speedup by Different Partitioning Approaches
and Number of Processors

CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel static simple intu-
itive approach for partitioning the iteration space of a per-
fect triangular loop nest (double loop nest) for homoge-
nous environment of processors. We partition an iteration
space along an axis corresponding to the outermost loop
among processors and achieve a near–optimal partition-
ing. The partition thus obtained consists of contiguous
and disjoint subsets, which facilitates exploitation of data
locality. Moreover, the proposed approach can be easily
implemented: unlike the other near optimal studied tech-
niques, it does not need precomputation of the workload;
a near optimal partitioning can be achieved by determin-
ing the lower and upper bounds (of the outermost loop
index for each processor to carry out) as a function of the
processor’s number, total number of involved processors,
and the upper bound of the original outermost loop.

The analytical results show that, using the proposed
approach, we can achieve near optimal load balance and
can minimize the load imbalance in parallel processing
of a perfect triangular loop nest. Furthermore, the con-
ducted experiments assess and justify the analytical re-
sults. The experimental results show the impact of the
load imbalance on the elapsed time and the speedup
achieved by different approaches.

As a future work, we would like to extend our ap-
proach to partition iteration space dynamically in a het-
erogenous environment.

REFERENCES

Beaumont, O.; V. Boudet; A. Legrand; F. Rastello; and Y.
Robert. (2002). “Static Data Allocation and Load Balancing
Techniques for Heterogeneous Systems”. In C.K. Yuen, edi-
tor, Annual Review of Scalable Computing, volume 4, chap-
ter 1. World Scientific.

Chaundhary, V. et al. (1996). “Design and Evaluation of an En-
vironment APE for Automatic Parallelization of Programs”.

130

In Proceedings of the 1996 International Symposium on Par-
allel Architectures, Algorithms and Networks Page: 77.

D’Hollander, E. H. (1992). “Partitioning and Labeling of Loops
by Unimodular Transformations”. IEEE Transaction on Par-
allel and Distributed Systems, 3(4):465-476.

Fahringer, T. (1998). “Efficient Symbolic Analysis for Paral-
lelizing Compilers and Performance Estimator”. The journal
of Super Computing, 12, 227-252.

Ferrari, A. J. (1997). “JPVM:Network Parallel Com-
puting in Java”. Technical Report CS-97-29 Depart-
ment of Computer Science University of Virginia, Char-
lottesville, VA 22903, USA. (December), available from:
http://www.cs.virginia.edu/jpvm/doc/jpvm-97-29.pdf.

Haghighat, M. and C. Polychronopoulos. (1993). “Sym-
bolic Analysis: A Basis for Parallelization, Optimiza-
tion, and Scheduling of Programs”. In Proceed-
ings of the Sixth Workshop Languages & Compilers
for Parallel Computing, (Aug.) 1993. available from:
http://citeseer.ist.psu.edu/51605.html.

Haghighat, M. and C. Polychronopoulos. (1996). “Sym-
bolic Analysis for Parallelizing Compilers”. ACM Transac-
tions on Programming Languages and Systems, 18(4):477-
518,(July).

Hancock, D. J.; J. M. Bull; R. W. Ford; and T. Freeman. (2000).
“Feedback Guided Dynamic Scheduling of Nested Loops”.
In Proceedings of IEEE International Workshop on Parallel
Processing IEEE Computer Society Press, Pages 315-321,
Elsevier Science (January), ISBN 0769507719.

Hancock, D. J.; J. M. Bull; R. W. Ford; and T. Freeman. (2000).
“An Investigation of Feedback Guided Dynamic Scheduling
of Nested Loops”. In Proceedings International Workshop
on Parallel Processing 2000, Toronto, Ont., Canada, pp 315-
321. ISBN:0-7695-0771-9.

Hudak, D. E. and S. G. Abraham. (1990). “Compiler Tech-
niques for Data Partitioning of Sequentially Iterated Parallel
Loops”. ACM.

Jialin, Ju. (1998). “Automatic Parallelization of Non-uniform
Loops”. PHD thesis, Jan, 1998 , Wayne State University,
155 pages; AAT 9915677, ISBN 9780599143999.

Kejariwal, A.; P. DAlberto; A. Nicolau; and C. D. Poly-
chronopoulos. (2004). “A Geometric Approach for Parti-
tioning N-Dimensional Non-Rectangular Iteration Spaces”.
In Proceedings of the 17th International Workshop on
Languages and Compilers for Parallel Computing, West
Lafayette.

Kejariwal, A.; A. Nicolau; U. Banerjee; C. Plychronopoulos.
(2005). “A Novel Approach for Partitioning Iteration Spaces
with Variable Densities”. Symposium on Principles and
Practice of Parallel Programming, (PPoPP),(June).

Kruskal, C. P. and A. Weiss. (1985). “Allocating Indepen-
dent Subtasks on Parallel Processors”. IEEE Transactions
on Software Engineering, 11(10):10011016.

Lamport, L. (1974). “The Parallel Excecution of Do Loops”.
Communication of the ACM, 17-2,(Feb.), pp. 83-93.

Li, Y.; T. Callahan; E. Darnell; R. Harr; U. Kurkure; and J.
Stockwood.(2000). “Hardware-software Co-design of Em-
bedded Reconfigurable Architecture”. Proceedings 37th
conference on Design Automation, pp 507-512, Los Ange-
les, Ca.

Petkov, D.; R. Harr; and S. Amarasinghe. (2002). “Efficient
Pipelining of Nested Loops: Unroll-and-Squash”. In 16th In-
ternational Parallel and Distributed Processing Symposium,
Fort Lauderdale, Florida, (April).

Polychronopoulos, C.; D. J. Kuck; and D. A. Padua. (1986).
“Execution of Parallel Loops on Parallel Processor Sys-
tems”. In Proceedings of the 1986 International Conference
on Parallel processing, page 519-527, (August).

Sakellariou, R. (1996). “On the Quest for Perfect
Load Balance in Loop-Based Parallel Computa-
tions”. PhD Thesis, Department of Computer Sci-
ence, University of Manchester,1996. available at
http://citeseer.ist.psu.edu/sakellariou98quest.html.

Scott, L. R.; T. Clark; and B. Bagheri. (2005). Scientific Paral-
lel Computing. Princeton University Press.

Xue, C.; Z. Shao; M. Liu; and E. H.-M Sha. (2005). “Iter-
ational Retiming: Maximize Iteration-Level Parallelism for
Nested Loops.” Proceedings of the 2005 ACM/IEEE/IFIP
International Conference on Hardware - Software Codesign
and System Synthesis (ISSS-CODES’05), New York, (Sept.).

AUTHOR BIOGRAPHIES

NEDAL M.S. KAFRI was born in Attil, Palestine and
received his education at the Technical University of
Plzen̆ in Czech Republic, where he obtained his MSc.
degree in Control Systems and Installation Management
in 1982. He worked at Al-Quds University as a lecturer
at the Computer Science Department for fifteen years.
Then he moved to the Czech Technical University in
Prague in 1997, where he obtained his Ph.D. degree in
Distributed Systems in 2002. Now he is a member of the
academic staff of the Department of Computer Science
of Al-Quds University in Palestine. His research interest
is in Distributed and Parallel Computing. His email is
nkafri@science.alquds.edu and his Webpage
is http://www.alquds.edu/staff/kafri.

JAWAD ABU SBEIH was born in Hebron-Palestine in
1969 and obtained his first degree in Computer Science
from Al-Quds Open University (QOU). His MSc de-
gree was obtained from Al-Quds University in 2008.
He is interested in parallel and distributed systems.
He worked at Al-Quds Open University since 1993 as
Teacher Assistant and the Continuous Learning Center
coordinator at QOU. Now he is a lecturer in the depart-
ment of computer science at QOU. His email address
is jabusbeih@qou.edu. The website of QOU is
http://www.qou.edu.

131

132

Databases in Grid and High Performance
Computing Environments

133

134

GRID DATABASE MANAGEMENT: ISSUES, REQUIREMENTS
AND FUTURE DIRECTIONS

Sandro Fiore, Salvatore Vadacca, Alessandro Negro and Giovanni Aloisio

University of Salento & SPACI Consortium
Euro Mediterranean Centre for Climate Change

viale Gallipoli, 49 – 73100 Lecce - Italy
E-mail: {sandro.fiore, salvatore.vadacca, alessandro.negro, giovanni.aloisio}@unile.it

KEYWORDS

Data Grid, Grid Database, Database Access, Database
Management, Database Integration.

ABSTRACT
Data grids allow to store, manage and share large data
collections, huge amount of files, geographically
distributed databases, etc. across virtual organizations.
Grid data and metadata management is becoming more
and more important as the number of involved data
sources is continuously increasing and decentralizing.
Grid database management services represent a basic
and fundamental building block for the next generation
petascale production grids. In this paper we present the
fundamental concepts related to grid-database access,
management and integration, highlighting main
requirements and issues, describing research activity in
this area and dealing with new Open Grid Forum related
standards.

INTRODUCTION
Grids encourage and promote the publication, sharing
and integration of scientific data, distributed across
Virtual Organizations (Foster and Kesselman 1998).
Grid computing is widely regarded as a new field,
distinguished from traditional distributed computing
owing to its main focus on large-scale resource sharing
and innovative high-performance applications.
It can be considered as an enabling paradigm allowing
organizations to easily share, virtualize, integrate and
efficiently manage wide spread resources
(computational and data sources, sensors and
instrumentations, etc.) in a grid environment. Grids link
together servers, data sources, tools, services and
applications into a single environment by means of a
specific glue named grid middleware.
In the last years many efforts were devoted to the
management (both coarse and fine grained) of data
(grid-storage services, storage resource managers,
metadata services, replica catalogues, grid-database
access and integration services, etc.). Data management
represents the real challenge for the next generation
petascale grid environments since current production
grids are able to produce hundreds of petabytes of data
in the next years.

In the last few years, there was an increasing interest in
fine grained (database related) grid data management
activities and services connected with database access,
metadata management, data integration, data
transformation, data flow, etc.
Grid Services for database access and integration play a
strategic role and provide added value to a production
grid environment since they allow to aggregate data,
join datasets stored at different sites, infer new
knowledge by analyzing structured and distributed data,
manage monitoring and accounting information, etc.
In this paper we will talk about the fundamental
concepts related to grid-database access, management
and integration, highlighting main requirements and
issues, describing research activity in this area and
dealing with new Open Grid Forum related standards.
The outline of the paper is as follows: in the 2nd section
we talk about data grids, whereas in the 3rd section we
describe in detail key issues. The 4th section concerns
data requirements for grid database services as well as
the 5th section shortly introduces new standards and
specifications in this area. The 6th section recalls related
works whereas the 7th section describes a specific case
study (GRelC Project). Finally, we draw our
conclusions.

GRID PARADIGM AND DATA GRIDS
Production grids (i.e. EGEE, Teragrid (Pennington
2002)) produce huge amounts of scientific data that
must be available “on the grid” to scientific and
engineering applications for further analysis and
computations.
Data Grids provide the proper data service framework
for Computational Grids, creating virtualized access to
widespread data sources (both files and databases).
Even if in the last years research activities related to
Data Grids have mainly focused on coarse grained data
management (files), accessing and integrating
legacy/new databases (records) is becoming a
fundamental issue.
A grid infrastructure is basically made up of two
components: computational and data grids.
While a computational grid provides the computing
power needed to run applications, a data grid provides a
robust framework for data management services that
enables data access, integration, transfer, replication,
virtualization, distribution, etc.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

135

GRID-DBMS: KEY ISSUES
A grid database management system (Aloisio et al.
2004) should provide transparent, secure and efficient
management (in terms of database access, integration,
federation, transformation, etc.) of data sources
(relational, hierarchical, object-oriented, etc.) in a grid
environment. Since the beginning of the grid era many
efforts were directed towards computational access (e.g.
job submission/monitoring, Globus GRAM (Foster
2005), etc.) and storage management (e.g. file transfer,
GridFTP (Allcock et al. 2005) based storage, SRB
(Rajasekar et al. 2003)). Grid database management was
addressed starting from the year 2000 (EDG-Spitfire
(Bell et al. 2002), GRelC (Aloisio et al. 2005), and
OGSA-DAI (Antonioletti et al. 2005)).
In the following we describe some basic elements
connected with database management in distributed
environments, highlighting how they impact on the
application domains (i.e. e-Science) and why they are so
relevant for end users (i.e. scientists). In particular, next
subsections will be devoted to the discussion of data
representation, data organization, data models, query
languages, data access, data integration, access control
and data flow.

Data Representation
In order to be domain-independent, data grids must
provide support (in terms of access and management) to
every type of data format, structure and representation.
Data can be both structured and unstructured,
characterized by different formats, coding, precision,
accuracy and semantics.
Some examples concern bioinformatics (i.e. textual
files, relational data sources), astrophysics (i.e.
relational DBMS with postGIS extensions), climate
scientists (i.e. XML) data banks.

Data Organization, Data Models and Query
Languages

Data can be organized following several data models
such as relational and hierarchical. Support in terms of
relational or XML engines is widely provided by
existing systems: Postgres, MySQL, IBM/DB2, etc. as
well as XIndice, eXist, etc. Such DBMSs provide full
support in terms of database access and management
functionalities, API, SDK, CLI, etc. Different data
models adopt different query languages such as SQL
(for the relational one) and XPath and XQuery (for the
hierarchical one); data grids must provide support to all
of them.

Data Access
Even if DBMSs provide a lot of functionalities for the
management of data sources, they are not fully
compatible with existing grid middleware (i.e. gLite or
Globus (Foster and Kesselman 1997)). They can be
accessed in grid by using a “grid-DBMS” interface. This
grid interface (which has to play a front-end role) must,
obviously, provide full support to all of the query

languages (SQL, XQuery, XPath, etc.) concerning the
target data resources (transparency requirement with
regard to the query language).
The specific part of the grid-DBMS that makes a data
resource accessible in grid (or “grid enabled”) is called
Grid Database Access Service (Grid DAS).
It must provide secure, transparent, robust and efficient
access to heterogeneous and distributed databases
exposing standard interfaces to enable interoperability
with other grid components and/or services.
Several research projects exploit the service-in-the-
middle or front-end approach to provide such kind of
functionalities, that is, they focus on the development of
a transparent, secure and robust grid interface to
existing DBMSs. On the contrary, vendor-specific
products (i.e. Oracle 11g) generally exploit an
embedded approach providing within the product,
software modules to run on a grid environment (e.g.
GSI (Tuecke 2001) support).

Data Integration
While the Grid DAS is a basic service to expose
databases in grid (it provides a first level of
virtualization), the Grid Data Integration Service (Grid
DIS) is a further necessary building block if we want to
provide aggregation capabilities (second level of
virtualization). An interesting example is the OGSA-
DQP (Alpdemir et al. 2003).
A Grid DIS can be centralized or distributed and in
some cases it is integrated into the related Grid DAS
providing what we call a Grid DAIS (e.g. GRelC DAIS
which will be described later).
Data integration is strongly challenging since it allows
both to integrate data within several application-level
domains (bioinformatics, astrophysics, financial, etc.)
and system-level distributed environments for
monitoring and accounting purposes, etc.

Data Access Control
Data access control is more important to ensure that the
confidentiality of the data is preserved/maintained
against unauthorized accesses.
The facilities that the Grid provides to control access
must be very flexible in terms of the combinations of
restrictions, available policies, etc. User-centric and
VO-centric data access control allow managing policies
at each level of granularity addressing local site
autonomy and user-level policies management (in the
first case) and flexibility, scalability and manageability
in the VO-level policies management (in the second
case).
A combined User-VO data access control allows mixing
the benefits related to the two approaches (any
combination of insert, update, and delete privileges can
be defined with the right level of granularity).
Moreover, the Grid must provide the ability to control
access based on user role (as it usually happens for
DBMSs). Role based access control is fundamental for
collaborative working, when several individuals may
perform the same role at the same time and provides a

136

scalable and manageable way to split users in sub-
classes with specific and well-known privileges.
Granting and revoking activities must be dynamically
performed by administrators and should be easily
carried out by using high level interfaces such as data
grid portals.
Data access policies should be managed at the Grid-
DBMS layer, without entirely relying on the back-end
framework. This could (i) enable data access control for
trivial data resources such as text files and (ii) prevent
the access attempts to the back-end systems for
unauthorized users.

MAIN REQUIREMENTS

In the following we highlight key requirements related
to grid-database management, taking into account the
most important ones: transparency which is strongly
connected with data virtualization, security which is
fundamental to protect data, efficiency as a performance
index, and, finally, interoperability to ease grid data
service composition/interaction.

Transparency

Transparency is a common requirement for grid services
and fundamental to make virtualization a reality. There
are various possible types of transparency in a
distributed environment. In particular, it relates to:
1. physical data location: the physical location of a

database in the grid must be hidden/virtualized by
the grid service;

2. naming: an application must be able to access a
data source without knowing its name or location.
These kind of information must be managed by
means of mapping, alias, etc. which conceal data
that are not relevant to the end-user, such as
connection string for the databases, DBMS port,
login and password, etc.;

3. data replication: replication of data improves
performance, availability and fault tolerance. The
user must not be aware of the
existence/management of multiple physical copies
of the same data source; she has just to deal with
the logical (virtualized) data source name.

4. DBMSs heterogeneity: today many different
RDBMSs exist, such as ORACLE, IBM/DB2,
PostgreSQL, MySQL, SQLite, etc. Moreover, an
increasing number of applications interact with not
relational databases such as flat files and XML-
based documents in the bioinformatics and climate
change domains. This kind of heterogeneity (which
includes different APIs, data types, physical
support) must be properly handled in order to
provide a uniform access interface to different data
sources and a grid database access service
independent of the back-end systems.

Efficiency

Performance plays a fundamental role in the data grid
environment. High throughput, concurrent accesses,

fault tolerance, reduced communication overhead, etc.,
are important goals that must be achieved by exploiting
among the others data localization and query
parallelism. Moreover, efficient data delivery
mechanisms can reduce the connection time (parallel
streams) and the amount of transferred data (data
compression).

Security
Security is crucial for the management of a database in
data grid environment. Data security aims at protecting
data against unauthorized accesses by (i) preventing
unauthorized users from accessing data and (ii)
protecting information exchanged in the data grid
network. Authentication is strongly required to check
user’s identity; authorization concerns privileges and
read/write permissions. Most important
production/research grids adopt the de-facto standard
for security Globus Grid Security Infrastructure (GSI).
It provides full security support concerning data
encryption, data integrity, protection against replay
attacks and detection of out of sequence packets. GSI is
widely used both in gLite and Globus based grid
environments.

Interoperability
Interoperability can be achieved by standard adoption.
Today the adopted paradigm is basically service
oriented; more specifically WS-I approach (which
means based on SOAP, XML and WSDL W3C
standards) is well suited for basic interoperability. OGF
specifications issued by the DAIS-WG and discussed in
the following section mainly focus grid database access
aspects.

NEW STANDARDS AND SPECIFICATIONS
From a standardization point of view, in 2002 the
Global Grid Forum (now Open Grid Forum) established
a working group named DAIS (Data Access and
Integration) to define a complete and effective set of
specifications about these challenging topics. Since the
beginning, the DAIS Working Group provides an
umbrella under which many efforts are undertaken and
people from all around the world are grouping together,
giving a strong contribution in this area to the scientific
grid community.
Interesting activities about Database Access and
Integration recently produced the WS-DAI (Web
Service Data Access and Integration) family of
specifications (WS-DAI, WS-DAIR and WS-DAIX)
(Antonioletti et al. 2006) which defines a set of web
service interfaces to relational or XML data resources.
The base interfaces and properties for data access
services are described in the Web Services Data Access
and Integration (WS-DAI) specification. The WS-DAIR
specification extends WS-DAI interfaces to allow
access to and provide descriptions of relational data
resources. Relational data resources are assumed to be
composed of tabular data structures such as relations

137

and resultsets which are typically accessed either using
SQL queries or by row iteration, respectively. The WS-
DAIX specification extends WS-DAI interfaces to allow
access to and provide descriptions of XML databases.
XML data resources are assumed to consist of
collections of XML documents that are accessed and
modified using XPath, XQuery and/or XUpdate.
Interfaces are provided for these languages in this
specification.
The keyword highlighted by this standardization activity
is interoperability, which can be achieved by different
grid middleware providing reference implementations
of these specifications.

MAIN PROJECTS

In the DataGrid area several projects addressed grid
database management. In particular, the first three
were: GRelC (which will be widely described in the
next Section), Spitfire and OGSA-DAI.
The Spitfire Project was part of the Work Package 2 of
the European Data Grid Project and provided a means to
access relational databases from the grid. It was a very
thin layer on top of an RDBMS (by default MySQL)
that provides a JDBC driver. It used Web Service
technology (Jakarta Tomcat) to provide SOAP-based
RPC (through Apache Axis) to a few user-definable
database operations.
The Open Grid Services Architecture Data Access and
Integration (OGSA-DAI) (Karasavvas et al. 2005) is
another project concerned with constructing middleware
to assist with access and integration of data from
separate data sources via the grid. It is engaged in
identifying the requirements, designing solutions and
delivering software that will meet this purpose. The
project was conceived by the UK Database Task Force
and is working closely with the Global Grid Forum
DAIS-WG and the Globus team. OGSA-DAI provides a
more complex framework with regard to Spitfire and it
is currently used in several e-Science projects.

CASE STUDY: GRELC PROJECT
The Grid Relational Catalog (GRelC) is a research
project started at the University of Salento (Italy) and
addressing grid-database management issues. It
basically aims at providing data grid solutions to access,
manage and integrate data sources (e.g. relational
databases).
Currently, the top service provided by the GRelC
project is GRelC DAIS. It is a general purpose data grid
service for database access and integration. This service
acts as a standard front-end based on the well-known
SOA approach. It provides both basic and advanced
primitives to access, query, integrate, manage and
interact with different data sources, providing a high
level of transparency, concealing the back-end
heterogeneity, middleware details related to Globus GSI
and VOMS (Alfieri et al. 2003) and other low level
issues. It is WS-I based, runs both on Globus and gLite
grid middleware/environments and it provides efficient
grid-enabled query mechanisms. From a security point

of view, it supports both global (by means of VOMS)
and local (on the GRelC DAIS side) authorization levels
which means (i) fine and coarse grained data policies
support and (ii) role-based management.
The GRelC DAIS provides a wide set of functionalities
which includes: query submission, grid-database
management related to user/VO/ACL, etc. advanced
functionalities to transparently and securely integrate
heterogeneous, distributed and geographically spread
grid data sources (through P2P (Aloisio et al. 2007)
connected GRelC DAIS nodes), etc. Moreover, it offers
efficient data delivery (query resultsets) exploiting
compression and streaming. Support for synchronous
and asynchronous queries, is also provided.
The GRelC DAIS is able to transparently and securely
integrate heterogeneous, distributed and geographically
spread grid data sources, through a connected P2P-
based network of GRelC DAIS nodes. The GRelC
DAIS is very versatile so it can be used both at VO and
site level. It can/is used in both ways depending on
VO/user/database constraints and requirements. There is
no single point of failure and no centralized
management for this service due to the scalable P2P
architecture.
Finally, by means of the GRelC Portal, GRelC DAIS
nodes can be managed via web. The GRelC Portal eases
the access and integration of grid-databases. It
completely replaces the Command Line Interface, does
not need additional configuration/installation of
software and it provides a seamless and ubiquitous way
to manage data sources in a grid environment.
Currently the GRelC DAIS is used as core service of the
Euro-Mediterranean Centre for Climate Change
(CMCC) (Fiore et al. 2008) grid metadata handling
framework. Moreover, a wide deployment on the
GILDA t-Infrastructure (Andronico et al. 2005) is also
available for tutorials and training activities.

CONCLUSIONS

Data Grids represent the basic framework for next
generation petascale grid environments. They provide a
set of services to store, access, share, manage,
distribute, synchronize and integrate massive amounts
of data distributed across heterogeneous and
geographically spread grid resources.
In this survey we presented the basic concepts related to
grid-database access, management and integration,
highlighting main requirements (with particular
emphasis on transparency/virtualization) and issues.
We also described research activity in this area, in
particular describing the GRelC project as case study.
Finally, we discussed the novel Open Grid Forum WS-
DAI family of specifications as a key to address
interoperability among grid database access services.

REFERENCES
Alfieri, R.; R. Cecchini; V. Ciaschini; L. dell'Agnello; A.

Frohner; A. Gianoli; K. Lorentey; and Fabio Spataro.
2003. “VOMS, an Authorization System for Virtual

138

Organizations”. In Proceedings of European Across Grids
Conference. 33-40.

Allcock, W.; J. Bresnahan; R. Kettimuthu; M. Link; C.
Dumitrescu; I. Raicu; and I. Foster. 2005. “The Globus
Striped GridFTP Framework and Server”. ACM Press.

Aloisio, G.; M. Cafaro; S. Fiore; and M. Mirto. 2004. “The
GRelC Project: Towards GRID-DBMS”. In Proceedings
of the IASTED PDCN Conference (Innsbruck, Austria,
Feb. 17-19). IASTED, 1-6.

Aloisio, G.; M. Cafaro; S. Fiore; and M. Mirto. 2005. “The
Grid Relational Catalog Project”. In Advances in Parallel
Computing - Grid Computing: The New Frontiers of High
Performance Computing. L. Grandinetti. Elsevier, 129-
155.

Aloisio, G.; M. Cafaro; S. Fiore; M. Mirto; and S. Vadacca.
“GRelC Data Gather Service: a Step Towards P2P
Production Grids”. 2007. In Proceedings of 22nd ACM
Symposium on Applied Computing (Seoul, Korea, Mar.
11-15). Vol. I, 561-565.

Alpdemir, M.N.; A. Mukherjee; N.W. Paton; P. Watson;
A.A.A. Fernandes; A. Gounaris; and Jim Smith. 2003.
“OGSA-DQP: A service-based distributed query processor
for the Grid”. In Proceedings of UK e-Science All Hands
Meeting Nottingham (EPSRC, Sep. 24).

Andronico, G.; V. Ardizzone; R. Barbera; R. Catania; A.
Carriera; A. Falzone; E. Giorgio; G. La Rocca; S.
Manforte; M. Pappalardo; G. Passaro; and G. Platania.
2005. “GILDA: The Grid INFN Virtual Laboratory for
Dissemination Activities”. TRIDENTCOM, 304-305

Antonioletti, M.; M.P. Atkinson; R. Baxter; A. Borley; N.P.
Chue Hong; B. Collins; N. Hardman; A. Hume; A. Knox;
M. Jackson; A. Krause; S. Laws; J. Magowan; N.W.
Paton; D. Pearson; T. Sugden; P. Watson; and M.
Westhead. 2005. “The Design and Implementation of Grid
Database Services in OGSA-DAI”. Concurrency and
Computation: Practice and Experience, Vol. 17, Issue 2-4,
357-376.

Antonioletti, M.; A. Krause; N.W. Paton; A. Eisenberg; S.
Laws; S. Malaika; J. Melton; and D. Pearson. 2006. “The
WS-DAI Family of Specifications for Web Service Data
Access and Integration”. ACM SIGMOD Record, Vol. 35,
No. 1, 48-55.

Bell, W.H.; D. Bosio; and W. Hoschek. 2002. “Project spitfire
- towards Grid Web Service databases”. Database Access
and Integration Services Working Group, 5th Global Grid
Forum (Edinburgh, UK).

Fiore, S.; Vadacca S.; Negro A.; and G. Aloisio. 2008. “Euro-
Mediterranean Centre for Climate Change Data Grid”.
Submitted to “DAPSYS 08 (Debrecen, Hungary, Sep 3-5)

Foster, I.; and C. Kesselman. 1997. “Globus: A
Metacomputing Infrastructure Toolkit.” International
Journal on Supercomputer Applications Vol. 11, No. 2,
115-128.

Foster, I. and C. Kesselman. 1998. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann.

Foster, I. 2005. “Globus Toolkit Version 4: Software for
Service-Oriented Systems”. In Proceedings of IFIP
International Conference on Network and Parallel
Computing. 2-13.

Karasavvas, K.; M. Antonioletti; M.P. Atkinson; N.P. Chue
Hong; T. Sugden; A.C. Hume; M. Jackson; A. Krause; and
C. Palansuriya. 2005. “Introduction to OGSA-DAI
Services”. Lecture Notes in Computer Science, Vol. 3458,
1-12.

Pennington, R. 2002. “Terascale clusters and the teragrid”. In
Proceedings of High Performance Computing Asia (Dec
16-19), 407–413.

Rajasekar, A.; M. Wan; R. Moore; W. Schroeder; G.
Kremenek; A. Jagatheesan; C. Cowart; B. Zhu; S.Y. Chen;
and R. Olschanowsky. 2003. “Storage Resource Broker -
Managing Distributed Data in a Grid”. Computer Society
of India Journal, Special Issue on SAN, Vol. 33, No. 4
(Oct), 42-54.

Tuecke, S. 2001. “Grid Security Infrastructure (GSI)
Roadmap”. Internet Draft.

AUTHOR BIOGRAPHIES
SANDRO FIORE was born in Galatina (LE) in 1976.
He received a summa cum laude Laurea degree in
Computer Engineering from the University of Lecce
(Italy) in 2001, as well as a PhD degree in Informatic
Engineering on Innovative Materials and Technologies
from the ISUFI-University of Lecce in 2004. Research
activities focus on parallel and distributed computing,
specifically on advanced grid data management. Since
2004, he is a member of the Center for Advanced
Computational Technologies (CACT) of the University
of Salento and technical staff member of the SPACI
Consortium. Since 2001 he has been the Project
Principal Investigator of the Grid Relational Catalog
project. Dr. Fiore was involved in the EGEE project
(Enabling Grids for E-science) and is currently involved
in the EGEE-II project and other national projects
(LIBI). Since June 2006, he leads the Data Grid group
of the Euro-Mediterranean Centre for Climate Change
(CMCC) in Lecce (Italy). He is author and co-author of
more than 40 papers in refereed journals/proceedings on
parallel and grid computing and holds a patent on
advanced data management.
His e-mail address is sandro.fiore@unile.it and his web-
page can be found at http://grelc.unile.it/
person.php?surname=Fiore

SALVATORE VADACCA was born in Galatina (LE)
in 1982. He received summa cum laude bachelor and
master degrees in Computer Engineering from the
University of Lecce, Italy in 2003 and 2006,
respectively. His research interests include data
management; distributed, peer-to-peer and grid
computing; as well as web design and development.
Since 2003, he has been a team member of the GRelC
Project. In 2006 he joined the Euro-Mediterranean
Centre for Climate Change (CMCC) in Lecce, Italy,
where he works in the Data Grid group. Since April
2008 he is a Ph.D. student in Interdisciplinary Science
and Technology at ISUFI, Lecce.
His e-mail address is salvatore.vadacca@unile.it and his
web-page can be found at http://grelc.unile.it/
person.php?surname=Vadacca

ALESSANDRO NEGRO was born in S. Pietro
Vernotico (BR) in 1981. He received a summa cum
laude bachelor degree in Computer Engineering from
the University of Lecce, Italy in February 2004 and a
summa cum laude master degree in Computer
Engineering from the same University in April 2006.
His research interests include GUI Development, Data

139

Management, Distributed, Grid Computing and Web
Services. He is also interested in web and pattern-
oriented design. Since 2003 he is a Team Member of the
GRelC Project. Since September 2006 he holds a
contract position in the LIBI project for the University
of Lecce. Since April 2008 he is a Ph.D. student in
Interdisciplinary Science and Technology at ISUFI,
Lecce.
His e-mail address is alessandro.negro@unile.it and his
web-page can be found at http://grelc.unile.it/
person.php?surname=Negro

GIOVANNI ALOISIO is Full Professor of Information
Processing Systems at the Engineering Faculty of the
University of Lecce. His research interests are in the
area of High Performance Computing, Distributed and
Grid Computing and are carried out at the Department
of Innovation Engineering of the University of Lecce.
He is also the Director of the CACT (Center for
Advanced Computational Technologies) of the National
Nanotechnology Laboratory (NNL/CNR-INFM). As
director of the CACT, which is an international partner
of the US National Partnership for Advanced
Computational Infrastructure (NPACI), he leads joint
research projects on Grid both at a national and
international level. He has been a co-founder of the
European Grid Forum (Egrid) which then merged into
the Global Grid Forum (GGF). He has founded SPACI
(Southern Partnership for Advanced Computational
Infrastructures), a consortium on ICT and grid
computing among the University of Lecce, the
University of Calabria and HP Italia. The Consortium is
a follow-up of the SPACI project funded by the Italian
Ministry of Education, University and Technological
Research, to pursue excellence in the field of
Computational Science and Engineering. He is also the
Vice-Director of the NanoSciences and Grid Computing
Section of the "Scuola Superiore ISUFI" and CEO of
the SPACI Consortium. He is Director of the Division
"ICT and Operations" of the Euro-Mediterranean Centre
for Climate Change (CMCC). He is the author of more
than 100 papers in refereed journals on parallel & grid
computing.
His e-mail address is giovanni.aloisio@unile.it and his
web-page can be found at http://grelc.unile.it/
person.php?surname=Aloisio

140

REPRESENTING UNCERTAINTY IN SPATIAL DATABASES

Erlend Tøssebro

Dep. of Electrical Engineering and Computer Science

University of Stavanger

NO-4036 Stavanger, Norway

E-mail: erlend.tossebro@uis.no

Mads Nygård

Department of Computer and Information Science

The Norwegian University of Science and Technology

NO-7491 Trondheim, Norway

E-mail: mads@idi.ntnu.no

ABSTRACT

Due to lack of accurate measurements, or rapid changes

in time, spatial data are often uncertain. This paper

presents a new abstract model for uncertain spatial infor-

mation. The model is based on the principle that one

knows that the uncertain object, regardless of type, must

be within a certain area. The model also incorporates

probability functions so that it is possible to determine

the probabilities that various operations are true. This

paper contains mathematical definitions of uncertain

points, lines and regions. The paper also contains defini-

tions of some relevant operations on these types. These

operations are also evaluated for their usefulness with

regard to uncertain data. A corresponding discrete model

is already published.

1. INTRODUCTION

Databases which store information about geographic

objects are becoming increasingly common in modern

society as high-performance computer systems become

available and positioning systems become more com-

mon and more accurate. However, many forms of spatial

data cannot be measured exactly, or they may vary with

time in such a manner that one cannot know exactly

where the spatial object is at any given time. Examples

of these two are given below:

Example 1: A lake is used as a reservoir for a hydroe-

lectric power plant. Because of differences in energy

demand and precipitation in the area, the water level, and

thus the extent of the lake may vary considerably.

Although one could store the exact size of the lake at any

time by taking measurements frequently enough, this

would be costly both in terms of manpower (taking the

measurements) and space. A better solution might be to

store the lake in a manner that indicates that it is uncer-

tain. This uncertainty includes both position and the

exact shape of the object.

Models for static uncertain regions exist already, and are

well documented. See Section 2 for examples. However,

other types of spatial data may also be uncertain. The

following examples illustrate this for points and lines:

Example 2: If one is tracking a submarine, the sonars

may give only an approximate position of the submarine,

especially if the submarine is close to the sea floor and

irregularities in the sea floor give off false readings.

Example 3: Simulations of the behaviour of an oil reser-

voir as well as other simulations relating to geological or

geographical data may well yield results with some

uncertainty. The model presented in this paper can be

used to store such uncertain results.

Example 4: There are three different types of lines in

geological databases assuming a two-dimensional view,

and all of them may be uncertain because they are under-

ground and therefore difficult to measure. The first type

is a contact between two different rock types. This is

really the boundary of two regions. The second is a fault

line, either active or inactive. Because inactive fault lines

are not necessarily tied to continental plates or to differ-

ences in rock type (there may be the same type on both

sides), this is a true uncertain line.

The following example illustrate the need for a system

that handles uncertainty in all the spatial data types.

Example 5: Imagine that you have scientists who are

driving around making measurements in the Sahara

desert to determine the extent of underground water res-

ervoirs. The scientists themselves are uncertain points

due to the imprecision of the positioning system that

they use. The roads are uncertain lines because the roads

in the Sahara desert are more like routes that shift as the

sand dunes move than paved roads. The water reservoirs

that the scientists are studying are uncertain regions

because they are located deep underground and it is

therefore not feasible to do more than a few measure-

ments at each site. The scientists therefore lack the nec-

essary information to define them precisely. Such a

database would be useful for the scientists mentioned. If

they could query such a database while on site using a

wireless device, they could coordinate their efforts bet-

ter.

This example shows that one may need to store uncertain

data of all the three types in the same database. Most

existing systems handles only one type or two types.

In (Duckham et al. 2001), an ontology of different kinds

of uncertainty is defined. The hierarchy of forms of

uncertainty, or imperfection, is shown in Figure 1.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

141

Imperfection is considered to be the general form of

uncertainty. Error is when measurements do not reflect

reality. Imprecision is when measurements are lacking in

specificity or are incomplete. (Duckham et al. 2001)

considers vagueness to be a subcategory of imprecision.

The basic goal of this paper is representing uncertainty

in the position or extent of an object, regardless of the

source of that uncertainty. In the rest of this paper, uncer-

tainty therefore means either measurement error or

imprecision due to incomplete knowledge, but does not

cover vagueness. This definition of uncertainty is shown

by the dashed box in Figure 1.

This paper will attempt to create a set of data types and

operations for uncertain data, building on earlier work in

spatial databases and models for vague and uncertain

data.

In the rest of this paper, the word “crisp” will be used as

the opposite of indeterminate (uncertain or vague).

2. RELATED WORK

There are several different types of models for spatial

data. For spatiotemporal data, (Erwig et al. 1999)

describes two modelling levels, abstract and discrete.

Discrete models for spatiotemporal data can be directly

implemented and are based on discrete representations

such as vector or raster models. Abstract models are

higher-level and usually model spatiotemporal data with

point sets. In many abstract models, such as the one

described in (Güting et al. 2000), lines and regions are

modelled as infinite point sets in the Euclidean plane.

This makes the model simpler, and may provide ideas

for query operation designs that might be missed if one

immediately went to the discrete level.

Abstract models also usually contain some rules to

ensure that it is possible to store the data, although dis-

crete models contain a lot more such rules. This paper

contains an abstract model. Two distinct discrete models

developed by the present authors have already been pub-

lished in (Tøssebro and Nygård 2002b) and (Tøssebro

and Nygård 2003). There is also a partial implementa-

tion of the model from (Tøssebro and Nygård 2003).

In (Tøssebro and Nygård 2002a), we outlined our cur-

rent work on uncertainty in spatial and spatiotemporal

database. A spatiotemporal extension to an abstract

model like the one presented here is presented in (Tøsse-

bro and Nygård 2002c).

One early model for uncertain points and lines is pre-

sented in (Dutton 1992). In this model, a point is repre-

sented as a central point with a circular deviation and a

Gaussian distribution function over this area. A line is

represented as a series of such points. The line segments

between the points are represented by the union of the

straight line segments going between all possible posi-

tions of the two points. The paper then shows that such a

line will have the greatest variance in the points them-

selves, and the least variance is in the centre of the lines

between the points. This is contrary to what one might

expect. The uncertainty is usually smallest in the sample

points and greater between them.

(Mark and Csillag 1989) describe a way to model uncer-

tainty in the location of the boundary of a region that

uses probabilistic error bands. This means that on each

side of the estimated border there is an area with a cer-

tain width in which the border can be. Additionally, the

probability that a point p is inside the area is a function

of the distance from the estimated border to p.

The egg-yolk model described in (Gohn and Gotts 1996)

and (Clementini and Di Felice 1996) models an uncer-

tain region with only one face as two regions, one inside

the other. The inner region is referred to as the ‘yolk’ and

the outer region as the ‘white’ in the egg. This represen-

tation is then used to find a lot of different topological

relations between uncertain regions, each consisting of

only one component. A model for broad lines is pre-

sented in (Clementini 2005). A broad line in this model

is a region that could result from the continuous defor-

mation of a line as well as two broad points that repre-

sent its end points. A broad point is represented by the

area that it might be in.

Models based on fuzzy sets have been frequently used to

model vague regions. Fuzzy sets (Zadeh 1965) are sets

in which the membership of any individual point in the

set is not either yes or no, but rather a number between 0

and 1. Many of these models, such as the discrete mod-

els presented in (Lagacherie et al. 1996) and (Lowell

1994), use rasters to represent the fuzzy sets. The models

described in (Schneider 1999) and (Erwig and Schneider

1997) represent another type of fuzzy set model, because

these, like the abstract models for crisp objects, use infi-

nite point sets. The most comprehensive model for

vague data using fuzzy sets is the one presented in (Sch-

neider 1999), which models all the standard spatial types

(points, lines and regions) using fuzzy sets. (Schneider

1999) models a vague region as a fuzzy set where places

which are certainly members of the region have values

Figure 1: Hierarchy of the Types of Imperfection

Error Imprecision
Vagueness

Imperfection

Uncertainty

142

of 1 and regions which are only partially members have

values between 0 and 1. A vague line is a line with a

crisp position but uncertain membership. In Schneider’s

model, this uncertain membership is indicated by a func-

tion which gives values between 0 and 1 for each point

in the crisp line.

Although these fuzzy models cannot be used as they are

to model positional uncertainty, some of the ideas from

them may be adopted.

(Wang and Hall 1996) describe a model for fuzzy bound-

aries between regions in which the fuzzy membership

function indicates how sharp the boundary is. A mem-

bership of 1.0 indicates a crisp boundary.

(Cheng et al. 1997) describe several ways to extract

fuzzy objects from observations. These methods use a

combination of fuzzy sets and probability theory. The

model that they use is a raster model because fuzzy

membership values are stored in each cell. However,

they also group the cells into objects according to differ-

ent criteria.

Another possible model for uncertain regions, regardless

of the type of uncertainty, is the vector-based discrete

model presented in (Schneider 1996). This model bases

itself on two boundaries, like the egg-yolk models.

(Worboys 1998) uses rough sets to define the outer and

inner boundaries of possibly imprecise spatial objects.

(Worboys 1998) defines resolution objects that are parti-

tions on the underlying space, and shows how to convert

objects from one resolution to another. This process may

introduce imprecision even if the original representation

was precise, because the object may only partially over-

lap one of the new partition parts. Another approach

using rough sets is presented in (Beaubouef and Petry

2001). This paper essentially shows that rough sets can

be used to create a more general version of the egg-yolk

approach.

There has been an effort to create a comprehensive type

system for different kinds of spatial databases. (Güting

et al. 2000) describes such a type system for spatiotem-

poral databases. (Schneider 1999) describes a similar

kind of model for vague spatial data.

3. BASIS FOR THE NEW MODEL

The new model presented in this paper takes ideas from

several of the models described earlier. The model in

(Dutton 1992) is adequate for modelling digitization

error, but not adequate for some other applications. One

example of this is Example 1 from the introduction. This

example cannot be modelled by the one in (Dutton

1992). because the region may have an arbitrary shape.

However, the concept that the point is known to be

located within a region and has a certain probability dis-

tribution can be used in the new model. Another exam-

ple is that the approach suggested in (Dutton 1992)

cannot model uncertainty about the length of a line. As

with points, the concept of a line with a probability dis-

tribution function is useful for our work.

(Schneider 1999) describes an abstract model for vague

spatial data. The region model in that paper may be used

as a basis for a model for uncertain regions. An uncertain

region may be modelled as a probability function where

points which are certainly members have a value of 1

and points for which membership is uncertain have val-

ues between 0 and 1. Schneider’s model for a vague

lines or vague points, however, is not so useful for

uncertain data. An uncertain line typically has uncer-

tainty about exactly where it is, which means that a dif-

ferent type of model must be used. However, an

uncertain line may also have uncertainty about whether

it exists or not. This existence uncertainty may be mod-

elled in the same way as vagueness. The difference

between vague and uncertain points is the same as for

lines.

An important difference between our new model and

Schneider’s is that his model uses somewhat different

mathematics. While Schneider uses fuzzy sets, our new

model uses probability theory. This is both because

uncertainty is best modelled by probabilities, and

because the probabilities for uncertain points and lines

must be modelled by probability density functions. The

authors do not know of a similar concept in fuzzy set

theory.

Some of the types from (Güting et al. 2000) are used as

building blocks for the types presented here. Therefore, a

brief description of these types is given now. The basic

type for points is Apoints, which is a finite set of points.

The type for a single point is Apoint. A line in (Güting et

al. 2000) (of type Aline) is defined as a set of curves

forming a graph. A curve is defined by a function from a

variable t, which is between 0 and 1, to the X-Y plane.

Curves cannot intersect with themselves. The carrier set

of this type is called Acurve. A region (Güting et al.

2000) is an infinite set of points in the plane with the

condition that there may be no singleton points or lines.

That is, the region must be a valid result of a regularized

set operation. A region may consist of a finite set of dis-

joint components, or faces. These again can have a finite

number of holes. The carrier set of faces is called Aface,

while the carrier set of regions is Aregion.

4. DATA TYPES FOR UNCERTAIN SPATIAL

INFORMATION

This section describes a set of data types for modelling

uncertain spatial information. The first subsection will

describe how to model the basic datatypes such as num-

bers. The other subsections will describe uncertain

143

points, lines and regions. All the types will be defined by

their carrier sets.

To define the data types that follow, the operation sup-

port is needed. This operation comes from fuzzy set the-

ory, but has a slightly wider application here. In this

paper, support is defined as follows for any function

:

The z in this formula is a member of whatever type or set

of types the function f accepts as input values. This

means that support is defined for all uncertain types,

whether they are spatial or not. A more complete defini-

tion and discussion of this operation can be found in

Section 5.3.

All the uncertain data types defined in this paper rely on

probabilities or probability density functions. The prop-

erties of these are defined by the following functions:

• Probability Density:

• Spatial Probability Density:

• Probability Function:

• Spatial Probability Function:

4.1 Base Types

An uncertain number can easily be modelled by a proba-

bility distribution function. For a real number, this func-

tion would have to be defined as a probability density

function, whereas for integers, it might be just a collec-

tion of probabilities for the number having particular

values.

Definition 1: An uncertain number is defined as fol-

lows.

PieceCont(F) is true if the function F is piecewise con-

tinuous. DiracDelta(F) is true if F is a dirac delta func-

tion.

Many queries in spatial databases return Boolean values

for data without uncertainty. Because a single Boolean

value cannot indicate uncertainty, different ways of

answering these queries must be found. The most appro-

priate way to answer such queries for uncertain data is to

give the probability that the answer is “True”. However,

there are some cases in which this probability is difficult

to determine. An example of this is the “Cross” opera-

tion from Section 5.2. In such cases a third “Boolean”

value, Maybe, is used to indicate uncertainty. This last

approach was used in (Erwig and Schneider 1997).

These two forms of Boolean values are treated as two

different types in this paper. The uncertain Boolean is

the version with three values, and the other is called a

probability. A third type which is useful for uncertain

data is a type which indicates to which degree a state-

ment is true. Some operations may return a degree of

truthfulness which cannot be interpreted as a probability:

4.2 Uncertain Points

An uncertain point is a point for which an exact position

is not known. However, one usually knows that the point

is within a certain area. One may also know in which

parts of this area the point is most likely to be. For

instance in Example 2, one knows that the submarine is

somewhere within the sonar reflection (a region) and by

looking at the varying intensities of the reflection one

might have an idea of where the submarine is most likely

to be. An uncertain point is therefore defined as a proba-

bility density function P(x, y) on the plane. The support

of this function is the area in which the point may be. To

be able to store the function P(x, y) in a computer, it

must be piecewise continuous. The probability that the

uncertain point exists at all is the double integral of P(x,

y) over the plane. To be able to model crisp points, P(x,

y) must be allowed to be a dirac delta function.

Table 1: Carrier Sets for the Data Types from (Güting

et al. 2000)

Individual Set

Apoint Apoints

Acurve Aline

Aface Aregion

f:z ℜ→

Support f() z f z() 0>{ }≡

ProbDens P() x:P x() 0≥∀() P x()
x

1≤∧≡

SProbDens P() x y:P x y,() 0≥∀∀()

P x y,() 1≤
yx

∧

≡

ProbFunc P() x: P x() 0≥ P x() 1≤∧()∀≡

SProbFunc P() x y: P x y,() 0≥ P x y,() 1≤∧()∀∀≡

A
UNumber

NP x() ProbDens NP()

PieceCont NP() Support NP() A
Range number()

∈∧()

DiracDelta NP() Support NP() A
number

∈∧()∨

(

)

∧{

}

≡

A
UBool

False Maybe True, ,{ }≡

A
Prob

0 1,[]≡

A
Degree

0 1,[]≡

144

Definition 2: An uncertain point is defined as follows.

A possible uncertain point is shown in Figure 2a. Figures

2b and 2c show views of the X and Y directions. The

central spikes indicate the expected value of the points.

The thick bar underneath indicates the area of uncer-

tainty.

The model described here can model Example 2 because

it allows the point to be inside an arbitrarily shaped

region, and not just a circle like (Dutton 1992). It also

enables a point to be modelled where its existence is not

certain.

One problem with this model is how to determine the

probability density function so that the double integral of

it over the universe becomes 1 if the point is certain to

exist.

Definition 3: The uncertain points set type is defined as

follows.

The Finite function returns True if the set contains a

finite number of elements and False otherwise.

4.3 Uncertain Lines

The line type as defined in (Güting et al. 2000) is a set of

curves where each member is a simple curve. The first

step in developing a model for an uncertain line is there-

fore to create a model for an uncertain curve. An uncer-

tain curve is a curve for which the exact shape, position

or length is not known, but it is known in which area the

curve must be. An example of an uncertain curve is

shown in Figure 3a. It may also be known where in this

area the curve is most likely to be. The dashed line in

Figure 3a exemplifies this.

When seen along a line crossing it, a crisp curve would

look like a point, or a set of points in the case of multiple

crossings. When seen along the same line, an uncertain

curve should be a probability density function indicating

where the curve is most likely to cross. Such a function

is shown in Figure 3b. This function may apply along the

line marked “Gradient” in Figure 3a. Formally this line

and its probability density function may be defined as

follows:

When seen along its length, the uncertain curve has a

probability of existing at each point. In Figure 3c, one

common example of such a probability function is

shown. In this example, there is uncertainty about the

length of the line. This means that the line is certain to

exist in the middle, and the probability of the line exist-

ing becomes lower the closer one comes to the ends.

One way of modelling this probability is that the uncer-

tain line has a central line with a probability function

associated with it. This probability function should not

have areas in the middle where it is 0, because a curve

with such a function is really two curves and not one,

and should therefore be modelled as two curves. Such an

illegal function is shown in Figure 4.

If there is uncertainty as to the number of curves, this

may be modelled by a function which is less than 1 in a

period between two places in which it is 1. This is shown

in Figure 5.

A
UPoint

PP x y,() SProbDens PP()

Support PP() A
region

∈ PieceCont PP()∧()

Support PP() A
point

∈ DiracDelta PP()∧()∨

(

)

∧

{

}

≡

Figure 2: Uncertain Point

∆P
∆P

∆P

a)

b) c)

X Y

A
UPoints

UP A
UPoint

⊆ Finite UP()≡

Figure 3: Uncertain Curve

a)

b) c)

Along the lineAcross the line

P

PC

Gradient

A
gradient

gc fg,() gc A
curve

∈

p gc∈(): fg:p ℜ→()∀ ProbDens fg()

∧

∧

{

}

≡

145

This property of a function may be expressed mathemat-

ically as follows:

An uncertain line may be defined as a central line and a

set of gradient lines. This set of gradient lines models the

uncertainty in position and shape of the line. For each

point of the central line there should be one and only one

gradient line crossing it. The expected values of the

probability functions of all the gradients should be some-

where on the central line. This is ensured by the follow-

ing three conditions:

• The gradients do not share points or parts:

• For each point p on the curve, there is a gradient. The

expected value of this gradient is p:

• The expected value of all the gradient lines are on the

central line:

For all of these functions, E(x) is the expected value for

a probability density function.

To ensure that the type is implementable, the probability

density values of points that are close to one another

should have similar values. To ensure this, we use the

condition that all iso-lines of probability must be contin-

uous. This means that for all possible probability density

values, the set of points formed from the points along all

the gradient lines that have this probability density

should form either a continuous line along the central

curve or a set of continuous cycles. The set of points

from all the gradient lines that have a given probability

density value is returned by the ISet function, which is

defined as follows:

To ensure that the iso-lines are continuous cycles, the

following condition is used:

The function points(C) returns a set containing all the

points which are parts of at least one cycle in the set of

cycles.

To compute the area in which the uncertain line may be,

one can take the union of all the gradient lines. The fol-

lowing condition ensures that the union of all the gradi-

ent lines forms a crisp face:

Definition 4: An uncertain curve is defined as follows.

This type definition is quite complex, and is the most

complex type of the three main ones. The reason for this

is that a point is a probability density function, a region

is a probability function where each point has a probabil-

ity of being in the region. A curve, however, is a little of

both, as shown in Figure 3.

Note that this definition of a curve does not allow a

curve that is partially crisp and partially uncertain. This

is because there would be a point where the uncertain

area ends and the crisp area begins where the probability

density function of the gradients rises until it becomes

infinite. In this place, some of the iso-lines would not be

cycles as they will end right next to the point where the

line becomes crisp.

1

t

Figure 4: Illegal Probability Function for

Uncertain Curve

1

t

Figure 5: Probability Function Indicating

Uncertainty about the Number of Curves

NoDip f() x y z: f x() 0>() f z() 0>()

x y z< <

∧

∧

(

) f y() 0>→

∀∀∀(

)

≡

NoCross G A
gradient

⊆()

g
1

g
2

, G∈(): g
1

g
2

∩ ∅≠() g
1

g
2

=()→∀()

≡

ExpectedCurve ec A
Curve

∈ G A
gradient

⊆,()

p ec∈() g G∈():E g.fg() p=∃∀()

≡

CurveExpected ec A
Curve

∈ G A
gradient

⊆,()

g G∈() p ec∈():E g.fg() p=∃∀()

≡

ISet i 0> G A
gradient

⊆,()

x g G∈(): x g.gc∈ g.fg x() i=∧()∃{ }

≡

ContIso ec A
Curve

∈ G A
gradient

⊆,()

i: Iset i G,() Points ec()⊆()

C A
cycle

⊆():Finite C() points C() Iset i G,()=∧∃

∨(

)

∀(

)

≡

FormFace G A
gradient

⊆()

x g G∈():x g.gc∈∃{ } A
Face

∈()

≡

A
UCurve

ec fe G, ,() ec A
curve

∈ G A
gradient

⊆

p ec∈(): fe:p A
Prob

→()∀

NoDip fe() NoCross G()

ExpectedCurve ec G,() CurveExpected ec G,()

ContIso ec G,() FormFace G()

∧ ∧

∧

∧ ∧

∧ ∧

∧

{

}

≡

146

This problem can be solved by defining such a curve as a

line with several curves, some uncertain and some crisp.

The crisp curve is defined by having all its gradient lines

have length 0 and their probability functions being dirac

delta functions.

The probability densities along gradient lines that are

near to each other are dependent on each other in such a

fashion that the line must be continuous. The extent of

this dependence depends on the line in question, but all

of the gradient lines must obey the following principle:

Let us say that along gradient line A the line passes

through point p. For any line B in the neighbourhood of

A, the following holds:

In this formula, E(X) is the expected value of X and V(X)

is the variance of X.

Both points and regions are defined as functions over the

plane. To make it simpler to define operations which are

common to all uncertain spatial types, a view of the

uncertain curve as a function over the plane is therefore

also given:

Computational definition. An uncertain curve may be

defined as a function over the plane:

In this function, gl is the member of C.G on which the

point (x,y) lies and cp is the point at which gl crosses

C.ec.

The line type is a set of curves for the same reasons as

given for points.

Definition 5: The uncertain line is defined as a set of

uncertain curves.

The requirement that two curves should not cross is there

to ensure the uniqueness of the representation. If two

curves that cross are added to the same set, they must be

divided so that all four get the crossing as their end

points. The Cross operator is defined in Section 5.2.

One problem with this model for lines is that it involves

fairly complex mathematics, such as finding gradients of

a function. Also, some operations, such as testing

whether two lines cross each other, are much more com-

plex in this model than in models for crisp or vague

lines. This complexity exists because the uncertain curve

is neither a simple probability density like for the uncer-

tain point nor a simple probability function for each

point like in an uncertain face.

4.4 Uncertain Regions

An uncertain region is a set of uncertain faces. An uncer-

tain face is one where the location of the boundary or

even the existence of the face itself is uncertain. This

may be modelled as a probability function P(x,y) which

gives the probability that the point (x,y) belongs to the

face. Support(P) must be a valid crisp face. Additionally,

an alpha-cut operation must yield a valid crisp region for

all input values between 0 and 1. The alpha-cut function

is defined as follows:

A more complete definition may be found in Section 5.3.

Note that the Support operation is the same as an alpha-

cut with i=0.

Definition 6: An uncertain face is defined as follows.

This definition is used because it is very general, and

gives the capability of modelling uncertain regions in

which the exact number of faces is unknown. This is

possible because the uncertain face can have a core

which contains multiple crisp faces. It also allows holes

which are not certain to exist (such as the submerged

islands in Example 1) because there may be an area with

a function value less than one inside an area with func-

tion value one. An uncertain face is known to exist if at

least one point has probability one of being a member of

the face

Figure 6a shows an example of an uncertain face where

the black area is the area in which the face is certain to

exist and the grey area is the area of uncertainty. Figures

6b and 6c show views of the probability distribution

along the X and Y axis..

For regions, a dependence condition similar to the one

described for gradient lines in Section 4.3 holds for the

individual points that the uncertain face contains. If one

E B A p=()()

B A→

lim p= V B A p=()()

B A→

lim 0=∧

C.f x y,() gl.fg x y,() C.fc cp()⋅=

A
ULine

UC A
UCurve

⊆ Finite UC()

ac UC∈() bc UC∈():

ac bc≠ Cross ac bc,()¬→()

∀∀

∧≡

αcut f i,() z f z() i>{ }=

A
UFace

FP x y,()

SProbFunc FP() Support FP() A
Face

∈

i 0 1,[]∈():αcut FP i,() A
Region

∈∀

PieceCont FP()

∧ ∧

∧

{

}

=

147

knows that point p is in the face F, the following condi-

tion holds for all points q in the neighbourhood of p:

In this formula, P(X) is the probability that X is in the

region.

A similar condition also holds if it is known that p is not

in the face:

These condition only holds for the continuous parts of

the probability function of the face and not across any

discontinuities.

Definition 7: The uncertain region is defined as a set of

uncertain faces.

Disjoint for uncertain types is defined as follows:

This type of model for faces and regions has the advan-

tage that such faces and regions are well documented for

the vague case using fuzzy sets in (Schneider 1999) and

(Erwig and Schneider 1997). It is also very general,

capable of modelling any kind of uncertainty. Error-band

based models can only model uncertainty about the posi-

tion and shape, not the number of components or holes

such as in Example 1 above.

5. OPERATIONS ON UNCERTAIN DATA

An important part of a set of data types is a general defi-

nition of the operations that can be applied to them.

Some of the operations from (Güting et al. 2000) as well

as a few new ones are described here. For a more com-

plete overview of operations for uncertain spatial data,

see (Tøssebro 2002). The operations are divided into

three categories, those that are applied to data with no

uncertainty, but which cannot be determined with cer-

tainty for uncertain data, those that can be applied to

both kinds of data, and new operations for uncertain

data.

In this section, the letter name of the variable describes

its type as given in Table 2. A signature of the type

 means that both the inputs must be of the

same type, and the output is of the same type as the

input. In a signature of the type , S may

denote a type other than F or B.

In the semantics for the operations, the letter R is used

for the result, I1 for the first input and I2 for the second

input.

The Core and Support operations from fuzzy set theory

will be used for operations on uncertain data. These have

slightly different semantics than in the vague case

Figure 6: Uncertain Face

(0,1] (0,1]

X Y

a)

b) c)

∆P ∆P

P q F∈() p F∈()()

q p→

lim 1=

P q F∈() p F∉()()

q p→

lim 0=

A
URegion

UF A
UFace

Finite UF()

af UF∈() bf UF∈(): af bf≠ Disjoint af bf,()→()∀∀

∧⊆≡

Disjoint A B,()
Union Support A() Support B(),() ∅=

≡

Table 2: Type Designatorsa

a. All these stand for uncertain data types ex-

cept for CX and CI

Letter Type

Po Point

C Curve

F Face

S Spatial (Point, Curve or Face)

Ss Spatial Set (Points, Line or Region)

N Number

T Any non-spatial or spatial type

B Boolean

Pr Probability

D Degree

CX Crisp X

CI Crisp interval

S S× S→

S F× B→

148

because of the differences between uncertainty and

vagueness. Core is defined as follows.

• Core(): For a region, this operation returns

the crisp set containing all the points or values having

membership 1 in I1. For a complete definition, see

Section 5.3.

• For Support, see Section 4 and Section 5.3.

5.1 Operations on Crisp Data which cannot be

Determined with Certainty for Uncertain Data

The operations described in this subsection are listed in

Table 3. They are much less useful for uncertain data

because they cannot be determined with certainty. How-

ever, one may determine whether the operation is cer-

tainly false or not. The formula for determining this is

given in the table.

Equal: One cannot determine equality between two

uncertain objects. Even if the two objects have exactly

the same type and probability function, they are not nec-

essarily equal, because the real objects may be different

even if the uncertain representations are “equal”. For

instance, if two regions both have the representation

given in Figure 7, one of them can be bordered by line A

and the other by line B. The regions produced by A and

B are clearly not equal, but they can both correspond to

the same uncertain region. The only way one can know

that two uncertain objects are equal is if they are in fact

the same object, with the same object identity or primary

key value. The Resemble operation from Section 5.2

may be used to test approximate equality.

Touch: In the uncertain case this operation determines

the possibility that two faces have a common border.

Even if the supports overlap and the cores do not, one

cannot be sure whether they actually have common bor-

ders or the borders just cross each other. Therefore, the

operation cannot return “True” when there is uncertainty,

unless the fact that the two faces have a common border

is explicitly stored.

5.2 Operations which may be used on both Crisp

Data and Uncertain Data

The operations in this section are divided into five cate-

gories, depending on the types of their input and output:

set operations, operations applicable to all uncertain spa-

tial data types, operations for uncertain regions, opera-

tions for uncertain lines and projections. There are no

operations that are only applicable to uncertain points

and cannot also be applied to other types as well.

Set Operations

The set operations for the points and line data types are

the same as in the crisp case. Using a set operation on the

individual points and curves does not make sense. The

point data type is not a set. Performing a set operation on

a curve will most likely produce an illegal value. An

uncertain region is in essence an infinite point set where

the individual points have a certain probability of being

T CT→

Table 3: Operations for which a Positive Answer is Impossible for Uncertain Data

Operation Signature Semantics

Equal Maybe:

False otherwise

Touch Maybe:

False otherwise

S S× B→ core I1() support I2()∩ core I1()=()
core I2() support I1()∩ core I2()=()

∧

F F× B→ core I1() core I2()∩ ∅=() support I1() support I2()∩ ∅≠()∧

A B

Figure 7: An Uncertain Region and two

Possible “Real Regions”

Table 4: Operations Applicable to All Uncertain Spatial Data

Operation Signature Semantics

Intersection Points, Line:

Region:

Resemble

Ss Ss× Ss→ I1 I2∩

R x y,() I1 x y,() I2 x y,()⋅=

S S× A
Degree

→ area min I1 I2,()()() area max I1 I2,()()()⁄

149

members. Each set operation should therefore return a

set that for each point gives the probability of the opera-

tion being true. This is easiest to do by combining the

probability functions of the two input sets. Probability

theory has been used to arrive at the formula given in

Table 4. The events that a point belongs to regions I1 and

I2 are considered to be independent.

The intersection operator returns a result of the lowest

dimension of the two inputs. An intersection between a

point and a line does not make sense in the uncertain

case because the probability that the two are at exactly

the same place is 0. An intersection between either a

point or a line and a region uses the same semantics as

the intersection of two regions. The output type is point

or line.

Other Operations applicable to all Uncertain Spatial

Data Types

Only one such operation is defined here. For a complete

list, see (Tøssebro 2002). Its semantics is defined in

Table 4.

Resemble: This operator determines how much two

uncertain spatial objects resemble one another. It may be

used to replace equal for uncertain objects. For crisp

regions it is used to determine similarity in shape. The

function min returns the minimum probability or proba-

bility density value of I1 and I2. Max returns the maxi-

mum.

Operations for Uncertain Regions

Intersect: This operator determines the probability that

I1 and I2 intersect. This is the “overlap” criterion used in

many spatial searches. The semantics of this operation is

given in Table 5.

Operations on Uncertain Curves

Only the Cross operation is defined here. For a complete

list, see (Tøssebro 2002). The semantics of the Cross

operation is given in Table 5.

Cross: Determining whether or not two uncertain curves

cross each other is far more complex than for crisp

curves because one does not know quite where the

curves are. If , the

two curves cannot cross. Otherwise they may cross.

Computing the exact or even approximate probability

that they cross is complex. In many cases a “Maybe”

answer is sufficient. To know for sure, the following

conditions must be checked:

• Both curves must exist in the entire area in which they

may cross. The following formula test whether curve

I1 exists in the entire area. The test is analogous for

I2.

In this formula, .

• Let

and

.

Both ba and bb must consist of at least two disjoint

crisp curves. This condition prevents line A in Figure

8 from getting “Yes” to the question Crosses(A, L).

• Each component of ba and bb must cross line ec of

the other line an odd number of times. This applies to

both lines. This prevents lines such as line B in Figure

8 from getting “Yes” to the question Crosses(A, L).

5.3 New Operations for Uncertain Data

These operations are new for uncertain data because they

determine different aspects of that uncertainty. A list of

these operations and their semantics is given in Table 6.

Alpha_Cut: This operation is described for fuzzy sets in

(Zhan 1998). It returns a crisp set which contains all the

points which have a membership value or probability

density value above I2 in I1. The support operation can

be seen as a special case of the alpha cut operation with

I2=0.

Core: For regions, this operation returns the set of values

which the object must contain. For lines it returns the

Table 5: Operations for uncertain regions and lines

Operation Signature Semantics

Intersect

Cross See text

S F× A
Prob

→ Existence I1 I2∩()

C C× B→

support I1() support I2()∩ ∅=

g I1.G∈(): g ca∩ ∅≠() I1.fe g I1.ec∩() 1=()→∀

ca support I1() support I2()∩=

ba boundary ca() boundary support I1()()∩=

bb boundary ca() boundary support I2()()∩=

Figure 8: Two Curves which May Cross, and a Curve

which Certainly Crosses, the Curve L

L

A

B C

150

central line. It is defined for lines because some other

operations, such as Equals, need this definition. For

points and numbers, the Core does not exist.

Support: This operation returns the set of values which

the object might possibly contain or be at.

6. DISCUSSION

The type system described is uniform in that all the types

are defined in roughly the same way. For all the types

there is a “region” indicating where the object might be.

In this sense all the uncertain types are based on the crisp

region. For all the types there is also a probability func-

tion indicating where the object is most likely to be. This

means that many of the same operations may be run on

all three types with little alteration needed.

Because the model presented here models points, lines

and regions in a uniform way, it is better suited to a data-

base like Example 5 than many previous models. Our

model for uncertain regions is similar to Schneider’s

model from (Schneider 1999), but in our work that

method is applied for all the data types. The models from

(Mark and Csillag 1989), (Gohn and Gotts 1996) and

(Wang and Hall 1996) only handle regions while (Dutton

1992) only handles points and lines. The models in

(Lagacherie et al. 1996), (Cheng et al. 1997) and (Wor-

boys 1998) are essentially rasters and therefore are poor

at representing lines. The types presented here are better

integrated than a system consisting of a point model, a

line model and a region model from different authors

chosen because they are good models for the individual

types. We are currently working on the issue of the com-

pleteness and computational closeness of this model. We

have already managed to convert from line to region

(enclosed_by operation) and from region to line (border

operation). This work will be published elsewhere.

Additionally, some of the operations from (Güting et al.

2000) are evaluated for use in the uncertain case. Some

of the operations cannot give a “certainly true” result for

uncertain data, but many can be used for both crisp and

uncertain data. Some new operations (and operations

from other sources) are also introduced to deal with the

uncertainty. For uncertain Boolean values, two methods

are used. The simplest is a three-value logic, which has

been used earlier. However, due to the definitions of the

types, many functions may instead return the likelihood

of the answer being true.

One potential problem with our model is that the mathe-

matical complexity will make it a challenge to imple-

ment, and that simpler models might be better in certain

cases. This is particularly true for the uncertain line

model. The reason for the complexity of the uncertain

line is that the probability distribution for an uncertain

line is neither a probability density function like for

points nor a probability distribution function like for

regions, but something in between. This and other issues

related to implementation of our model and similar mod-

els are discussed in (Tøssebro and Nygård 2002b).

Part of the mathematical complexity discussed in the

previous paragraph may be easily removed from the

model at the cost of a decrease in expressiveness. The

probability functions may be arbitrarily simple or com-

plex. The simplest variant is the function with equal

probability over the entire point or line, and with proba-

bilities 1, 0.5 and 0 indicating the core, uncertain bound-

ary and the outside of a region. The advantage of a

simple function is that it is easier to store and faster to

compute.

The advantage of complex functions is increased expres-

siveness. In some cases, the geologists making the meas-

urements may make good educated guesses as to the

probability function. Thus it would be an advantage to

be able to store these. The advantages and disadvantages

of models of different complexity are discussed further

in (Tøssebro and Nygård 2002b) and (Tøssebro and

Nygård 2003).

Table 6: New operations for selected uncertain data types

Operation Signature Semantics

Alpha_Cut Spatial types:

Number:

Core Point, Number:

Line:

Region:

Support Spatial types:

Number:

S 0 1,[]× CPo{ }→

N 0 1,[]× CN{ }→

R P CPo A P() B>∈{ }=

R N CN A N() B>∈{ }=

S CPo{ }→

N CN→

∅

R P CPo P A.ec∈ A.fc P() 1=∧∈{ }=

R P CPo A P() 1=∈{ }=

S CPo{ }→

N CI→

R P CPo A P() 0>∈{ }=

R N CN A N() 0>∈{ }=

151

REFERENCES

T. Beaubouef and F. Petry. 2001. Vagueness in Spatial Data:

Rough Set and Egg-Yolk Approaches. In Proc. 14th Int.

Conf. on Industrial and Engineering Applications of Artifi-

cial Intelligence and Expert Systems (IEA/AIE), 367-373

E. Clementini. 2005. A model for uncertain lines. In Journal of

Visual Languages and Computing, 16, 271-288

E. Clementini and P. Di Felice. 1996. An Algebraic Model for

Spatial Objects with Indeterminate Boundaries. In Geo-

graphic Objects with Indeterminate Boundaries, GIS-

DATA series vol. 2, Taylor & Francis, 155-169.

A. G. Cohn and N. M. Gotts. 1996. The ‘Egg-Yolk’ Represen-

tation of Regions with Indeterminate Boundaries. In Geo-

graphic Objects with Indeterminate Boundaries,

GISDATA series vol. 2, Taylor & Francis, 171-187.

T. Cheng, M. Molenaar, T. Bouloucos. 1997. Identification of

Fuzzy Objects from Field Observation Data. In S. C. Hirtle

and A. U. Frank (eds.) Spatial Information Theory: A The-

oretical Foundation for GIS, LNCS vol. 1329, Springer-

Verlag, 241-259.

M. Duckham, K. Mason, J. Stell, M. Worboys. 2001. A formal

approach to imperfection in geographic information. In

Computers, Environment and Urban Systems, 25, 89-103.

G. Dutton. 1992. Handling Positional Uncertainty in Spatial

Databases. SDH’92, vol. 2, 460-469.

M. Erwig, R. H. Güting, M. Schneider, M. Vazirgiannis. 1999.

Spatio-Temporal Data Types: An Approach to Modeling

and Querying Moving Objects in Databases. In GeoInfor-

matica 3, no. 3, 269-296.

M. Erwig and M. Schneider. 1997. Vague Regions. In Proc. 5th

Symp. on Advances in Spatial Databases (SSD), LNCS

1262, 298-320.

R. H. Güting, M. F. Böhlen, M. Erwig, C. S. Jensen, N. A.

Lorentzos, M. Schneider, M. Vazirgiannis. 2000. A Foun-

dation for Representing and Querying Moving Objects. In

ACM Transactions on Database Systems 25, no. 1.

P. Lagacherie, P. Andrieux and R. Bouzigues. 1996. Fuzziness

and Uncertainty of Soil Boundaries: From Reality to Cod-

ing in GIS: In Geographic Objects with Indeterminate

Boundaries, GISDATA series vol. 2, Taylor & Francis,

155-169.

K. Lowell. 1994. An Uncertainty-Based Spatial Representation

for Natural Resources Phenomena. SDH’94 vol. 2, 933-

944.

D. M. Mark and F. Csillag. 1989. The nature of boundaries of

‘area-class’ maps. In Cartographica 26, 65-77.

M. Schneider. 1996. Modelling Spatial Objects with Undeter-

minate Boundaries using the Realm/ROSE Approach. In

Geographic Objects with Indeterminate Boundaries, GIS-

DATA series vol. 2, Taylor & Francis, 155-169.

M. Schneider. 1999. Uncertainty Management for Spatial Data

in Databases: Fuzzy Spatial Data Types. In Proc. 6th Int.

Symp. on Advances in Spatial Databases (SSD), LNCS

1651, Springer Verlag, 330-351.

E. Tøssebro and M. Nygård. 2002a. Abstract and Discrete

Models for Uncertain Spatiotemporal Data. In Proc. 14th

Int. Conf. on Scientific and Statistical Databases

(SSDBM), 240.

E. Tøssebro and M. Nygård. 2002b. An Advanced Discrete

Model for Uncertain Spatial Data. In Proc. 3rd Int. Confer-

ence on Web-Age Information Management (WAIM02), 37-

51.

E. Tøssebro and M. Nygård. 2002c. Uncertainty in Spatiotem-

poral Databases. In Proc. 2nd Biennial Int. Conference on

Advances in Information Systems (ADVIS), 43-53.

E. Tøssebro. 2002. Representing Uncertainty in Spatial and

Spatiotemporal Databases. Dr. Ing. Thesis at IDI, NTNU.

IDI Report 2002:07.

E. Tøssebro and M. Nygård. 2003. A Medium Complexity Dis-

crete Model for Uncertain Spatial Data. To be published in

Proc. 7th Int. Database Engineering and Applications

Symposium (IDEAS), 376-384.

F. Wang and G. B: Hall. 1996. Fuzzy representation of geo-

graphical boundaries in GIS. In Int. Journal of Geographi-

cal Information Systems 10, no. 5, 573-590.

M. F. Worboys. 1998. Imprecision in Finite Resolution Spatial

Data. In GeoInformatica 2, no.3, 257-279.

L. A. Zadeh. 1965. Fuzzy sets. Information and Control 8, 338-

353.

F. B. Zhan. 1998. Approximate analysis of binary topological

relations between geographic regions with indeterminate

boundaries. Soft Computing 2, 28-34.

152

Code Generation, Libraries and
Programming Environments

153

154

OPENMP CODE GENERATION BASED ON A MODEL DRIVEN ENGINEERING
APPROACH∗

Julien Taillard
LIFL / INRIA

Email: Julien.Taillard@lifl.fr

Frédéric Guyomarc’h
University of Rennes / INRIA

Email: Frederic.Guyomarch@inria.fr

Jean-Luc Dekeyser
LIFL / INRIA

Email: Jean-Luc.Dekeyser@lifl.fr

KEYWORDS
MDE, HPC, Code generation, OpenMP

ABSTRACT
In this paper, we present a methodology which allows
OpenMP code generation and makes the design of paral-
lel applications easier. The methodology is based on the
Model Driven Engineering (MDE) approach. Starting
from UML models at a high abstraction level, OpenMP
code is generated through several metamodels which
have been defined. Results show that the produced code
is competitive with optimized code.

INTRODUCTION
A physical barrier has been attained by processor sup-
pliers which implies that frequency can not be increased
like in the past. Previously, a basic processor replacement
allowed to gain performance thanks to the higher fre-
quency. Nowadays, the only way to reach performance
is to carry out parallel computing and the multi-core pro-
cessors development is making it even more important.

Unfortunately parallel computing is not easy for non-
specialists. It requires knowledge of parallel algorithms
and parallel coding for different kinds of architectures.
From shared memory to distributed memory, the range
of parallel machines is wide and program optimization is
machine dependent. The complexity is even increasing
now with the mix of all these concepts into multi-core
machines joined into a grid.

Higher levels of parallel languages (like Fortress (2))
are made to simplify writing, but they are still for special-
ists. Methods to help the non-specialists to write parallel
code must be defined.

The trend in software engineering is to model software
at a high abstraction level in order to be more produc-
tive and to make the software durable. A high abstrac-
tion level enables to be independent from any language
and the designers do not have to handle all implemen-
tation details. In the Model Driven Engineering (MDE)
conception flow, input models (expressed at a very high
level) are transformed into lower abstraction levels to fi-
nally generate code.

Our contribution is twofold. First, we propose a meta-
model to model OpenMP programs that could be used

∗This work has been partially supported by the CNRT FuturElec
and the CNRS PEPS program

in any model approach. This metamodel is based on
a metamodel of procedural language wherein OpenMP
concepts have been added. Secondly, we present a way
to generate OpenMP programs starting from a high ab-
straction model using the OpenMP metamodel.

The paper is organized as follows. The next section
presents some works about the automatic generation of
parallel code. Then, the main concepts of the MDE are
introduced. Later, an approach based on the MDE to
produce OpenMP code is presented. Afterwards, some
results about the produced code is analyzed. Finally,
conclusions are given and some on-going works are pre-
sented.

RELATED WORK

The automatic parallelization is a widely studied domain.
Lots of tools are available to handle it. Two approaches
can be distinguished: the generation of parallel code and
the parallelization during the compilation. Since our goal
is to generate OpenMP code, we describe here only a few
works closely related, which also deal with paralleliza-
tion using OpenMP.

The classical approach is to generate OpenMP code
starting from a sequential code. Tools such as CAPO (11;
10) and the POST project (1) are based on this approach.
Starting from a sequential code, and through a data de-
pendencies analysis, the tools will automatically identify
the main characteristics of the code including the differ-
ent types of loops. Then, there are two approaches: either
the code is automatically generated with the insertion of
the appropriate OpenMP directives or the tool indicates
the user which loops can be parallel and helps him to de-
cide.

Another approach is to generate OpenMP code from
another parallel language. Thus, Krawezik et al. (13) pro-
pose to generate OpenMP code starting from MPI code.
The resulting program is a program written in the same
style as the MPI code: the Single Program Multiple Data
(SPMD) style. Such approach is used because OpenMP
is often better on shared memory architecture than MPI.

Our approach promotes the use of visual programming
(the models), thus users don’t need to handle code di-
rectly. As the models are made at a very high abstrac-
tion level, they can be reused for any other parallel lan-
guages. Code generation is made automatically without
any user’s intervention.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

155

MODEL DRIVEN ENGINEERING (MDE)
Models are being used since a long time. Painting and
sculpture can be considered as models of what they rep-
resent (8). They are used in computer science since time
now. The first use of models in computer science is to
make a system understandable for different developers.
It is used as documentation and specification for the sys-
tem developers. These kind of models is named contem-
platives. In order to raise productivity, the idea is to make
models productive and executable, and the MDE (18) has
been introduced. It consists of using models at each level
of conception, and to make models transformations be-
tween these levels. So that, once the system is modeled
at a high abstraction level, only refinements are needed
instead of rebuilding all the system at the new level. Such
an approach allows to be independent of implementation
details since they are managed by the transformations.

Model
A model is an abstraction of the reality. It is composed by
concepts and relations in order to represent the system.
When a designer models a system, he thinks about what
he is interested in the system. Models are made with
the designer’s point of view. The same system could be
modeled in different ways depending on the designer.

Models are usually made using the Unified Modeling
Language (UML) (14) which is the standard from the
Object Management Group (OMG) for visual program-
ming.

In the HPC field, the designers are interested in the
parallelism. Models of application and architecture need
to express all the available parallelism to take advantage
of the high number of processors available.

Metamodel
A metamodel defines the available concepts and relations
that can be used to create a model. It could be compared
to the grammar of a programming language. Designers
are guided by the metamodel in order to produce same
kind of models. A model made using a metamodel is
said conform to this metamodel.

In our framework the metamodels must propose a
mechanism to express all the parallelism in the models
and also the mapping of software onto hardware archi-
tectures. The distribution of tasks on hardware is an im-
portant point to raise performances as different mappings
of the same application can highly impact these perfor-
mances.

Transformation
As the MDE promotes the use of models in each level
of conception (abstraction level), an automatic genera-
tion of the different intermediate models is mandatory.
A model transformation is performed between a source
model and a target model, respectively conformed to the
source and target metamodels. It could be seen as a com-
pilation process. A transformation relies on a set of rules:

a rule expresses how to transform a source concept (resp.
relation) into an equivalent target concept (resp. rela-
tion). It facilitates the writing, extensions and maintain-
ability since each rule is independent of others and can
then be modified independently. The transformation of
models are typically used to reach a low level model (the
code) from a high abstraction level model. Each trans-
formation is designed in order to add details to the mod-
els. It is a refinement used to be able to obtain the code
with the appropriate implementation details. Several ap-
proaches of model transformations have been proposed.
The Query/View/Transformation (QVT) (15) approach
is an OMG standard for transformation. It proposes a
declarative and an imperative language to write transfor-
mations. Unfortunately transformations tools are not yet
mature and no complete implementation of QVT is avail-
able. SmartQVT (20) is a partial implementation of QVT
based on the declarative language but it was not entirely
developed when we started development. So, we devel-
oped our transformation tool called MoMoTE (Model to
Model Transformation Engine). It is build as an Eclipse
plugin using the EMF tools (7).

For the HPC area, the goal is to produce parallel code
starting from a high abstraction level. Thus, a language
independent model to express parallelism will be trans-
formed into a language dependent model to express the
parallelism. The high level expression of parallelism will
be refined in order to produce optimized code in the tar-
geted language, here OpenMP (C and Fortran).

METAMODEL OF PROCEDURAL LANGUAGE
USING OPENMP
As the targeted languages were Fortran and C, the most
efficient strategy was to define a metamodel which al-
lows to generate both languages. Since both are proce-
dural languages, a metamodel of a general procedural
language wherein the OpenMP concepts are added has
been specified. The metamodel has been inspired by the
C-ANSI Yacc grammar (12). An overview of the meta-
model of procedural language is first presented and then
the introduction of OpenMP statements in the procedural
language metamodel is exhibited. Other procedural lan-
guages than C and Fortran have not been studied in detail
to create the metamodel, but should be compatible with
this metamodel with only minor changes.

Procedural language metamodel description
This metamodel aims to be of general-interest. It is not
specific for our goal and could be used for any other
purposes. It permits to declare programs, libraries, rou-
tines, functions, variables, expressions and all the avail-
able constructions. Pointers are not yet supported in the
metamodel because we do not need it at the language
level. In fact, in the higher level, all data are organized as
multidimensional arrays which can be natively translated
in languages we target.

The figure 1 presents an excerpt of the statements

156

available in the procedural language. The most common
expressions of languages can be modeled: the condi-
tional statements (if and ifelse), the loop statements (for
and while), the call of subroutines/functions and the con-
struction of expressions.

Figure 1: Statements in the procedural language meta-
model

Adding OpenMP statement to procedural language
metamodel

As the goal is to generate OpenMP code, OpenMP state-
ments have to be available to generate OpenMP di-
rectives and function calls. OpenMP statements are
added to the metamodel while OpenMP functions, like
omp get num thread(), are modeled in a library which
is referenced when OpenMP procedural language model
makes a function call.

Figure 2: OpenMP statement added

The figure 2 illustrates the OpenMP statements added
in the classical statement. An OpenMP statement can
have OMP Clause (such as private or shared).

The figure 3 illustrates a model made with the meta-
model (as a graphical representation is not generated with
the metamodel). In this example, we illustrate the tree
organization of a model: an OMP Parallel statement con-
tains an ordered list of statements (S1,S2,S3) and two
synchronization barriers (B). Each statement is also hi-
erarchic: S2 contains an if statement.

Figure 3: Tree representation of a model

OPENMP CODE GENERATION

The OpenMP code generation is implemented in a
framework called Gaspard2 (21). It provides an Inte-
grated Development Environment (IDE) for Multipro-
cessor System-On-Chip (MpSOC) co-modeling and for
High Performance Computing application design (fig-
ure 4). Gaspard2 is able to manage both targets because
the modeled systems are the same: MpSOC are mas-
sively parallel architectures and so are computers used
for HPC, targeted applications are parallel in both cases
and mapping of application on hardware architecture also
needs to be expressed. Thus Gaspard2 has different tar-
gets (Synchronous, SystemC, VHDL, OpenMP) starting
from the same high level model. The Synchronous target
allows to do verification and validation of an application
with the help of synchronous language. The SystemC tar-
get is able to make System On Chip co-simulation with
SystemC. The VHDL one allows the generation of an
hardware accelerator on a FPGA for a part of the applica-
tion. The OpenMP target generates shared memory code
executable on supercomputers. In the following, we fo-
cus on this later.

Figure 4: The Gaspard Y Chart

157

Gaspard2 is based on the component assembly in or-
der to make components reusable. As a component, we
define an elementary or composed system with fixed size
input and output ports (the data). There is no state in a
component, output values (on output ports) depend only
on input values. The basic units of models are Elemen-
tary Components which are deployed to a function (usu-
ally from a library), they can be compared to a black box
associated to a piece of code.

The global methodology, as seen in figure 4, is as fol-
lows: the first step is to design application and hardware
architecture independently of each other. This separa-
tion of concepts allows to reuse these models and to keep
them human readable. Then, with the help of an allo-
cation mechanism, the computation tasks are distributed
over processors and the data are mapped onto memories1.
After that, a transformation chain (a succession of mod-
els transformations) leads to the generation of the desired
code.

This MDE approach permits a great flexibility: tar-
gets can be added, reusing a part of the actual chains.
Moreover, it encourages reuse of models and compo-
nents. Once a component has been designed, it could be
reused in several models. An application could also be
reused to target several languages and hardware architec-
tures. Thus, to target a new hardware architecture, users
have to do the association between application model and
hardware architecture. Code will be automatically gen-
erated for this architecture with the specified mapping.
Similarly, several distributions of an application on an ar-
chitecture could be tested easily. User just has to change
the distribution specification, the new code , with the new
distribution, will be automatically generated.

The integration of a new standard of OpenMP, such
as the future version 3.0 (17), could also be easily done
since user just needs to modify the last transformation
generating the code itself, and also maybe between the
loop and the OpenMP model (and add the new OpenMP
features in the corresponding metamodel). In fact the
transformations before these are mainly used to express
the parallel loops. Concept will always be present in
data-parallel languages.

OpenMP code is generated in the SPMD style. SPMD
style is one of the most efficient styles compared to
the classical loop level one (13) because there are less
OpenMP directives since all the code is in a PARALLEL
directive. As the mapping of application tasks on threads
is explicit (using the number of threads), data locality can
be assured whereas it cannot be with OpenMP directives
which depends on the OpenMP compiler efficiency. In
the code generation, a thread is considered to be associ-
ated to a processor in order to use the cache efficiently.

1for OpenMP, we do not place data onto different memories but
for other targets of code like SystemC, we could simulate the effect of
different placements

The high level model
The high level models are made with a profile (4) which
is a subset of the UML Modeling and Analysis of Real-
Time and Embedded systems (MARTE) profile (16; 19).
A profile allows to add semantics to UML elements. This
profile allows the modeling of software, hardware archi-
tecture and the association between them. It is a com-
ponent based approach using UML 2 (14) components.
Using a concept called repetitive structure modeling, the
profile allows to express the repetitions of the same com-
ponent instance (details could be found in (6)). This con-
cept could be used in software as well as in hardware. It
is based on the Array-Oriented Language (Array-OL) ex-
pression (5) which is a specification language to express
all the parallelism available. Data-parallelism and task-
parallelism could be modeled in the application model
and available parallelism in the hardware architecture
model is also expressed.

An application model can be seen as a hierarchical Di-
rected Acyclic Graph (DAG) of tasks where nodes are
tasks and edges are data dependencies between tasks.
An application model is illustrated in figure 5. This is
a simple application which consists of the initialization
of two matrices, making the multiplication between both
and checking the result obtained.

Figure 5: A simple application model

The task parallelism is expressed by several tasks with-
out data dependencies between them. Then, if all the in-
puts data of the tasks have already been produced, all the
tasks can be executed in parallel. Thus, in the figure 5,
tasks iM1 and iM2 can be executed in parallel: there
is no data dependency between them. A model which
expresses data-parallelism is shown in figure 6. It rep-
resents a matrix multiplication, used in the application
model of figure 5, using dot product algorithm. The dP
instance is repeated (4,4) times to compute the (4,4) out-
put matrix. There is no dependency between each repeti-
tion of the dP instance. This means the 16 computations
can be done in parallel. The connectors stereotyped as
Tiler express which part of the input/output arrays each
repetition uses. Detailed information about Tiler can be
found in (5).

Tasks distribution over processors is expressed using
Array-OL expression. It expresses the distribution of the
repetition of tasks over the repetition of processors (see
details in (6)). Classical High Performance Fortran dis-
tributions such as BLOCK or CYCLIC distribution can
easily be expressed.

158

Figure 6: Matrix multiplication expressed with data-
parallelism

Only “complete” models can be used for code genera-
tion. A “complete” model is an application model asso-
ciated with an hardware architecture. To target OpenMP,
each elementary component needs to be deployed on a
function and each instance of elementary component has
to be mapped onto a processor (directly or one compo-
nent instance it belongs to using the hierarchy tree).

Brief explanation from the high level to loop model
The transformation starts from a “complete” high level
model. Transformations are decomposed into small ones
which are easier to develop, debug and can be reused for
several targets. Both transformations briefly explained
here are used for the OpenMP code generation as well as
for the SystemC code generation.

The first step (high level model to polyhedron model)
is to merge high level models into one model: the poly-
hedron one. During this transformation the expression
of the tasks distribution over processors is transformed
into the polyhedral model. This is a classical model in
the data parallelism area. Considering that the repetition
of a task can be seen as a multidimensional polyhedron,
the mapping expression defines how to scan this polyhe-
dron depending on the processor number (or the thread
number in OpenMP). A polyhedron is generated for each
mapping information and is given to the concerned tasks
which are linked with the processor (or repetition of pro-
cessors).

Once polyhedron model is obtained, the second step
is to get closer to the implementation. Polyhedrons are
transformed into loops using a tool called CLooG (3;
Chunky Loop Generator) which generates loops scan-
ning the polyhedrons. In the application part of the
model, each polyhedron will be replaced by a nested
loop scanning the polyhedron. The resulting application
model is still a DAG where the mapping of tasks is ex-
pressed in loop expressions.

Generation of OpenMP procedural language model
This is the last transformation of the chain. The goal is
to obtain a model in OpenMP procedural language meta-

model starting from a loop model. Only the application is
used until now, but hardware could be used to optimized
code depending on the architecture.

Different tasks have to be done from this model to gen-
erate OpenMP code, they are:

- task scheduling

- generate OpenMP directives

- allocate variable

- determine shared variables

- put synchronization barrier

As we generate SPMD code style, all the generated
code, which depends on thread number, is included in
an OpenMP parallel section. The allocation and affec-
tation of the thread number (p0) is also done automati-
cally.Variables are private by default and shared variables
have to be declared.

The transformation is made as follow: transformation
rules first analyze the components at the highest hierar-
chical level, afterward each of these components is an-
alyzed again to determine the sub-levels of component
hierarchy.

The mapping between application tasks and proces-
sors expresses where each task or repetition of tasks will
be executed but it does not express an execution order.
Therefore a scheduling of the tasks of the graph is needed
in order to produce a valid application. A scheduling is
determined for each level of the hierarchy. The basic rule
to determine the scheduling is: a task can be scheduled
only if all its inputs have already been produced. Once
a component can be scheduled, the transformation ana-
lyzes the sub-level of the component hierarchy.

The model in the OpenMP procedural language meta-
model contains variables which have to be allocated. As
we deal with shared memory architecture, data place-
ment are not taken into account but data needs to be al-
located and declared shared or private between threads.
The basic way is to declare each port as variable, but
this causes lot of variable allocation and worse, many
useless memory copies penalizing performance. Ports
which connect a sub-task to its containing task can be
discarded: we just need to know where to read the data
into the memory (they are sub-values of the superior port
actually), instead of copying the data in a private vari-
able. A variable is identified as shared variable and put on
the SHARED clause declaration when it is used on tasks
mapped on several threads. Variables names depend on
the port name and a generated number is used to assure
the unicity of variables.

When the transformation deals with an elementary
component, it generates a call to the function on which
the component is deployed. Tilers are computed or op-
timized in order to reduce the number of intermediary
variables.

Insertion of synchronization barrier is needed in order
to respect the data dependencies between parallel tasks.

159

The determination of synchronization barrier is done on
the same principle. A synchronization is needed when
tasks with data dependencies are not in the same thread
(this could be determined with analysis of the loops).
Once a hierarchical level has been mapped on a thread (as
this is a sequential part), no synchronization are needed
and variables used in this part should be private.

Figure 7: Tree representation of the OMP model

Based on a tree representation of the model, the gen-
erated model for the example given on figure 5 will look
like in figure 7. It illustrates the OpenMP procedural lan-
guage model generated for the application mapped on
four processors. The mapping expressed that the iM1
instance is placed on processor 0, the iM2 instance is
placed on processor 1 and the cM instance is placed on
the processor 0. The distribution of the (4,4) repetitions
of the dP instance expresses that each processor has to
compute a column of computation.

We can observe that two synchronization barriers have
been generated: one before the matrix multiplication
(threads are waiting at the end of the initialization) and
one after the matrix multiplication (waiting for all threads
to finish the tasks they have to compute). The if state-
ments are generated by the mapping of a single task on
a single processor whereas the for statement is generated
to distribute repetition of the (4,4) dP instance on the pro-
cessor.

Code generation from OpenMP procedural language
model
Since the model of lowest level is actually very close to
the code itself (at least in structure), the code generation
from the OpenMP procedural language model is nothing
but a “pretty printer”; it translates the model representing
the code into the code itself using templates.

The figure 8 illustrates the code generated from the
model presented in figure 7. Elementary components are
deployed on a routine corresponding to the component
name (initMatrix routine for the initMatrix component).

RESULTS
In order to illustrate the use and the efficiency of such an
approach, we have compared the execution time of dif-
ferent implementations of a classical program: the ma-
trix multiplication (with (2000,2000) matrices). We have
compared automatically produced code with the hand-
written library GotoBLAS (9). Code was executed on a

program m a t r i x M u l t i p l i c a t i o n
double p r e c i s i o n , dimension (4 , 4) : : ou t1
double p r e c i s i o n , dimension (4 , 4) : : ou t2
double p r e c i s i o n , dimension (4 , 4) : : C
i n t e g e r : : p0 ! p r o c e s s o r number
i n t e g e r : : x
i n t e g e r : : y

! $omp p a r a l l e l d e f a u l t (p r i v a t e)
! $ shared (out1 , out2 , C)

p0 = o m p g e t n u m t h r e a d ()
! i n i t m a t r i c e s
i f (p0 ==0) then

c a l l i n i t M a t r i x (ou t1)
end i f
i f (p0 ==1) then

c a l l i n i t M a t r i x (ou t2)
end i f
! $omp b a r r i e r
do y =0 ,3

x=p0
c a l l d o t P r o d u c t (. .)

end do
! $omp b a r r i e r

i f (p0 ==0) then
c a l l c h e c k M a t r i x (C)

end i f
! $omp end p a r a l l e l

end program

Figure 8: Generated code example

3Ghz bi-Xeon dual core processor, running Linux with
a total of 2Gb of shared memory. Parallel programs run
over four threads.

Algorithm Best execution time Average
Row-column algorithm 0:21.11 0:21.60

Block multiplication 0:12.59 0:13.17
Block multiplication with

GotoBLAS task 0:01.25 0:01.26
Parallel GotoBLAS 0:01.03 0:01.05

Sequential GotoBLAS 0:03.34 0:03.39

Figure 9: Square matrices - Execution times on four
threads - Average is made on 100 executions

Three codes have been generated through Gaspard2:
row-column multiplication, block multiplication and the
block multiplication using GotoBLAS tasks on sequen-
tial parts. The two first generated algorithms go to the
scalar operation (addition and multiplication) where as
the last one use GotoBLAS function as soon as we are in
a sequential part. Results are given in figure 9. We can
observe that both codes which go to scalar operation are
not competitive compared to the sequential and parallel
hand written code. This is due to the fact that we are
not able to optimize sequential code. The block multipli-
cation using GotoBLAS task for sequential part is com-
petitive with the parallel hand-written function. Results
show that the best way to use Gaspard2 is to let Gaspard2
manage the parallelism using optimized sequential tasks.

160

CONCLUSION AND FURTHER WORK
In summary, we have presented the Gaspard2 frame-
work that generates OpenMP code based on an MDE ap-
proach. All the transformations have been implemented
as an Eclipse plugin. The results show that letting Gas-
pard2 manage the parallelism using optimized tasks on
sequential part is the right way to use the framework.
This method permits to generate code with performances
closed to the optimized library. Programming at a high
abstraction level allows to be language independent and
to reuse models for different targeted language. This ap-
proach has also been tested on a conjugate gradient solv-
ing Maxwell equation and the acceleration is promising.

Several further works can be extracted from this ap-
proach. The first one is to optimize the generated
OpenMP code to provide a better data locality. The use
of private arrays instead of shared arrays should improve
the use of cache and raise performance. As the multi-
core processors are widely widespread, the second work
which should be carried out is to optimized code for
multi-core architecture which is not a classical SMP ar-
chitecture since multi-core architectures share more re-
sources as cache memory level. The last task is to target
new hardware architectures such as the Graphical Pro-
cessing Units which are a special kind of shared memory
architecture, and the distributed memory architecture us-
ing MPI to manage communications.

REFERENCES

[1] Adhianto, L., Chapman, B., Lancaster, D., and Wolton, I. (2000).
Tools for OpenMP Application Development: The POST Project.
Concurrency: Practice and Experience, 12:1177–1191.

[2] Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessn, J.-W.,
Ryu, S., Jr., G. L. S., and Tobin-Hochstadt, S. (2007). The Fortress
Language Specification Version 1.0 Beta. Technical report, Sun Mi-
crosystems, Inc.

[3] Bastoul, C. (2004). Code generation in the polyhedral model is
easier than you think. In PACT’13 IEEE International Conference
on Parallel Architecture and Compilation Techniques, pages 7–16,
Juan-les-Pins.

[4] Ben Atitallah, R., Boulet, P., Cuccuru, A., Dekeyser, J.-L., Honoré,
A., Labbani, O., Le Beux, S., Marquet, P., Piel, E., Taillard, J., and
Yu, H. (2007). Gaspard2 uml profile documentation. Technical
Report 0342, INRIA.

[5] Boulet, P. (2007). Array-OL revisited, multidimensional intensive
signal processing specification. Research Report RR-6113, INRIA.

[6] Boulet, P., Marquet, P., Piel, E., and Taillard, J. (2007). Repetitive
Allocation Modeling with MARTE. In Forum on specification and
design languages (FDL’07), Barcelona, Spain. Invited Paper.

[Chunky Loop Generator] Chunky Loop Generator. CLooG home
page. http://www.cloog.org.

[7] eclipse.org (2005). Eclipse. http://www.eclipse.org.

[8] Favre, J.-M. (2005). Foundations of model (driven) (reverse)
engineering : Models – episode i: Stories of the fidus papyrus
and of the solarus. In Bezivin, J. and Heckel, R., editors, Lan-
guage Engineering for Model-Driven Software Development, num-
ber 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany.
Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany.

[9] Goto, K. and van de Geijn, R. (2002). On Reducing TLB Misses
in Matrix Multiplication. Technical Report TR-2002-55, The Uni-
versity of Texas at Austin, Departement of Computer Sciences.
FLAME Working Note #9.

[10] Ierotheou, C. S., Jin, H., Matthews, G., Johnson, S. P., and Hood,
R. (2005). Generating OpenMP code using an interactive paral-
lelization environment. Parallel Computing, 31(10-12):999–1012.

[11] Jin, H., Frumkin, M., and Yan, J. (2000). Automatic Generation
of OpenMP Directives and Its Application to Computational Fluid
Dynamics Codes. pages 440–456.

[12] Jutta Degener (1995). Ansi c yacc grammar. URL: http://
www.lysator.liu.se/c/ANSI-C-grammar-y.html.

[13] Krawezik, G. and Capello, F. (2003). Performance comparison
of MPI and three OpenMP programming styles on shared memory
multiprocessors. In SPAA ’03: Proceedings of the fifteenth annual
ACM symposium on Parallel algorithms and architectures, pages
118–127, New York, NY, USA. ACM.

[14] Object Management Group, Inc., editor (2004). UML 2 Su-
perstructure (Available Specification). http://www.omg.org/
cgi-bin/doc?ptc/2004-10-02.

[15] Object Management Group, Inc. (2005a). MOF Query /
Views / Transformations. http://www.omg.org/docs/ptc/
05-11-01.pdf. OMG paper.

[16] Object Management Group, Inc., editor (2005b). UML Pro-
file for Modeling and Analysis of Real-Time and Embedded sys-
tems (MARTE) RFP. http://www.omg.org/cgi-bin/
doc?realtime/2005-02-06.

[17] OpenMP Architecture Review Board (2007). OpenMP Applica-
tion Program Interface Draft 3.0.

[18] Planet MDE (2007). Model Driven Engineering. http://
planetmde.org/.

[19] ProMarte partners (2007). UML Profile for MARTE,
Beta 1. http://www.omg.org/cgi-bin/doc?ptc/
2007-08-04.

[20] SmartQVT (2007). A QVT implementation.

[21] WEST Team LIFL, Lille, France (2005). Graphical Array Spec-
ification for Parallel and Distributed Computing (GASPARD-2).
http://www.lifl.fr/west/gaspard/.

AUTHOR BIOGRAPHIES
JULIEN TAILLARD is a PhD student on computer
science. His research interest are models and high
performance computing.

FRÉDÉRIC GUYOMARC’H is assistant professor
in University of Rennes and currently spends one year
as researcher at the INRIA Lille - Nord Europe. He is
interested in Linear Algebra and parallel algorithms.

JEAN-LUC DEKEYSER is professor in the Computer
Science department at the University of Lille. He is also
the scientific leader of the DaRT project at INRIA Lille
- Nord Europe and the WEST team at LIFL (Laboratoire
d’Informatique Fondamentale de Lille).

161

ANALYTICAL MATRIX INVERSION AND CODE GENERATION FOR

LABELING FLOW NETWORK PROBLEMS

Michael Weitzel and Wolfgang Wiechert
Institute of Systems Engineering / Simulation Group

Mechanical / Electrical Engineering & Computer Science
University of Siegen, 57068 Siegen, Germany

E-mail: michael.weitzel@uni-siegen.de

KEYWORDS
Analytical Matrix Inversion, Sparse Systems of Linear
Equations, Code Generation.

ABSTRACT

Symbolic simplification and algebraic differentiation are
only some of the advantages symbolic computations offer
over their numerical counterparts. With a focus on sparse
systems of linear equations, this contribution presents an
analytical approach to a matrix inversion problem occur-
ring in the field of Metabolic Flux Analysis. It is illus-
trated how the inherent complexity of the approach can be
handled and how symbolic solutions can be compiled into
highly performant machine code. Finally, benchmark re-
sults demonstrate that compiled analytical solutions offer
comparable or even better performance than state-of-the-
art sparse matrix algorithms.

INTRODUCTION

The research context of this contribution is given by
Metabolic Flux Analysis (MFA), a class of network flow
problems found in Systems Biology. One especially suc-
cessful approach to MFA is based on isotopic labeling
where a specifically labeled substrate, e.g. 13C labeled
glucose, is fed to the cells of an (typically unicellular)
organism. According to the intra-cellular reaction rates
(flux values) the isotopic labeling distributes among the
cell’s metabolites (Wiechert 2001). In the following, only
those details are introduced which are necessary to un-
derstand the underlying mathematical structures and the
described algorithms.

The computational heart of MFA is the simulation of
isotopic labeling enrichment by the solution of a cascaded
system of linear equations (Wiechert and Wurzel 2001):

0x = 1
0 = kA(v) kx + kb

(
v, 1x, . . . , k−1x, kxinp

)
for k = 1, 2, . . .

(1)

These systems are obtained by serializing cascaded flow
network graphs into balance equations. The unknowns
kx represent the labeling state of metabolites; the so
called cumulative isotopomer fractions. The reaction
rates v connecting the metabolites as well as the labeled

Figure 1: Cascaded flow network graphs

input substrate kxinp are variables of the system. More-
over, vectors 1x, . . . , k−1x serve as additional input for
the system on level k and go into vector kb in a nonlinear
way. The described scheme is illustrated by the tiny ex-
ample network in Fig. 1. The number of cascade levels
corresponds to the maximum number of atoms (labeling
positions) in a metabolite. The two connected flow net-
work graphs are serialized into a cascaded system of bal-
ance equations. More details can be found in (Weitzel,
Wiechert, and Nöh 2007).
Cascade level 1:

1A(v) =

−v0 − v3 0 0 0 0 v3

0 −v0 − v3 0 0 v3 0
0 v1 −v1 0 0 0
v1 0 0 −v1 0 0
0 0 v2 0 −v2 0
0 0 0 v2 0 −v2

1x =

(
AH# A H# BH# B H# C D

)T
1b(v, 1xinp) =

(
v0 · (EH#) v0 · (E H#) 0 0 0 0

)T
Cascade level 2:

2A(v) =
(
−v0 − v3 0

v1 −v1

)
2x =

(
A B

)T
2b(v, 1x, 2xinp) =

(
v0 · (E) + v3 · (C) · (D)

0

)
In practice, each level of these cascaded compartmen-

tal systems typically contains balance equations for a few
dozens to several thousands of unknowns and possesses
certain structural properties (Weitzel, Wiechert, and Nöh
2007):

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

162

1. Each edge of the flow network graph labeled with a
flux value vi subtracts vi from the diagonal of kA
and adds the same vi to an off-diagonal element.
This property results in weak diagonal dominance
of kA since the diagonal elements sum-up a node’s
total influx with negative sign.

2. Metabolic networks are usually sparse graphs
(Weitzel et al. 2007). The ratio of the number of
edges to the number of nodes (i.e. the connectivity)
ranges from 2 to 2.5. This means that the number of
edges is in the order of the number of nodes. This
property results in sparse matrices kA.

3. It can be shown that the connectivity of graphs de-
creases monotonously with increasing cascade level,
thus matrices kA are increasingly sparse.

4. Except for the diagonal, matrices kA have the same
non-zero pattern as the transposed adjacency matrix
of the flow network graph. This property is invariant
with respect to flux values v as long as vi 6= 0.

5. The flow network graphs associated with kA typi-
cally contain a wide range of isomorphic subgraphs
(Weitzel et al. 2007).

6. Only a few variables v determine matrices kA(v).
Moreover, with increasing k, the variety of flux vari-
ables is cut back.

7. By using a certain permutation Pk, matrices kA can
be permuted into a upper (lower) block-triangular
form PT

k (kA)Pk where the blocks on the diagonal
are compartmental matrices, again.

Strategies for Solving the Cascaded System

The straightforward approach for the solution of Eq. (1)
would be to choose an efficient implementation of a
standard LU algorithm, such as LAPACK’s DGETRF /
DGESV (Anderson et al. 1999). These standard imple-
mentations use partial pivoting in order to provide numer-
ical robustness. For a reasonably large network, where
k = 1, . . . , 11 and maxk{dim(kA)} ≈ 1200, this results
in about 20 sec. for a single simulation run. However, by
taking advantage of the special structure of Eq. (1), the
running time can be reduced to about 20 · 10−3 sec. for
the same system (Weitzel, Wiechert, and Nöh 2007).

Diagonal dominance (property 1) can be used to
speedup the classical LU algorithm by skipping the par-
tial pivoting phase completely without risking numerical
stability (Golub and van Loan 1996).

Sparsity of matrices kA (property 2.) suggests to use a
specialized sparse matrix algorithm. One possibly sense-
ful way to use this property is to solve the bandwidth-
reduced system (QTAQ)(QTx) + QT b = 0 by us-
ing a banded-LU algorithm. Property 4 ensures that the
bandwidth-reducing permutation Q can be computed in

advance, since kA(v) does not change its non-zero pat-
tern if v is varied. Because the algorithm for determin-
ing Q is a heuristic (George and Liu 1981) and signifi-
cant bandwidth reduction is not always possible this re-
duces the computation time for the above example net-
work from 20 sec. to about four sec.

The basis for more successful algorithms is the upper
block-triangular form PT

k (kA)Pk . In case only the di-
agonal blocks contain non-zero values each block corre-
sponds to an independent subsystem. These subsystems
do not influence each other and can be solved in any or-
der. In the more general case, where diagonal blocks are
connected by coefficients above the block diagonal, the
subsystems given by the diagonal blocks are unilaterally
dependent and thus, have to be solved in a specific or-
der during a single back-substitution run (Davis 2006).
The described algorithm greatly benefits from decreas-
ing connectivity (property 3) which leads to a large num-
ber of small subsystems and highly sparse matrices kA.
The use of this algorithm results in the above mentioned
speedup of about factor 1000.

By property 5, subgraph isomorphism is an important
feature of graphs kG and thus, classes of equivalent sub-
systems (equivalent except for permutation) can be found
in kA. Even though all subsystems of such an equivalence
class share the same LU decomposition, the beneficial
use of subgraph isomorphism is difficult in practice and
involves costly management which usually foils the addi-
tional theoretic speedup at least for smaller subsystems.
Since, on the other hand, larger subsystems are sparse as
well it might seem beneficial to switch to a banded-LU
in order to solve them. In practice, the obtained speedup
is minimal: the number of large subsystems is small and
due to their origin, the subsystems are ill-suited for band-
width reduction.

Property 6 is of no use for all direct numerical meth-
ods. This changes for the analytical solutions presented
in the next section.

ANALYTICAL SOLUTIONS

The Idea behind Analytical Solutions

Although there exist fast solution algorithms for positive
definite, banded, sparse, or other special systems the run-
ning time is always governed by the structure of the solu-
tion algorithm, but at most roughly by the structure of the
underlying problem (matrix). In case of systems where
the coefficients in A may change their value, but the
sparsity pattern remains the same, e.g. during a parame-
ter variation study, common algorithms suffer from their
static setup and specialized algorithms obtained from an-
alytical solutions might do a better job.

Even though sparsity and isomorphism give the clue
that additional speedup might be within reach, the classi-
cal direct numerical sparse matrix algorithms do not ac-
complish to capitalize these properties exhaustively. Fur-
thermore, the presorting and graph analysis steps found in
these algorithms do not care about how a certain non-zero

163

element is composed (i.e. the mathematical expression
that lead to the non-zero value) since this information
is usually out of reach and of no use for the algorithms
found in conventional sparse matrix libraries.

The idea behind an analytical solution is simple. In
general, analytical solutions can be obtained by carrying
out an algorithm’s operations symbolically: instead of ex-
ecuting arithmetic operators they are recorded symboli-
cally in form of an expression tree. This works especially
well if the underlying algorithm is branch-free, like the
LU algorithm if partial pivoting is omitted.

Analytical solutions facilitate any type of a posteriori
analysis. An interesting example is the ability to perform
algebraic differentiation of Eq. (1) in order to provide
highly accurate partial derivatives (sensitivities)

∂x(v)
∂v

= − ∂

∂v

(
kA(v)−1 · kb(v, . . .)

)
used by various optimization algorithms during the pa-
rameter fitting step. Algebraic differentiation of explicit
solutions is implemented as a set of simple expression
tree transformation rules. Another example is the esti-
mation of error propagation when a solution formula is
actually evaluated using floating point arithmetic.

Analytical Matrix Inversion

Matrix inversion is usually not an option when solving
a moderately sized system Ax + b = 0. Once a LU
factorization of A is computed in Θ(n3) FLOPS the so-
lution of Ax + b = 0 requires additional 2n2 FLOPS
(where n = dimx). In contrast, a matrix inversion based
on a LU factorization requires 2n3 FLOPS, i.e. n times
the effort of a solution. However, seen from an asymp-
totic standpoint, both direct numerical approaches require
Θ(n3) FLOPS (Golub and van Loan 1996).

Analytical computations require a change of perspec-
tive: there is no immediate relation between the time
complexity of the algorithm generating the analytical so-
lution and the number of FLOPS required to evaluate
it; i.e. its size. While the underlying algorithm might
not be able to handle sparsity efficiently, structural ze-
ros in the input data cancel-out large parts of the analyti-
cal computations. In this context, it is helpful to adopt a
classical idea from compiler design: high computational
effort during the compilation phase and expensive opti-
mizations are justified as long as the resulting code has
improved efficiency and is executed frequently (Much-
nick 1997).

For the original MFA problem, i.e. the solution of
the cascaded system (1), the computation of an inverse
(kA)−1 becomes an option because only a small subset
of the elements of (kA)−1 is actually required to describe
the MFA experiment:

• Measurements typically describe only a small subset
of kx. A direct numerical approach for solving the
cascade (1) cannot be trimmed to provide only the
relevant subset of the solution vector kx. Clearly,

having an analytical solution for (kA)−1, this can be
accomplished by extracting the relevant rows out of
kx = −(kA)−1(kb).

• Vectors kb are likewise sparse and a multiplication
of type (kA)−1(kb) selects relatively few columns
of (kA)−1 for building the solutions kx.

Moreover, by the application of iterative improvement,
an inverse (A(v))−1 for flux vector v can be reused for
some time as long as the parameter fitting procedure gen-
erates new flux vectors w = v + d by introducing slight
changes d:

x1 ← −(A(v))−1b(w)
xi+1 ← xi + (A(v))−1(A(w)xi − b(w)).

In practice the sequence x1, . . . ,xm ≈ x(w) converges
to an acceptable result after few iterations. However, this
is not applicable for larger d. Furthermore, m � n
should hold, since each iteration requires Θ(n2) FLOPS.
See (Press et al. 2007) for details.

Other applications of the inverse include the implicit
EULER iteration, where a non-stationary variant of Eq.
(1) is considered.

Complexity of Analytical Solutions

Algebraically, the matrix inversion problem is closely re-
lated to the computation of the transitive, reflexive clo-
sure of a graph (Lehmann 1977). Each element of an in-
verse corresponds with a set of paths connecting a pair of
nodes in the associated computational graph. Aiming to
compute only a subset of kx with the greatest possible
efficiency this path tracing approach marked the start-
ing point for our research. It was shown in (Isermann,
Weitzel, and Wiechert 2004) how the approach can be
applied to the solution of Eq. (1) using a generalized
KLEENE algorithm. The resulting branch-free matrix in-
version procedure is extremely simple and shall be used
to illustrate the sketched scheme for building an analyti-
cal solution:

INVERSE (E0 : Rn×n) : Rn×n

1 E← In −E0

2 for k ← 1 to n

3 do E← E +
E(:, k)E(k, :)
1−E(k, k)

4 return E← In + E

The following result can be proven by induction:

Proposition. After executing k times line 3 the contents
of E are

Ek =
[

A−1
k − Ik −A−1

k Bk

−CkA−1
k In−k − (Dk −CkA−1

k Bk)

]
with the partition

E0 =
(k n− k

k Ak Bk

n− k Ck Dk

)
.

164

Moreover, after executing n times line 3, the contents of
E are A−1

n − In = E−1
0 − In. Hence, the inverse E−1

0 is
returned in line 4.

Discarding the matrix notation, line 3 can be equiva-
lently written as

3 E′ ← E
3 for i, j ← 1 to n
3 do E(i, j)← E′(i, j)

3 +E′(i, k)E′(k, j)
1

1−E′(k, k)
.

The matrix operation in line 1, the three loops, and the ad-
dition of the identity matrix require 5n3 +n2 +n FLOPS
in total, which is about two times slower than a matrix
inversion based on the LU algorithm. Likewise, the re-
quired memory is in Θ(n2). However, if deferred eval-
uation is used, i.e. the above code is used to obtain an
expression tree for a symbolic rational expression, the
memory requirements change dramatically.

The memory requirements s(k) of a single entry of
E0 are assumed to be in Θ(1). In step k of the outer
loop the relaxation step in line 3 incorporates four times
a value from the previous matrix E′, introduces two Θ(1)
nodes for the value “1” and another five Θ(1) nodes for
operators. Hence, the recurrence s(k) = Θ(4s(k−1)+7)
with s(0) = Θ(1) describes the memory consumption of
the symbolic solution of a single element. The solution
to this recurrence is

s(k) = Θ

(
4k+ 7

k−1∑
i=0

4i

)
= Θ((10 · 4k− 7)/3). (2)

For the complete matrix E−1
0 this results in expression

trees having Θ(n24n) nodes in total (not counting the op-
erations in lines 1 and 4). Clearly, this is intractable even
for small problem sizes – for example, when assuming 12
bytes for a single expression tree node and n = 10 this
results in 4000 megabytes for E−1

0 .

Elimination of Common Subexpressions

At this point, analytical solutions for the matrix inversion
problem seem to be completely impractical: even if the
exponential memory requirements were no problem eval-
uation of the symbolic solution for each element of E−1

0

would require exponential time – just because the analyt-
ical solution has exponential size.

Fortunately, this problem can be handled by using the
fact that the generated symbolic expressions share com-
mon subexpressions to great extend. A minimal example
for n = 2 shall illustrate this. Just before the loop in line
2 starts the contents of E are

E = I2 −E0 =
(

a b
c d

)
.

When the loop of line 2 exits the contents of E are

E = E−1
0 − I2 =

(
e f
g h

)
.

For instance, the formula representing element h is

h = d +
cb

1− a
+
(

d +
cb

1− a

)(
d +

cb

1− a

)
S

using the term S := 1 /(1− (d + cb/(1− a))) which is
a common subexpression of all solutions.

All expression trees for the elements of E−1
0 have the

same size, namely 51 nodes (26 leaves, ten nodes for mul-
tiplication and five divisions, additions, and subtractions),
thus 204 nodes in total. This conforms with (2), since
22s(2) = 4 · 51 = 204. Collapsing all common subex-
pressions of the expression trees in E−1

0 − I2 transforms
the forest into a single directed acyclic graph (DAG) with
only 33 nodes (5 leaves, 16 multiplications, two divisions
and subtractions, and eight additions), i.e. only 16% of
the nodes found in the forest.

A Divide & Conquer Matrix Inversion Algorithm

Different matrix inversion algorithms result in com-
pletely different analytical solutions. Although there is
no immediate relation between size of the analytical so-
lution and the running time of the underlying algorithm
there is at least a tendency that a less efficient algorithm
results in larger analytical solutions.

Another branch-free matrix inversion algorithm hav-
ing its roots in the path tracing formalism is based on
a recursive formulation of the matrix inversion problem
(Conway 1971, Zhang 2005, Press et al. 2007):[

P Q
R S

]−1

=
[

T−1 −T−1QS−1

−S−1RT−1 S−1(I + RT−1QS−1)

]
with T def= P−QS−1R (the SCHUR complement of S).

An efficient implementation of this formula results in a
divide & conquer algorithm which requires two recursive
calls for the inversion of T and S and inverts a matrix in
about 2n3 + 2n2 − n/2 FLOPS, which is slightly better
than the LU algorithm without partial pivoting (8n3/3−
n2/2− n/6).

More importantly, the DAGs containing the analytic
solutions are about 20% smaller than those obtained from
the KLEENE algorithm. Compared to the KLEENE algo-
rithm an economical implementation of this algorithm is
challenging and requires in-place matrix operations and
careful handling of memory resources.

Creating DAGs and Handling Sparsity

Clearly, creating the analytical solutions in form of ex-
pression trees, first, and then collapsing them into DAGs
in a second step would be an impractical strategy since
this would require exponential memory. Instead, DAGs
have to be created on-the-fly.

This is an especially elegant way because in each step
of the matrix inversion algorithm a newly created oper-
ator node accesses only previously seen nodes. Using
techniques like common subexpression elimination, value

165

numbering (Muchnick 1997), as well as algebraic prop-
erties, like commutativity of operators, the DAG genera-
tion algorithm is able to decide whether an operator node
needs to be created, or an existing node can be reused.

Certain applications of operators may lead to the value
zero. In most of these cases the operator is a multiplica-
tion and one of the operands is a zero. This situation can
be handled by replacing the operator node by a reference
to the value zero. The remaining non-zero operand is kept
in memory since it may be used by a later computation.
Finally, when all elements of the inverse have been com-
puted, the DAG is pruned of the unused nodes. This strat-
egy efficiently handles sparsity and identifies matrix ele-
ments which contain a structural zero, i.e. a zero value
which originates in the structure of the actual inversion
problem.

Machine Code Generation

Once the DAG representing the inverse A−1 is in mem-
ory the goal is to evaluate it as fast as possible. Since
the DAG is acyclic this can be established using a sim-
ple depth-first search starting at the individual root nodes
and stopping either at the leaf nodes, or at nodes that have
been visited before. Although this approach is far better
than evaluating the original forest, there is some overhead
for dereferencing pointers, switching the different opera-
tors and managing node labels.

This overhead can be eliminated by compiling the
DAG into byte-code – either for an interpreter, or into
machine code for direct execution on a CPU. Another
option would be to emit a programming language source
code, e.g. C code, which is compiled and optimized us-
ing an existing compiler. The drawback of this option
is that common compilers are designed for small expres-
sions and small basic blocks and compilation may take
too long or require too much memory.

In the ongoing project the DAGs are compiled into ef-
ficient machine-code for the FPUs found in x86 family
CPUs. These FPUs are organized as stack machines.

Clearly, the DAG has to be evaluated in a topologi-
cal order starting at its leaves and stopping at the DAG’s
roots, i.e. result nodes representing the elements of the
inverse matrix. Following (Bruno and Lassagne 1975),
this special topological order, together with some man-
agement instructions, can be described as an abstract
stack machine program. By design, this program forces
an evaluation if either the stack load exceeds the maxi-
mum capacity or a root of the DAG (i.e. a result node)
is reached. Furthermore, the abstract stack machine pro-
gram cares about reusing previously computed interme-
diate results and saving them for later use.

Based on the information contained in the DAG and
the abstract stack machine program x86 machine code is
generated. Since complicated issues, like the allocation
of the stack registers, and the correct handling of common
subexpressions are already treated during the assembly
of the abstract stack machine program a single pass is

sufficient for generating the x86 FPU code.
In a second pass, a peephole optimization performs lo-

cal optimization by sliding over the generated code and
removing suboptimal constructs within a certain window.
Finally, some prolog and epilog are generated, the assem-
bler code is compiled into an object file and linked into a
dynamic library. This library is dynamically loaded once
at runtime and the matrix inversion code can be accessed
via a function pointer.

RESULTS

In this section the numerical accuracy of the presented
KLEENE algorithm and the divide & conquer algorithm
are compared in order to illustrate the appropriateness for
the cascaded systems in Eq. (1). Next, the performance of
the compiled analytical solutions is compared to LAPACK
(Anderson et al. 1999) and CSparse (Davis 2006), a
state-of-the-art sparse matrix library.

Empirical Comparison of Numerical Accuracy

Figures 2 and 3 give empirical results for the numeri-
cal stability of the different matrix inversion algorithms.
Each curve shows the mean, the minimum, and maximum
of the residual ||Â−1A − I||∞ of 100 randomly gener-
ated matrices A and the numerically computed inverses
Â−1. These results demonstrate the growth of numeri-
cal errors for fully populated and sparse matrices when
doubling the matrix dimension and are based on direct
numerical implementations, i.e. do not use analytical so-
lutions. Figure 2 shows the results for matrices fully pop-

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

M
ea

n
O

f
R

es
id

u
a
ls
||
Â
−

1
A

−
I
||
∞

0 1 2 3 4 5 6 7 8 9 10
log2(dimA)

LAPACK+iter.
Kleene Alg.
Div. & Conq.

Figure 2: Numerical stability of different matrix in-
version algorithms on fully populated random matrices.
Shown are mean, min., and max. values of residuals.

ulated with N(0, 1) random numbers. Matrices of this
type are usually well-conditioned. The accuracy of the
KLEENE algorithm is acceptable even for larger matrices.
In contrast, the divide & conquer algorithm performs bad
and the worst-case numerical accuracy is unacceptably

166

low for larger matrices. The solid line corresponds to a
matrix inversion based on a combination of the LAPACK
routines DGETRF / DGETRI and an additional iterative
improvement and is given for reference.

10−18

10−17

10−16

10−15

10−14

10−13

10−12

10−11

M
ea

n
O

f
R

es
id

u
a
ls
||
Â
−

1
A

−
I
||
∞

0 1 2 3 4 5 6 7 8 9 10

log
2
(dimA)

Figure 3: Numerical accuracy of the different matrix in-
version algorithms on a set of 100 sparse random matrices
obtained from randomly connected flow networks.

In Fig. 3 the same analysis was repeated for com-
partmental matrices obtained from randomly generated
ERDÖS-REYNI flow network graphs (Bolobás 2001) as-
suming dim(A) in- and effluxes and N(0, 1) random flux
values. The performance of all algorithms is very good.
This time, amazingly, the divide & conquer algorithm re-
turns the second best results.

Performance of Analytical Solutions

Figures 4, 5, and Fig. 6 compare the performance of
the analytical solutions with LAPACK’s DGETRF &
DGETRI (Anderson et al. 1999) and the state-of-the-art
sparse matrix library CSparse (Davis 2006). All bench-
marks were prepared on a 2 GHz Pentium M machine
with 2 GB of RAM. All analytical solutions are based on
the presented divide & conquer algorithm.

Figure 4 shows the results for the set of fully populated
random matrices. Because of the memory limitation dur-
ing compile-time it was possible to compose analytical
solutions for inverses of fully-populated matrices up to
dimension 160.

Figure 5 gives the results for the set of random
sparse matrices, again obtained from randomly connected
flow networks. The maximum dimension achievable for
sparse matrices (dim 2000) depends on the degree of
sparsity, which was adjusted to reflect a realistic network.
The size of the machine code generated from sparse and
fully populated matrices hitting the memory limit is com-
parable.

Finally, Fig. 6 shows the results for a realistic cascade
obtained from a metabolic network representing the cen-
tral metabolism of E. Coli. In contrast to the results pre-

0

10

20

30

40

50

60

70

80

90

100

R
u
n
n
in

g
T

im
e

[m
s]

0 50 100 160 200
dimA

0.45M
2M

3.5M

5.5M
8.1M

12M

16M

21M

28M

35M

44M

54M

65MDGETRI
CSparse

Mach.Code

Figure 4: Running times of LAPACK, CSparse, and
the generated machine code on fully populated matrices.
Code sizes of the machine codes are given in megabytes.

sented in figures 4 and 5, the code generation algorithm
worked on matrices kA(v) containing symbolic expres-
sions in its elements while CSparse worked on sparse
matrices containing double precision floating point val-
ues.

CONCLUSIONS

Typical sparse matrix algorithms are based on the anal-
ysis of a system’s non-zero pattern, or equivalently, the
system’s computational graph. The resulting techniques,
like fill-in reducing permutations or system decomposi-
tion, are often based on elaborate graph-theoretical algo-
rithms. Preconditioning and pivoting, on the other hand,
analyze the matrix elements in order to provide numerical
robustness. In contrast to the presented analytical matrix
inversion, all these techniques may be characterized as
top-down approaches.

Analytical solutions are constructed bottom-up using
simple rules, which results in highly complex tailor-made
solutions for a specific problem. Efficient handling of
the inherent complexity and the choice of the underlying
algorithm is crucial for the feasibility and the numerical
stability of the approach. The divide & conquer algorithm
qualifies in both aspects for the flow network problem.

Since the preparation of an analytical inverse may
take from seconds to several minutes the effort has to
be justified by the underlying problem (e.g. the use in
a parameter variation study) and analytical computation
is surely no option if an inverse is needed only once.
While the generated code for the analytical inverse of
fully populated matrices is slower than the LU algorithm
used in LAPACK (Fig. 4), it is about three times faster
than a state-of-the-art sparse matrix technique for ran-
domly generated sparse matrices (Fig. 5) and up to five
times faster for matrices obtained from a realistic net-
work, where symbolic equations can be provided (Fig. 6).

167

0

1

2

3

4

5

11

12

R
u
n
n
in

g
T

im
e

[s
]

10 200 500 1000 1500 2000
dimA

3.5M 13M 27M 48M 68M

≈ ≈≈
DGETRI
CSparse

Mach.Code

Figure 5: Running times of LAPACK, CSparse and
the generated machine code on sparse matrices obtained
from randomly connected flow networks with N(0, 1)
randomly distributed flow values.

FURTHER RESEARCH

The presented results are preliminary. Aiming to com-
pute only a subset of kx with the greatest possible ef-
ficiency the path tracing approach marked the starting
point for our research. For this reason the variants of the
classical Gauss algorithm, namely the branch-free vari-
ants of the LU and Gauss-Jordan algorithms, have not
been ranked yet.

Analytical computations require a new way of think-
ing. There is no immediate connection between the per-
formance of an analytical solution and the performance of
the algorithm that was used to generate the solution. First
results on algebraic differentiation show that the compu-
tation of derivatives is possible at little additional cost.
This is due to the fact that derivatives can be build by
reusing subexpressions of the original analytic solution.

Although the resulting machine code is rather small
the preparation of the analytical solutions consumes
much memory. First experiences with a garbage collec-
tion are promising and show that the compile-time mem-
ory requirements can be reduced drastically. Further re-
search will focus on improving the quality of the gener-
ated code and other fields of application.

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Croz, J. D., Greenbaum, A., Hammarling,
S., McKenney, A., and Sorensen, D. 1999. LAPACK Users’
Guide. Philadelphia: SIAM, third ed.

Bolobás, B. 2001. Random Graphs. Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press, 2nd ed.

Bruno, J. L., and Lassagne, T. 1975. The generation of optimal
code for stack machines. J. ACM, 22(3), 382–396.

0

25

50

75

100

125

150

175

200

R
u
n
n
in

g
T

im
e

[m
s]

1 2 3 4 5 6 7 8 9 10 11
Cascade Level k

27M 19M

18M
13M

9.7M

5.1M

1.7M
0.3M

0.03M

3
5
7

8
4
5

1
2
8
6

1
4
4
0

1
2
8
4

9
3
4

5
3
7

2
2
9

6
7

1
2

1

Dimension of Cascade Level k, dim k
A

CSparse

Mach.Code

Figure 6: Running times on a realistic cascaded network
representing the central metabolism of E. Coli. Sparsity
increases monotonously with cascade level k and deter-
mines code size and running time.

Conway, J. H. 1971. Regular Algebra and Finite Machines.
Mathematics Series. Chapman and Hall.

Davis, T. A. 2006. Direct Methods for Sparse Linear Systems.
Fundamentals of Algorithms. SIAM.

George, A., and Liu, J. W. H. 1981. Computer Solution of
Large Sparse Positive Definite Systems. Prentice Hall Series
in Computational Mathematics.

Golub, G. H., and van Loan, C. F. 1996. Matrix Computa-
tions (Johns Hopkins Studies in Mathematical Sciences). The
Johns Hopkins University Press, third ed.

Isermann, N., Weitzel, M., and Wiechert, W. 2004. Kleene’s
theorem and the solution of metabolic carbon labeling sys-
tems. In German Conference on Bioinformatics, vol. 53 of
LNI, (pp. 75–84). GI.

Lehmann, D. J. 1977. Algebraic structures for transitive closure.
Theoretical Computer Science, 4(1), 59–76.

Muchnick, S. 1997. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery,
B. P. 2007. Numerical Recipes 3rd Edition: The Art of Sci-
entific Computing. Cambridge University Press, third ed.

Weitzel, M., Wiechert, W., and Nöh, K. 2007. The topology of
metabolic isotope labeling networks. BMC Bioinf., 8(315).

Wiechert, W. 2001. 13C metabolite flux analysis. Metababolic
Engineering, 3, 195–206.

Wiechert, W., and Wurzel, M. 2001. Metabolic isotopomer la-
beling systems. Part I: Global dynamic behaviour. Mathe-
matical Biosciences, 169, 173–205.

Zhang, F. (Ed.) 2005. The Schur Complement and Its Applica-
tions (Numerical Methods and Algorithms). Numerical Al-
gorithms. Springer Science+Business Media Inc.

168

Workshop on Security and High
Performance Computing Systems

(SHPCS’08)

169

170

CORRELATION OF SYSTEM EVENTS: HIGH PERFORMANCE CLASSIFICATION OF
SELINUX ACTIVITIES AND SCENARIOS

J. Rouzaud-Cornabas, P. Clemente, C. Toinard
Laboratoire d’Informatique Fondamentale d’Orléans

University of Orléans, Bâtiment IIIA, Rue Léonard de Vinci
45067 Orléans, France

Email: {jonathan.rouzaud-cornabas,patrice.clemente,christian.toinard}@univ-orleans.fr

KEYWORDS
SELinux sessions and scenarios, correlation, detection.

ABSTRACT
This paper presents an architecture for the characteri-
zation and the classification of activities occurring in a
computer. These activities are considered from a system
point of view, currently dealing with information coming
from SELinux system logs.
Starting from system events, and following an incre-

mental approach, this paper shows how to characterize
high-level and macro activities occuring on the system
and how to classify those activities. It gives the formal
basics of the approach and presents our implementation.
The results of experiments uses real samples taken from
our honeypot. Correlation results are obtained using a
grid computation. Our high performance architecture en-
ables to compute a large amount of events captured dur-
ing one year on a high interaction honeypot.

INTRODUCTION
The correlation of data generally aims at exploring het-
erogeneous information to highlight related data re-
garding particular aspects (e.g., chronology, semantics)
among these different sources.
The core of the works presented here is the reconstruc-

tion of sessions composed of system activites, assuming
that their elementary system operations (i.e., SELinux
interactions or ’system calls’) are all catched by the
SELinux logs.
Following an incremental approach, our solution as-

sembles system events together to represent high-level
system activities (linux commands, execution of pro-
cesses). We group them to represent macro activities
including malicious ones, such as connections to hosts,
island hopping between machines, massive activities,
etc. The combination of these macro activities allow us
to charaterize complete sessions on a SELinux system.
Each macro activity can be classified. Complete sessions
can also be reconstructed combining different types of
macro-activities.
The paper gives the fundations of our approach. It de-

fines events, high-level events, “meta-events”, sessions,
activities and gives the fundations for the algorithms that

compute those data. The experimental results show the
efficiency of the classification for SELinux activities. As
far as we know, it is the first solution that enables to
compute SELinux logs. It is interesting since SELinux
provides a very secured kernel but produces large amout
of events in the log file. Moreover, SELinux events are
much more complicated than classical Unix traces.

STATE OF THE ART
The advantages of correlating information from multiple
sources, are presented in (Valeur et al., 2004; Kruegel
et al., 2005). Those authors propose a generic frame-
work to correlate any kind of information coming from
multiple network sources. But they only use data col-
lected from networks and not at the operating system
level. (Qin, 2005) combines several correlation algo-
rithms. But again, the data come only from network tools
and sensors.
(Chari and Cheng, 2003) studied system activities for

specific system services. (Bowen et al., 2000) uses code
analysis to find the authorized system calls. (Molina
et al., 2007) uses strace to monitor system calls. All these
approaches monitor partially the occuring system calls,
so none of them is able to monitor all the system calls in
order to reconstruct complete sessions. Moreover, com-
plex sessions such as Island Hopping cannot be analyzed.
In (Briffaut et al., 2006), scenarios are seen in terms of
sequences of legal operations.
Finally, there is currently no solution at all supporting

the reconstruction for SELinux sessions.

SOFTWARE ARCHITECTURE
The novelty of our approach deals with the reconstruc-
tion of system sessions. Sessions are sequences of system
activites (i.e., SELinux, interactions, i.e. ’system calls’,
e.g. file/socket read/write). Those system activities en-
able to compute different types of macro activities called
macro-events. Our architecture is designed to work with
informations given by system loggers, host oriented sen-
sors, network oriented sensors and also host IDS (HIDS)
and network IDS (NIDS).
For the correlation process, each computer must have

some tools to log all the events that are created on the
computer or its local network (network connections).

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

171

The current implementation uses only system calls com-
ing from the SELinux logs.

Adding Meta Knowledge to SELinux Events
In this first part, our correlation architecture analyzes
each elementary operation reported by SELinux in order
to highlight the similarity(ies) between them. Indeed, a
lot of events are related to the same linux commands or
process execution.
This first step adds meta-knowledges to raw events.

That improves the effectiveness of the high-level classi-
fication modules.
Definitions
Event: Intuitively, an event is closed to the notion

of elementary operation, or SELinux interaction or also
‘system call’. Formally, a system event is a set of at-
tributes . Each attribute is associated with a label

,
Table 1 gives a subset of including the labels for the

major attributes.

Label Description
event/alarm classification
source security context
target security context

_ security permission (e.g., r, w)
_ security class (e.g., file, dir)

where the event appeared
process number
parent process number
unique event number
date (in millisecond) of the event
name of the file involved
inode number of the event
priority level of the event/alarm
unique system session number

_ source IP of the event
_ target IP of the event
_ source of the event
_ target of the event

number of occurences of the event

Table 1: Event Attributes

Meta-event (ME): The notion of meta-event is also in-
troduced. A meta-event is a set of attributes and/or
collections of attributes. For example, the meta-event

, , _ , _ ,
_ , _ represents a meta-event with multi-

ple source contexts, source IP and source ports (e.g. such
as a meta-event that modelizes a DDoS attack).
Raw events (RAW): A RAW event is com-

posed by the following attributes: , , ,
, _ , _ , , , ,

, , , _ , _ , _ , _ .
Event filtering (EF): This module is a pre-processing

for the correlation phase. If the events can not be normal-
ized, they will not be used by the correlation processus,
see figure 1.
Formally, an event has exactly the same attributes

as a RAW event.

Figure 1: Overall Process of correlation

in i t
 i d s e s s i o n = 0

 sshd
i d s e s s i o n = 0

f t pd
i d s e s s i o n = 0

 passwd
i d s e s s i o n = 1

p a s s w d
i d s e s s i o n = 2

 bash
i d s e s s i o n = 1

 ls
i d s e s s i o n = 1

Figure 2: System Session Identification

For example, the EF module will exclude every events
that have not been correctly generated by SELinux, i.e.
missing or invalid attributes (e.g. no/incomplete date).
System Session Identification (SSI): SSI adds meta-

knowledges to specific subsets of EF. It builds the tree of
PID and PPID of each session.
Each new event of EF is added in real time to an

existing tree that represents the (P)PID link or it creates a
new tree where the event is added.
The main purpose of this module is to affect a unique

attribute to each branch of the tree: the identification
number of the session. Currently, only the events, that
are associated to a user session, are taken into account.
Ongoing works also allow to take into account sessions
for services or system scripts.
Formally, a SSI event is a EF event with an extra

attribute .
The initialization of the attribute uses an
_ _ that describes the interesting transi-

tions between processes. For example, the transition
from the ‘sshd’ context to the ‘user’ context enables to
compute a new attribute.
Figure 2 shows that two branches below the

event have different s.
InTeraction Event Factorizing (ITEF):
This module aggregates all the events corresponding

to the same SELinux interaction (i.e., ‘IT’) inside a ses-
sion. This module tackles the problem that an activity
(execution of a single process) can produce a very large
number of system calls. For example, the reading of a

172

Figure 3: Migrating/Distributed Session Reconstruction

file can generate thousands of events for the same ac-
tivity. So ITEF generates a single “meta-event’ instead
of thousands of events. This module is largely based on
(Valeur et al., 2004; Kruegel et al., 2005; Qin, 2005).
An ITEF meta-event is composed by single

attributes: , , , , _ ,
_ , , , and
. Also, it has several sets of attributes for all in-

cluded events: , , , , _ , _ ,
_ , _ and optionally .
For example, a “meta-event“ factorizing all the read

events of during the session on the
host _ is in particular composed of:

= _ _ _ ,
= _ _ _ , =

_ , = , _ = ,
_ = , =

System Session Reconstruction (SSR)
As shown on the figure 1, the SSR module takes a sub-
set of SSI events and builds a meta-event representing the
session. The SSR meta-event contains the follow-
ing attributes: , , , ,

, and .
For example, SSR merges all the events with the same

identification session (e.g. idsession = ’1051’) and the
same hostname (e.g. hostname = ’www-server’). It’s
worth mentioning that this module is an original propo-
sition of this paper.
Enhanced System Session Activities (ESSA): In

contrast to (Valeur et al., 2004) (Kruegel et al., 2005),
this module supports Inter Process Communication (like
pipes, unix sockets). A ESSA meta-event
is composed by single: , , ,

, , and and a set of at-
tributes: .
For example, ESSA produces a “meta-event“ for a

transmission between two processes through a Unix
socket. Thus, a relationship is proposed between a

and all the associated IPC events (using their
). A meta-event links a session SSR to all the events

coming from the other sessions. The association between
the sessions is achieved by the following module.
Migrating/Distributed Session Reconstruction

(MDSR): In contrast with (Valeur et al., 2004),
MDSR authorizes multiple relationships. The MDSR

meta-event contains the following unique
attributes: , , _ ,

_ , and the following multiple attributes:
, , _ , _ ,

and , with , where equals the
number of computers involved in the session.
Let a first information flow exist between session

and and a second one between and . Then MDSR
produces a “meta-events” for the transitive information
flow. The first information flow is associated to a ESSA
“meta-event“ between and events and
the second information flow provides a ESSA meta-event

between and events. The MDSR produces
a first “meta-event“ relating and and
a second one relating and . Finally,
MDSR produces a meta-event

for the transitive flow relating and .

Meta Events Recognition
System Pattern Recognition (SPR): This module allows
the correlation processus to classify SSR and ESSA.
Prerequisites and consequences (Ning et al., 2001)

(Cuppens and Miège, 2002) do not feet for automatic
learning of sessions. Prerequisites and consequences
must be written by end users. It is a difficult task. Our
approach is totally different. SPR creates an automaton
that represents a session in order to compare it with Sys-
tem Patterns (SP) also represented as automata. Thoses
SP are learnt by different processus (see the System Pat-
tern Learning section). SPR generates a SPR meta-event
that classifies the session with those patterns.
SPR generate a SPR “meta-event“ with the following

attributes: , , _ and .
For example, as seen on figure 4, SPR allows to com-

pare a session represented as an automaton (on the left
side) with a system pattern learnt before (on the right
side). They are both real world sessions and patterns.
More precisely, the session on the left side represents a
SSH connection followed by: (1) the execution of a shell,
(2) the transition from the SSHD context to the user one,
(3) the opening of a virtual console, (4) some interac-
tions, i.e. read and write, on this console. The pattern (on
the right side) represents: (1) the detection of a connec-
tion through SSH (transition from SSHD to user context),
(2) then the opening of a virtual console.
To allow a better recognition, this module compares

the two automata using a similarity level (i.e. the number
of event attributes that have to be equal between the two
compared nodes).
For example, as seen on the figure 4, the lowest sim-

ilarity level corresponds to the comparison between the
session and the pattern session using only two predefined
security context values. Different level of classification
can be used with the same pattern. At the similarity level
4, the sub-session (in the rectangle) on the left cannot be
recognized.
In terms of complexity, the SPR module compares each

173

Figure 4: System Pattern Recognition

Figure 5: Massive Activity Detection

unclassified (i.e. unrecognized) session with each Sys-
tem Pattern. Let be the number of session to classify
and the number of patterns. The complexity

in number of comparisons. Each comparison is
actually quite complicated. Indeed, it adresses the prob-
lem of counting sub-graphs isomorphisms, which in gen-
eral is at least in where is the number of event
(nodes) of the graph (i.e. the System Pattern). Hopefully,
recent works (Eppstein, 2000) have provided interesting
theoritical results. They show that for a graph that
is simply a tree (i.e. a system session tree here), with
a fixed number of attributes per nodes (which is also
the case here, where), the counting of the
sub-graphs, that are isomorph to another fixed graph
, (i.e. a Session Pattern here) can be done linearly to
. With those results, the SPR complexity is reduced to

, where is a multiplicative constant
of the number of events of .
This is an important result as it can lead to a real-time

correlation using the recognition of session patterns.
Massive Activity Reconstruction:
Massive IT Reconstruction (MITR): In constrast to

(Valeur et al., 2004) (Kruegel et al., 2005), this module
classifies massive system activities. It merges and counts
all the events (i.e. interactions or IT) that are the same (all
attributes with an equal value) in a given time window to
create a MITR meta-event. If they are too many above a
given threshold, it creates a meta-event MITR. The def-
inition of these thresholds remains outside the scope of
this work. The meta-event contains relevant informations
about the massive activity like its source(s) and destina-

Figure 6: Complex Scenario Detection

tion(s). It is not limited to a one to one massive activity, it
can also classify many to many and any other variations
of a massive activity.
A MITR meta-event contains: , ,
_ , _ , , ,

_ , _ , _ ,
_ , _ , _ , and _ ,
where each equals or (with the number of
machines involved in the massive interaction).
Massive Activity Session Reconstruction (MASR): This

module is another original proposition. It ables to link a
massive activity with sessions that created it or have been
created by it. When a link is found, it creates a meta-
event MASR (see figure 5).
This module generates a MASR meta-event with the

following attributes: _ , ,
and .
For example, MASR links a massive activity, like a

DDoS that has been launched from a monitored com-
puter, with the session that have launched it (using
meta-knowledges extracted from MITR meta-event and
ESSA/SSR meta-event).

Complex Scenario Detection (CSD)
In other correlation approaches, a special language en-
ables to express the links between “meta-events” (Cup-
pens and Miège, 2002; Ning et al., 2001; Valeur et al.,

174

2004; Kruegel et al., 2005; Eckmann et al., 2002).
Our approach is different. CSD is not really a module

like the other ones, but a combination of modules that
represents the way to link the previously seen modules
all together (with none, one or multiple implementations
of each one) in order to detect a complex scenario. Actu-
ally, this combination is implemented by the connexion
of automata representing each module.
The abstract figure 6 represents a “Complex Scenario”

detection. It starts on the left with a scan of a moni-
tored computer (i.e. a MITR meta-event) followed by a
bruteforce attempt (i.e. a MITR meta-event. Then, the
bruteforce intrusion attempt (i.e. the MITR meta-event)
is linked (as an MASR) to the ESSA representing activi-
ties on the system caused by the bruteforce (cf. MASR).
On the right side, the SPR module classifies another

ESSA using a system pattern (SP). This ESSA represents
the system session caused by the successful intrusion fol-
lowing the bruteforce attempt.
This SPR is linked with the MASR meta-event as a new

MDSR meta-event.

SYSTEM PATTERN LEARNING (SPL)
Currently, a learning module is proposed to compute au-
tomatically the System Patterns (used in SPD and CSD).
For this purpose, each system automaton is compared
with all the other system automata, according to a sim-
ilarity level. The comparison is done on the nodes (i.e.
filtered events or factorized filtered events). If at least
two successive nodes are equals, a new pattern is cre-
ated. This pattern contains only the equal nodes with
the attributes corresponding to the similarity level used
to create the pattern. If the pattern already exists, its fre-
quency is increased.
The main advantage of this approach is that it is to-

tally unsupervised. The algorithm compares all the ses-
sions one by one in order to have correctness. In terms
of theoritical complexity, as each single session is com-
pared with all the others. Thus, the complexity is

in number of comparisons between sessions,
where is the number of reconstructed sessions. Specific
DNA sequence alignment algorithms, like the BLAST
family (Altschul et al., 1990), enable to provide a lower
complexity. Thus, this complexity problem can be ad-
dressed. Our first results provide automation for compu-
tation of the System Patterns (on the next section).

EXPERIMENTATION
Physical Architecture for the Correlation Process
The decentralized architecture presented in (Krugel et al.,
2001), did not fit our needs because we wanted to limit
the overhead on the monitored hosts due to security mon-
itoring. Also, it seems too dangerous for us to let the cor-
relation process take place on the same computers where
scenarios could happen. In addition, we needed a scal-
able architecture for the various steps of the correlation
process.

Thus, we proposed a grid architecture for the whole
correlation process, supporting a large amout of RAW
events, and also providing almost real-time recognition.

Figure 7: Correlation Architecture on Grid

The grid is composed of 3 computation nodes of
3Ghz and 512MB of RAM). We introduced a centralized
database for the data retention but also to use a dedicated
computing grid for our correlation process as shown in
the figure 7. The dedicated computing grid also brings
us the ability to easily implement our modular architec-
ture: each module is implemented as an agent that can
be instantiated on multiple nodes of the grid to compute
various data. Thus, we have an easier scalable processus:
we just need to add new computers on the fly, using PXE
boot to increase the computing power.

Experiment Results
As said before, even if our conceptual architecture can
correlate multiple informations coming from multiple
sources and sensors, at this stage of our works, our so-
lution has been experimented using SELinux events.
Those events come from a High-Interaction HoneyPot

with 4 hosts using GNU/SELinux over Gentoo and De-
bian. One year of events are processed using our grid
implementation. An IBM DB2 database is used to store
those logs.
Event Filtering: One host of our honeypot generated

around 164,000,000 of raw events i.e. SELinux system
calls. The Event Filtering EF module is important be-
cause syslog makes many errors when it reports events.
EF detects about 3 percents of wrong events but this rate
can increase with an important activity of the SELinux
host. During our experiments, EF produces 160,000,000
of valid events.
160,000,000 events cannot be processed using a clas-

sical database such as MySQL because of memory and
CPU overhead. So, the IT Event Factorizing module is
required in order to reduce the number of events that has
to be stored in the database. Starting from 160,000,000
EF events, ITEF succeeded to produce only 8,000,000
meta-events (as shown on table 2).
System Session Identification: The System Ses-

sion Identification module SSI was applied to the four
SELinux hosts of our honeypot. The SSI module was
set to use only SSH and FTP services as entry point
(other services, such as HTTP SMTP IMAP, have not been

175

Without ITEF With ITEF
160,000,000 8,000,000

Table 2: Events number for 1 Year on 1 SELinux Host

considered by those experiments). Table 3 shows the
number of sessions for each of the four SELinux hosts.

, and are connected directly
to the Internet while is reachable through one of
those three gateways. Differences between and

is due to the SElinux policies that are more pre-
cise on than on . Starting from a
host with 160,000,000 EF events, SSI identifies an aver-
age of 40,000 sessions.

Gentoo 1 Gentoo 2 Gentoo 3 Debian
Sessions 58,163 30,825 79 139,859

Table 3: Number of Sessions Detected for Each Com-
puter

System Session Reconstruction: The System Session
Reconstruction module associates each session with all
the system activities. Many sessions are almost empty. A
typical example can be when an attacker only tests a pass-
word and disconnects (even when the password was the
good one). Starting from 40,000 SSI sessions, SSR gener-
ates only 8,000 sessions where the activities continue af-
ter the login attempts. Table 4 shows that SSR consumes
between 800 and 3,000 milliseconds to reconstruct a ses-
sion according to the number of SELinux events included
in that session. The computation duration includes a con-
stant time of 700ms for launching the agent. Many ses-
sions requires 800ms i.e. uses only 100ms for the algo-
rithm run. The largest session takes, a longer time, up to
2300ms. This worst case was reached by a SSH session
with a local bruteforce on the ftp server. In that case, the
machine spent time for swapping because the required
memory was big. This increases abnormally the compu-
tation time for this session.

Small Average Large Huge
Length 800 1500 3000 15700

Table 4: SSR Computation Time (in milliseconds)

For one year of experiments, the average time is
1500ms with our grid configuration. With 40,000 identi-
fied sessions, it took on average 190 hours to analyze one
year of logs. So, it takes half an hour to analyze the logs
of the day and 20ms for 1mn of logs. As one can see, it
is possible to reconstruct sessions in real-time with our
architecture.
Massive IT Reconstruction: The MITR module has

been able to detect one bruteforce on the FTP service.
Due to the policy configuration of SELinux, some rele-

Figure 8: Example of a Learned (Basic) System Pattern

vant system calls were not audited. Those missing events
prevented to detect SSH bruteforces.
System Pattern Learning: As we said in the Sys-

tem Pattern Learning section, the rough complexity of
the construction of the system patterns is uncomputable.
However, the study of the data from our honeypot
showed us some directions we could exploit. In aver-
age a session includes about nodes. The comparison
between those sessions takes between seconds for the
lowest similarity level and about seconds for
the highest similarity level . About ses-
sions have been collected during one year. That means at
least seconds to compute all the ses-
sions at the lowest similarity level. Of course, the com-
parison at higher similarity level are less numerous, and
typically only few sessions are compared at the highest
level. To minimize the computation, only big sessions
have been considered, stating that those sessions contain
also smaller ones. Among these sessions, only
had above the average number(i.e. nodes per ses-

sion). Our first experiments build 30 patterns after a com-
putation of 3 weeks manually ended.
As previously said, we are currently investigating

bioinformatics algorithms (like BLAST) and also unsu-
pervised classification and learning technics to overcome
this (sub-)graph clustering problem.
System Pattern Recognition: The SPR module used

System Patterns createdwith the SPL module (see System
Pattern Learning section).
The figure 8 shows a system pattern representing the

connection of a user through SSH i.e. a migration from
the SSH context to the user context, then the opening of
a virtual console and finally an interaction between the
user and the virtual console.
6 different levels of similarity have been considered

for the recognition of 40,000 sessions (see the System
Pattern Learning section). As seen in table 5, 13040 ses-
sions contain this pattern for a similarity level 2 i.e. the
comparaison is based only on security contexts (source
and target). For level 3 (addition of one variable), 13000
sessions respect this pattern, and only 6680 sessions for
level 4 (addition of one variable). Table 5 shows also
that the recognition did not find any session respecting
the pattern for higher levels of similarity. The maximum
level of similarity can be increased using other patterns.
Actually, the learning module is too slow to compute

176

enough and accurate patterns, that’s why we are currently
working on bioinformatics algorithms.

Similarity OK Not OK
2 13040 26960
3 13000 27000
4 6680 33320
5 0 0
6 0 0
7 0 0

Table 5: Classified System Patterns

Migrating/Distributed Session Reconstruction:
MDSR recognized 4 IslandHopping (3 using network
connections, 1 using a Unix socket). MASR was able
to link 7 sessions that took part of a massive attack. It
is worth saying that the limited numbers of complex
sessions (such as MDSR, MITR and MASR) is due to the
efficient protection provided by the SELinux kernel.
This MAC protection limits really the possibilities of
ordinary users and controls all the interactions between
a process and the system ressources. So, it is really hard
to conduct advanced attacks on such systems. However,
one can see that possibilities to violate the security exist.

CONCLUSION

This paper presents several modules that cooperate to
analyze complete sessions of SELinux system activi-
ties. Complex sessions can be reconstructed such as dis-
tributed, migrating sessions using several connections.
Currenlty, it is the only solution able to analyze SELinux
logs. The problem is complex due to the large amount
of events generated by a complete system. The solu-
tion has been experimented during one year using sev-
eral high-interaction honeypots. More than 160,000,000
events have been analyzed for each honeypot. Thus,
8,000 sessions, with relevant activities, have been rec-
ognized. Moreover several complex sessions have been
completly reconstructed. Using a grid approach, a real-
time classification of system sessions has been proposed.
The solution uses System Patterns in order to analyze the
logs. A learning module is proposed to compute auto-
matically the relevant patterns starting from the recon-
structed sessions. The paper shows that rough Pattern
learning is a NP-Complete problem. However, heuristics
have been proposed and real constructed patterns have
been presented. Future works will address how to use
the systems sessions to defined advanced security prop-
erties such as integrity models or to detect the violation
of those properties. Applications will be proposed either
for protecting a system of for detecting the intrusions.
Moreover, several improvements will be proposed. First,
newer parallel processing could reduce the required com-
putation time. Second, newer heuristics will be defined
to compute the Activity Patterns.

References

Altschul, S., Gish, W., Miller, Myers, E., and Lipman, D.
(1990). Basic local alignment search tool. Journal of Molec-
ular Biology, 215(3):403–410.

Bowen, R., Chee, D., Segal, M., Sekar, R., Uppuluri, P., and
Shanbag, T. (2000). Building survivable systems: An in-
tegrated approach based on intrusion detection and con-
finement. In DARPA Information Survivability Symposium.
IEEE Computer Society.

Briffaut, J., Lalande, J.-F., Toinard, C., and Blanc, M. (2006).
Collaboration between mac policies and ids based on a meta-
policy approach. In Smari, W. W. et McQuay, W., edi-
tor,Workshop on Collaboration and Security (COLSEC’06),
page 48–55, Las Vegas, USA. IEEE Computer Society.

Chari, S. N. and Cheng, P.-C. (2003). Bluebox: A policy-
driven, host-based Intrusion Detection System. ACM Trans-
action on Information and System Security, 6(2).

Cuppens, F. and Miège, A. (2002). Alert correlation in a coop-
erative intrusion detection framework. In IEEE Symposium
on Security and Privacy, Oakland, USA. IEEE.

Eckmann, S., Vigna, G., and Kemmerer, R. (2002). STATL: An
Attack Language for State-based Intrusion Detection. Jour-
nal of Computer Security, 10(1/2):71–104.

Eppstein, D. (2000). Diameter and treewidth in minor-closed
graph families. Algorithmica, 27:275–291.

Kruegel, C., Valeur, F., and Vigna, G. (2005). Intrusion Detec-
tion and Correlation: Challenges and Solutions. Springer.

Krugel, C., Toth, T., and Kerer, C. (2001). Decentralized event
correlation for intrusion detection. In Information Security
and Cryptology, pages 114–131.

Molina, J., Chorin, X., and Cukier, M. (2007). Filesystem ac-
tivity following a ssh compromise: An empirical study of
file sequences. In ICISC, pages 144–155.

Ning, P., Reeves, D., and Cui, Y. (2001). Correlating alerts
using prerequisites of intrusions. Technical Report TR-2001-
13, North Carolina State University.

Qin, X. (2005). A Probabilistic-Based Framework for IN-
FOSEC Alert Correlation. PhD thesis, Georgia Institute of
Technology.

Valeur, F., Vigna, G., Kruegel, C., and Kemmerer, R. A. (2004).
A comprehensive approach to intrusion detection alert corre-
lation. IEEE Transactions on dependable and secure com-
puting, 1(3).

177

COOPERATIVE INTRUSION DETECTION SYSTEM (CIDS)

IN GRID ENVIRONMENT ON UNLABELLED DATA

Abdul Samad Haji Ismail1, Dahliyusmanto2, Witcha Chimphlee3, Abdul Hanan Abdullah4,

Kamalrulnizam Abu Bakar5, Md Asri Ngadi6

1,4,5,6Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia,

 81310 Skudai, Johor, Malaysia, Tel: (607)-5532003, Fax: (607)-5565044

2Department of Electrical Engineering, Faculty of Engineering, University of Riau.

Kampus Bina Widya Km 12.5 Simpang Baru 28293, Riau, Indonesia, , Tel: (62)-76163266, Fax: (62)-76163279

3Faculty of Science and Technology, Suan Dusit Rajabhat University,

295 Rajsima Road, Dusit, Bangkok, Thailand, Tel: (60)-2445224, Fax: (60)-6687136

1abdsamad@utm.my, 2 yoes_mantho@sigma-snt.com, 3witcha_chi@dusit.ac.th,
4hanan@utm.my,, 5knizam@utm.my, 6dr.asri@utm.my

KEYWORDS

Anomaly detection, unsupervised clustering, unlabeled

data, Fuzzy Clustering, Grid Environment.

ABSTRACT

Intrusions pose a serious security risk in a network

environment. The intrusion detection in computer

networks is a complex research problem. Applying

intrusion detection to the fast growing computational

Grid environments improves the security and is

considered to be the heart of this new field. Flexible

cooperative distributed intrusion detection architecture

is introduced that suits to and benefits from the

underlying Grid environment. Intrusion detection

techniques fall into two general categories: anomaly

detection and signature recognition, with each one

complements one other. Anomaly intrusion detection

normally has high false alarm rates, and a high volume

of false alarms will prevent system administrators from

identifying the real attacks. This paper presents a

clustering-based anomaly intrusion detection algorithm

which trains on unlabeled data in order to detect new

intrusions. This work does not make a strict

hypothetical requirement with the percentage of attacks

has to be less than a certain threshold (e.g.,~1.5%). It

also does not label clusters by considering the sparse

density is attacks. We propose a new labelling cluster

algorithms, called NMF (Normal Membership Factor)

that is capable of increasing normal detection which

would be indicative of decrease false positive rate. Our

method is able to detect many different types of

intrusions, while maintaining a low false positive rate as

verified over the Knowledge Discovery and Data

Mining-KDD CUP 1999 dataset.

1. INTRODUCTION

Research and development efforts within the Grid

community have produced protocols, services, and tools

that address the challenges arising when seeking to

build scalable virtual organization (VOs). A virtual

organization is defined as a set of individuals and/or

institutions sharing resources and service under a set of

rules and policies governing the extent and conditions

for that sharing. As stated in [1], “the sharing that Grid

environments are concerned with is not primarily file

exchange but rather direct access to computers,

software, data and other resources, as is required by a

range of collaborative problem-solving and resource-

brokering strategies emerging in industry, science, and

engineering

This sharing is, necessarily, high controlled, with

resource providers and consumers defining clearly and

carefully just what is shared, who is allowed to share,

and the conditions under which sharing occurs. The

technologies that have evolved from the Grid

community include security solutions that support

management of credentials and policies when

computations span multiple institutions; resource

management protocols and services that support secure

remote access to computing and data resources and the

co-allocation of multiple resources. The recent history

of attacks against the information system and

widespread vulnerabilities indicate that security threats

have dramatically escalated in speed, impact and

frequency. Grid Infrastructures like Globus [2], Legion

[3] and Condor [4] are particularly vulnerable to

intrusions and require and adequate level of security for

users, data and resources. Grid are open environments,

compromise of single resource may provide

unauthorized access to data and services from other

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

178

system. Grids are vulnerable to large-scale attacks that

may cause disruption of the Grid services. Thus, it is

essential for Grids to support prevention, detection and

automatic response to intrusion attempts and work

cooperatively.

2. RELATED WORK AND BACKGROUND

2.1 Grid Computing

Grid was proposed in the mid 1990 and has been widely

used in many areas, such as bioinformatics, medicine,

astronomy, chemistry, agriculture, business and

engineering design, to solve large-scale and complex

problems [5]. Today, many organizations such as

Compaq, Sun Microsystems, Fujitsu, Hitachi and NEC

fall into Grid research. They have adopted Globus

Toolkit, developed by USC’S Information Science

Institute (ISI) and Argonne National Laboratory, as

their basic platform. Globus toolkit is an open-

architecture, consisting of security, information

infrastructure, resource management, data management

and communication components. It facilitates creation

of usable Grids, enabling high-speed coupling of

people, computers, databases, and instruments [6].

In Grid environment, the security challenges face under

three categories [7]: integration with existing security

architectures and model across platforms and hosting

environment, interoperability with different hosting

environments (e.g., J2EE servers, .NET servers, Linux

systems) at multiple level such protocol level, policy

level, and identity level, and trust relationships among

interacting hosting environments.

2.2 Intrusion Detection System (IDS)

Most traditional intrusion detection systems (IDSs) [8]

take either a network-based or a host-based approach

for recognizing and responding to attacks. These

systems look either for attack signatures, specific

patterns that indicate malicious or suspicious intent or

deviation from a normal profile (anomaly) that indicate

an attack. A network-based IDS looks for these patterns

and anomalies in network traffic.

A host-based IDS looks for attack signatures and

anomalies in system audit trails or application logs. In

most cases intruder exploit vulnerabilities and

misconfiguration in application server to break into a

system. The application-level attacks can enter a system

through the same open “door” in the perimeter defences

used by legitimate users. Therefore, these attacks are

difficult to detect. Current Network-based and Host-

based IDSs work in isolation from access control for the

application the systems aim to protect. The lack

coordination and inter-operation between these

components prevents detecting sophisticated attacks and

responding to ongoing attacks in real time, before they

cause damage. Another disadvantage of currently

available IDSs is a large number of false positive (IDS

reports an attack when none has occurred). Reports of

attacks can trigger response actions (e.g., termination of

the offending connections). Thus an inaccurate IDS

decision (a false alarm) may result in disruption of

service to legitimate users. Therefore, successful

intrusion detection requires accurate and efficient

models for analyzing a large amount of application,

system and network audit data and real time response to

the attacks.

3. THE PROPOSED GRID INTRUSION

DETECTION ARCHITECTURE

In this section, the research proposes an architecture of

Grid intrusion detection. This architecture was designed

with the Grid characteristics in mind. The Grid intrusion

detection architecture has two main parts as shown in

Figure 1. The first is intrusion detection agent

(represented by small black circle) that is responsible

for gathering information. And the second part is the

intrusion detection server (represented by big circle)

that is responsible for analyzing the gathered

information and cooperating with other IDSs to detect

intrusions.

Figure 1: Proposed Grid Intrusion Detection Agent

3.1 Structure of Intrusion Detection Agent

In many conventional network intrusion detection

systems, each target system transfers its system log to

an intrusion detection server, and the server analyzes

the entire log in search of intrusions. Methods of this

kind fall under the client/server paradigm. In a large-

scale network deploying an intrusion detection system,

network traffic will be extremely high, since the volume

of the system logs that are routinely transferred is very

large, though most of it has no information related to

intrusions. Therefore, this type of intrusion detection

system on a large-scale network does not fulfil its

function efficiently. To solve this problem, we adopted

a mobile-agent paradigm in detecting intrusions.

Mobile-agents autonomously migrate in host in this case

is the administrative domain to collect only information

179

related to intrusions, eliminating the need to transfer

system logs to the server. We can deploy Intrusion

Detection Agent on a local area network, the protocol of

which is TCP/IP. Intrusion Detection Agent consists of

sensors, message boards, tracing agents, and

information-gathering agents. The system details are

show in Figure 2.

AD : Administrative Domain

MB: Message Board

IA : Information_Gathering Agent

TA : Tracing Agent

BB : Bulletin Board

Figure 2: Structure of Intrusion Detection Agent

Manager

The manager analyzes information gathered by

information gathering agents and detects intrusions. It

manages the mobile agents and bulletin boards and

provides an interface between administrators and the

system. The manager accumulates and weighs the

information entered by the mobile agents on the bulletin

board, and if the weights exceed a set threshold, the

manager concludes that an intrusion has occurred. One

manager resides on each network segment.

Sensor

The sensors, present on each host, monitor system logs

in search of suspicious activity. If a sensor finds that

activity, it reports this finding to the manager.

Tracing Agent

The intrusion-route tracing agent, called simply the

tracing agent, traces the path of an intrusion and

identities its point of origin; the place from which the

user leaving a n activity remotely logged onto the target

host. En route to finding the origin, a tracing agent can

find any intermediate nodes that may be compromised.

The manager, sensor, and tracing agent work together in

the following way. First, the sensor detects a suspicious

activity and reports it to the manager, and then the

manager launches a tracing agent to the host system.

The tracing agent migrates autonomously from machine

to machine and traces the intrusion independently;

without the manager. When many suspicious activities

are found by a single host system in different sessions

over a short period of time, many tracing agents

corresponding to the suspicious activity are launched

into the host system. A tracing agent makes no

judgments about intrusions, and is not capable of

deciding whether or not an intrusion has occurred. A

tracing agent can migrate to any system in which

Intrusion Detection Agent (IDA) is installed.

Information Gathering Agent

An information-gathering agent, which is mobile,

gleans information related to a suspicious activity from

a target system. Each time a tracing agent in pursuit of

an intruder is dispatched into a target system, it

activates an information gathering agent in that system.

Then the information gathering agent gleans

information depending on the type of activities, returns

to the manager and reports. If the tracing agent

migrates to another target system, it will activate

another information-gathering agent, which will gather

information on the next host system. Many information

gathering agents may be activated by many different

tracing agents on the same target system. An

information-gathering agent is not capable of deciding

whether an intrusion has

occurred.

Bulletin Board and Message Board

The bulletin board and the message board are common

use area that can be accessed by tracing agents and

information gathering agents, and means of information

exchange. There is a message board on each target

system, used by tracing agents for exchanging

information; any tracing agent can know whether a

track under its scrutiny has already been traced by other

agents, and can use this information in deciding where

to go. The bulletin board is on the manager machine and

is used for recording information gathered from host

systems by information-gathering agents, as well as for

integrating the information gathered about every tracing

route.

3.2 Action of Intrusion Detection Agent

The following is of intrusion detection agent works

after a sensor detects a suspicious activity on an

administrative domain. Intrusion detection agent

accumulates the data required by intrusion-route tracing

(i.e., about network connection, the various processes

running on the system, etc.) on each target system in

advance.

i. Each sensor on the administrative domain

seeks a suspicious activity from the system log.

ii. If the sensor detects a suspicious activity, it

reports it to the manager.

iii. The manager dispatches a tracing agent to the

target system where the suspicious activity was

detected.

180

iv. The tracing agent arrives at the administrative

domain and activates an information-gathering

agent.

v. The information-gathering agent collects

information related to the suspicious activity

on the administrative domain.

vi. After activating the information-gathering

agent, the tracing agent investigates the point

of origin of the suspicious activity in an effort

to identify the user's remote site. The tracing

agent can derive this from the accumulated

data about network connection and processes

running on the system.

vii. After collecting information, the information

gathering agent, independent of the tracing

agent, returns to the manager, and enters the

information on the bulletin board.

viii. The tracing agent moves to the next

administrative domain on the tracing route, and

it activates a new information-gathering agent.

ix. If the tracing agent arrives at the origin of the

route, or cannot move anywhere, or if other

tracing agents have chased the route it could

follow, it returns to the manager.

In cases where a sensor detects many suspicious

activities on an administrative domain occurring over a

short period of time, or if sensors detect suspicious

activities on many administrative domain, intrusion

detection agent works as described above for all

suspicious activities detected. The SSL, Kerberos

Plaintext, TLS and SSH are the administrative domains

(resources) in a Grid environment. Each administrative

domain will have an intrusion detection agent to collect

data and the intrusion detection agent will register with

one or more IDSs which will analyze the gathered data.

Intrusion detection agent will be designed for each class

of resources to handle heterogeneity.

3.3 Lab Environment and Software

This section gives an overview of the configuration of

the software and hardware used in our lab. We built a

very small scenario. It is the simplest Grid environment,

intended to help illustrate the concepts and components

behind the Grid and GT4.0.5. An Ethernet LAN, three

Intel® Pentium IV machines, and one Laptop Intel®

Centrino Duo machine were used. In Figure 3, we

illustrate this environment with the host names and the

functionality of each machine. The host names are T1,

T2, T3 and T4. Also, an infrastructure server, called

m0, was set. The machines should have a clock speed of

1 GHz, 512 MB of minimum memory, and hard drives

totalling 40-120 GB.

If we have more than five machines available, we can

build a bigger scenario for Proof-of-Concepts (PoC)

proposals and/or demos. For that, you simply include

more servers, such as T5, T6, and so on.

Ethernet

m0

T4T3T2

T1

Infrastructure Server

ServerClient and Server

Figure 3: Hardware Environment and Software

Functions of Each Machine

We give summarizes the names of the machines to be

used in the Grid, their IP addresses, and the software to

be installed on them as shown in Table 1.

Table 1: Host names and IP addressing

Hostname Internet

Protocol (IP)

Description

 T1.grid.research.com 192.168.0.241 Globus server

and Client

machine

 T2.grid.research.com 192.168.0.242 Globus server

and Client

machine

 T3.grid.research.com 192.168.0.243 Globus server

and Client

machine

 T4.grid.research.com 192.168.0.244 Globus server

M0.grid.research.com 192.168.0.10 Infrastructure

server

Next, we define the users and groups that you want to

use before implementation. Table 2 contains the list of

user and group IDs used in our lab.

Table 2: IDs and Passwords

User ID Group ID password Activities

root root <passwd> Super user needs

globus globus <passwd> Globus Toolkit

environment. For

installation and

execution of the

toolkit

logicacmg logicacmg <passwd> End user

environment. For job

execution on the

Grid.

GT4.0.5 needs several files, or tools, in order to

complete the installation such as Java SDK, Apache

Ant, Junit, Postgresql and Globus Toolkit. In this

installation, we used Globus Toolkit bundle Version

4.0.5.

181

3.4 Implementation of Grid Intrusion Detection

Architecture

This research uses two stages to test the proposed Grid

intrusion detection architecture. The first stage

simulates the intrusion detection agent and the Grid

environment. Most of the available Grid simulation

toolkits are designed for resource management and

scheduling problems. For this reason this research uses

the grid simulation toolkit based on GridSim [9] to

satisfy the needs. The simulation environment simulates

users with different behaviours, resources with

associated intrusion detection agents, and intrusion

detection agent registration with IDSs.

This allows us to perform the required experiments.

Each experiment generate a dataset consisting of one or

more log file. Figure 3 shows the simulation

environment with dummy IDSs that only generate log

files reflecting the data to be analyzed. The next stage

implements the IDS modules and test them with the data

generated from the simulation stage (Figure 4). In this

initial implementation we use homogeneous IDSs for

simplification. We believe that currently the best

intrusion detection technique to use in this case is host-

based anomaly intrusion detection [10].

Figure 4: A Simulated Grid and Data Modules

Figure 5. The implementation of IDS

4. NORMAL MEMBERSHIP FACTOR

The host in this case is the administrative domain with

all its resources. The assigned intrusion detection agents

will gather information about the user’s interactions

with this domain. The anomaly detection is

implemented using Normal Membership Factor (NMF).

The NMF is labelling clusters technique that identify

number of instances in term of normal and attack. It is

important to note that when labelling the clusters its

relation to each of the clusters is taken into

consideration. The results of labelling based on these

factors will therefore include a degree of probability of

the clusters belonging to normal group. As in Portnoy et

al [11], they were determined the algorithm for cluster

labelling follow their first assumption. Their first

assumption about data is that normal instances

constitute an overwhelmingly large portion (> 98%) of

the training dataset. Under this assumption it is highly

probable that cluster containing normal data will have a

much larger number of instances associated with them

then would clusters containing anomalies. Therefore,

they labelled some percentage N of the clusters

containing the largest number of instances associated

with them as normal and the rest of the clusters are

labelled as anomalous and are considered to contain

attack.

In this paper, the portion of normal instances is not

constituted to large or more than 98%. Only if the

normal instance portion should more than 80 percent

like Pornoy work. Then, it is not probable to identify

only the group of the largest instances is normal type.

Therefore, this work uses a new labelling algorithm to

identify the other clusters that may be having normal

pattern and then gather into normal group to reduce the

false positive rate as well. For labelling the normal

cluster, the two factors as described above are taken

into account.

In this approach, to calculate the weight of clusters and

its NMF of cluster are calculated as follows:

Weight of clusters (ci): the weight or size of the cluster

is considered greatly reduces the affect of anomalies

such as outliers. By multiplying the inverse distance to

the cluster centres by the weight of the cluster, and

dividing by the summarized weight of all the cluster

centres as Equation (1).

1
() (1)

(,)

i
i

i

number of instance in c
WC c

d Normal c number of all instance

where (,)id Normal c is the distance between the

normal cluster and the other clusters, and i is the

number of clusters. Normal Membership Factor (ci): In

order to get the probability of clusters belonging to the

normal cluster, the Normal Membership Factor is

calculated as Equation (2).

182

1

()
() i

i c

i

i

WC c
NMF c

c
(2)

where
1

c

i

i

c is the summarized of all the weight of

cluster. If NMF values have greater than 40 percents

then gather that clusters into normal group.

5. EXPERIMENTAL SETUP AND RESULT

There are numerous methods that discuss the

evaluations of intrusion detection systems. Some

methods emphasise the important of detection rate (DR)

and false positive rates (FPR); while other look into the

novel pattern detection rate. The performance of

classifiers is evaluated with respect to their

classification of unseen normal and intrusive patterns.

The metrics embrace here are the generalisation abilities

of the classifiers because they are the most important

aspect of an anomaly detection scheme. Evaluation of

the generalisation capability of any intrusion detection

should consider the ability of the system to recognise

new normal as well as intrusive behaviours.

The best performing instances of classifiers for each

data set are chosen. Six major metrics are developed to

quantify the performance of the classifiers in this thesis.

These metrics are calculated based on the testing

patterns according to following relations.

Normal Generalisation (NG): the ratio of correctly

classified intrusive vectors to the total number of

intrusive vectors.

Intrusive Generalisation or Detection Rate (DR):

the ratio of correctly classified intrusive vectors to

the total number of intrusive vectors.

Overall Generalisation (OG): the ratio of correctly

classified vectors to the total number of the vectors.

It is important to mention that this metric is

sensitive to the imbalanced numbers of the normal

and abnormal testing patterns.

Discrimination Ability (DA): the average of the

normal generalisation and the intrusive

generalisation. This metric is developed due to the

problem of imbalanced number of the testing

patterns of normal and abnormal behaviours which

affect the overall generalisation metric. This metric

is dependent on the percentage of the

generalisation of both behaviours. It is not like the

overall generalization metric which is dependent on

the number of testing.

False Positive (FPR): the ratio of incorrectly

classified normal vectors to the total number of

normal vectors.

False Negative (FNR): the ratio of incorrectly

classified intrusive vectors to the total number of

intrusive vectors.

In choosing the best performance of algorithm is the

greatest in first four metric (NG, DR, OG, DA) and

lowest in two last metric (FPR, FNR). Thus, if values of

first four metrics are high and two last metrics are low it

means algorithm is good, on the other hand it means

that algorithm is not good for detection. The results

show in Table 2 with NG, DR, OG, DA, FPR and FNR

in 92.29, 95.09, 92.05, 93.69, 7.71, and 4.91

respectively.

Tabel 3: The Six Metric Results

Metric %

NG 92.29

DR 95.09

OG 92.05

DA 93.69

FPR 7.71

FNR 4.91

6. CONCLUSION

The effect of trust relationships between different

resource owners and the use of heterogeneous IDSs will

be further investigated. With Heterogeneous IDSs and

trust relationships more complex algorithms will be

needed for the cooperation module that will need

further investigations. The application of the Grid in

real problems will help in building a knowledge base of

attack signatures that will enable the use of misuse

intrusion detection with the Grid.

The experimental performance shows the outstanding

result in all of the evaluation criteria. The results show

that the high accuracy and low false positive rate.

Intrusion detection model is a composition model that

needs various theories and techniques. One or two

models can hardly offer satisfying results. We plan to

apply other theories and techniques to operate in a high

accurate and low false alarm rate in intrusion detection

in our future work.

ACKNOWLEDGEMENTS

This research was supported in part by grants from

MOSTI, Malaysia. Project Number (UTM0000505).

183

REFERENCES

Foster. I., Kesselman. C., and Tuecke. S. 2001. “The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations.” International Journal of

Supercomputer Applications. 15(3).

Foster. I., and Kesselmen. C. 1997. “Globus: A Meta

computing Infrastructure Toolkit.” International

Journal of Supercomputer Applications.

Lewis. M., and Grimshaw. A. 1996. “The Core Legion

Object Model”. In proceedings of the 5th IEEE

International Symposium on High Performance

Distributed Computing.

Lizkow. M., Livny. M., and Mutka. M. 1998. “Condor

– a hunter of idle workstations.” In proceedings of

the 8th International Conference on Distributed

Computing Systems.

Foster. I., and Kesselmen. C. 1999 (eds.). “The Grid:

Blueprint for a New Computing Infrastructure.”

Morgan Kaufmann.

Nagaratnam. N., Janson. P., Dayka. J., Nadalin. A.,

Siebenlist. F., Welch. V., Foster. I., and Tuecke. S.

2002. “The Security Architecture for Open Grid

Services.” Open Grid Service Architecture

Security Working Group (OGSA-SEC-WG).

Global Grid Forum.

Bace. R., and Mell. P. 2001. “Intrusion Detection

Systems.” National Institute of Standard and

Technology (NIST) Special Publication on

Intrusion Detection Systems.

M. Murshed, R. Buyya, and D. Abramson. 2002.

"GridSim:A Grid Simulation Toolkit for Resource

Management and Scheduling in Large-Scale Grid

Computing Environments". 17th IEEE

International Symposium on Parallel and

Distributed Processing (IPDPS 2002), April 15-19,

Fort Lauderdale, FL, USA.

M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-

Shishtawy. 2000. "Distributed Intrusion Detection

System for Computational Grids". Second

International Conference on Intelligent Computing

and Information Systems, March.

Portnoy, L., Eskin, E. and Stofo, S.J. 2001. “Intrusion

detection with unlabeled data using clustering.” in

Proceedings of ACM CSS workshop on data

mining applied to security (DMSA-2001).

BDUL SAMAD ISMAIL, He is a

Deputy Dean (Development) and An a

Associate Professor at Faculty of

Computer Science & Information

System, University Teknologi Malaysia.

He received his B.Sc. in Mathematical./Computer

Science from University of Wisconsin Superior, his

M.Sc. in Computer Science received from Central

Michigan Univeristy, he also graduated his Ph.D in

similar field (Computer Science) from University of

Swansea. His email is address is : abdsamad@utm.my.

DAHLIYUSMANTO was born in

Pekanbaru, Riau - Indonesia and went to

the University of Putra Indonesia

Padang – West Sumatera, where he

studied computer engineering and

obtained his degree in 1996. He worked

for Danamon Bank of Indonesia before moving in 2001

to the Universiti Teknologi Malaysia to continue his

Master degree. He studied computer sains and

completed his study in 2004. Now, he is a Ph.D student

focus on Grid security field. At the same time, he was

approved as Lecturer in Faculty of Engineering,

University of Riau, Indonesia. His e-mail address is :

yoes_mantho@sigma-snt.com and his Web-page can

be found at http://www.sigma-snt.com.

ABDUL HANAN ABDULLAH, He is a

Dean and Professor at Faculty of

Computer Science & Information

System, Universiti Teknologi Malaysia.

He received his B.Sc and M.Sc in

computer science from University of San Fransisco,

California USA. He also graduated his Ph.D in the

similar field (Computer Science) from Aston

University, Birmingham. His email is : hanan@utm.my

and and his Web-page can be found at

http://www.csc.fsksm.utm.my/~hanan

184

1

An IDS for Web Applications
A. Biscotti, G. Capuzzi, E. Cardinale, L. Spalazzi

DIIGA — Università Politecnica delle Marche — I-60131 Ancona - Italy

e-mail: a.biscotti@univpm.it, {capuzzi, cardinale, spalazzi}@diiga.univpm.it

Abstract—This work presents a WEB-IDS that combine both
anomaly and misuse detection approach. This mixed solution
is really interesting because merges the two complementary
methods used to recognize attacks; we solved the usual conflicts
presented by this choice and obtained an higher results accuracy.
Our tool starts with the misuse-based module and its results are
passed to the anomaly detection module: in this way the system
has an high reactivity, less false negatives, it is simplier to solve
conflicts between the two modules and the anomaly based module
do not need to process dangerous events recognised by the first
module. Our system does not need any specific setting, but only
a training period. There are also different auto-setting tresholds
for the different resources that reduce false alarms. The system
is implemented as system service and tested with a real dataset
by a services company.

I. INTRODUCTION

Web servers and web applications are often under attack

by malicious software or intruders. The most part of web

applications or web server-extentions are not structured with a

secure criteria, so the number of attacks to them is increasing.

Intrusion Detection Systems are provided with signatures to

reveal attacks to this kind of applications; unfortunately is

really difficult to mantaine updated the signatures because the

high number of new vulnerability daily discovered. To avoid

this problem, this kind of IDS shoud be complemented by

anomaly detection systems that consent to discover attacks

with unknow signature. In literature the possibility to combine

misuse and anomaly detection was analyzed by E. Tombini,

et al. [6], evidencing that in web application is better to have

first the misuse module and then the anomaly one. The concept

of anomaly detection was proposed for the first time by D.E.

Denning [4], that presented an abstract model of a real-time

intrusion detection system (IDES), based on the convinction

that an use of the system different from the previous uses

may be a signal of an improper use. A lot of other techniques

were proposed to approach the anomaly intrusion detection by

A.K. Ghosh, et al. [9] that used a neural network model to

identify anomalous beaviors; L. Portnoy, et al. [12] proposed

an unsupervisioned clustering algorithm to classify normal and

abnormal activity; T. Lane and C.E. Brodley [13] presented

a machine learning model based on IBL (instance-based

learning) applyied to system applications. H. Feng, et al. [7]

improved the static analysis for intrusion detection using PDA

(push-down automaton). The limits of the state of the art is

that all this works refers to system programs that are static:

their beavior doesn’t change to much working so is simply

to identify anomalies in their working. In the case of web

applications is different: we have dinamic entities and their

behavior is strictly dependent from the interaction with the

users; for this reason are interesting statistical and probability

techniques proposed in their works about intrusion detection

on web applications by C.Kruegel, et al. [15]. Cisco Systems

[2] or Real Secure [11], implemented in their commercial

systems solutions that combine anomaly and misuse detection,

but they are principally misuse based. Therefore the target of

this project is to improve web server and web applications

security with many innovative algorithm modifications respect

to common IPS, obtaining better performance in discovering

attacks that exploit specific vulnerabilities for that applica-

tions, especially those developed in-house by service compa-

nies.With this paper we analyzed a possible combination of

two different detection modules (misuse-based and anomaly-

based) and our target was to determinate the capability and the

efficiency of this combination to discover web-based attacks.

Our attention is focused to obtain the less critical automatic

solution of the conflicts between the two different evaluations

on a same security event too, by developing an update engine

which automatically adjust the sensitivity of the system to

reduce the number of false alarms. Another objective was to

study the possibility to add an efficient automatic prevention

engine in order to decrease the quantity of critical data to

manage for the system administrator. The basic problem of

this solution is that web applications developed in-house by

service companies does not provide a list of signatures, so

it is necessary a certain time before the system can learn

the attributes of applications and either a complete list of

intrusive events or profiles of normal utilization of these

applications have to be created, before the system achieves

the best efficiency.
The paper is structured as follows: Section II provides an

overview of the Detection Model; Section III, describes the

Misuse detection Model; Section IV presents the evaluation

tests of the system; Section V describes conclusions.

II. OVERALL DETECTION MODEL

Our system analyzes on-line a series of temporal subsequent

HTTP requests as logged by most common web server (for

example, Apache [8]). The analysis focuses on either GET

or POST requests to HTML pages, server-side programs or

active documents and consists of a serial combination of

misuse and anomaly detection, with misuse detection first.

More formally, the input to the process is a request R, extracted

from web server access log file. A request R can be expressed

in several ways depending of custom web server logging

directives. In our work, we assumed that requests were logged

in the Common Log Format (CLF) or Extended Common Log

Format (ECLF). In these formats the most important features

logged by web server are the IP source address, the date and

the time of the request, the path to the desired web page

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

185

Fig. 1. Sample web server access log entry

(path), and sometimes an optional query string (q). The query

string is used to eventually pass parameters to the referenced

script and it is identified by a leading ”?” character. A generic

query string normally consists of an ordered list of n pairs

of parameters with their corresponding values, so q can be

expressed as q = (p1, v1), (p2, v2), ..., (pn, vn) where pi ∈ P ,

the set of all parameters and vi is a string. Another important

feature is the status code of the request. Figure 1 shows an

example of a request logged by web server in ECLF format, in

which elements used in the analysis are underlined. Let E be

the event processed by the system (in this case the last line of

the access log file). Additionally let Mi and Mu be the subsets

of E that represent the sets of events declared respectively

intrusive or unknown by the misuse detection component

and let As and Au be the subsets of E that represent the

sets of events declared respectively safe or unsafe by the

anomaly detection component. In this combination the misuse

component tries to match E with a set of signatures and raises

an alarm if the result of pattern matching is true (M i). Events

declared unknown in the first step (Mu) are then analyzed

by an anomaly detection component. If the anomaly detector

declares E safe, the event is assumed completely irrelevant

(Au) and is filtered out. On the contrary, an alarm is raised if

E is declared intrusive (Ai). The detection process is shown

in Figure 2. Events in the subset Mu∩Au represent the set of

events declared unsafe (potentially intrusive) by the anomaly

detector and unknown (potentially safe) by the misuse detector.

These events cannot be interpreted automatically because they

should be considered as false positives issued by the anomaly

detector or false negatives issued by misuse detector and the

anomaly model (respectively the signatures database) must be

updated. In this case the main task of system administrator is

signaling what component gave wrong response, and an update

engine automatically provides to update the anomaly detection

component or add a new signature to the misuse detection

component. At this time, in the first case the event tagged

as normal is used to refine the anomaly model by computing

a new anomaly threshold for the analyzed script, as shown

more accurately in section about Anomaly detection Model.

In the second case the automatic generation of a signature is

made simply adding the tagged request at the end of the list of

regular expressions. However in some cases, the system tries to

automatically apply some prevention rules in order to block the

communication with client who generated the anomaly event,

with the help of a firewall. The prevention model is described

in section Prevention Model.

III. MISUSE DETECTION MODELS

Misuse detection Model: The misuse detection component

is used to detect attacks embedded in URLs and report known

malicious requests. For example, the presence in the request

of the words ”SELECT” or ”WHERE” could be used to detect

an attempted incorrect use of SQL commands to retrieve

Fig. 2. System architecture

sensible data. The misuse detection process uses a list of

regular expressions, which items represent manifestations of

the most common attacks. These regular expression are used

to match against the request analyzed and an alarm is raised

when a match occurs. We used the Java regex package to

implement the mechanism of pattern matching, which is in

conformance with Level 1 of Unicode Technical Standard

#18: Unicode Regular Expression Guidelines [3], plus RL2.1

Canonical Equivalents. Currently, the list contains about 70

regular expressions, but new attacks can be detected by adding

new regular expressions. A new expression can be added

manually without stopping system execution or it can be

automatically generated and added by the system when a

suspicious request is tagged as intrusive by system admin-

istrator. Regular expressions are compiled at runtime, before

the matching process starts. The list of regular expressions is

specified into a text file, in an XML-based format. An example

is shown below.

<signatures>
<expression name="Cross-site Scripting">.*(script)+.*
</expression>
<expression name="Directory Trasversal">.*(\.\./)+.*
</expression>

<expression name "SQL Injection">.*
(select|insert|update|delete|union|--)+.*

</expression>
[...]
</signatures>

At this time, the automatic generation of a signature is made

simply adding the tagged request at the end of the list of

regular expressions. Anomaly detection Model:the anomaly de-

tection component provides a model of the ”normal behavior”

of users and applications. The basic assumption is that, in

case of intrusive actions, the behavior of users or applications

differs substantially from normal behavior and this difference

can be expressed quantitatively. The behavior of software

entities in the web applications context is very dinamic and

it is strictly connected with user interaction, which often

governs the visualization process of data and informations

through the choice of a set of values associated with some

parameters. Additionally each web application is different

from others in terms of number and type of parameters to

elaborate. Our approach was initially based on the model

proposed by C.Kruegel, et al. [15], which uses several different

evaluations about requests, parameters and their relationship

to detect anomalous entries. An evaluation is a set of statistical

procedures used to evaluate a certain feature of a request. A

feature can be related to a single parameter of a query string

(e.g. the string length of a particular parameter value), to all

parameters (e.g. the order of parameters in a query string), or

to some relationship between a request and others related to

a specific web page or script r (e.g. number of requests in a

186

time slot). The model operates in two distinct steps: in a first

step (learning or tuning) each evaluation is performed on a

sufficiently large set of normal requests relating to the same

web page or script (first 1000 in our implementation)and on

their parameters in order to build a profile for each web page

or script;for this purpose we used historical access log data

files, gathered from the system administrator of a small Italian

company . Afterward, a detection threshold is estabilished

by evaluating requests separately. In the detection phase, the

task of these evaluations is to assign a probability value to

either a request as a whole or one of its parameters. This

probability value reflects the probability of the occurrence of

the given feature value with regards to an established profile.

The assumption is that feature values with a sufficiently low

probability can indicate a potential intrusive behavior. Based

on the evaluation outputs, a request is either reported as a

potential intrusive behavior or as normal. This decision is

reached by calculating an anomaly score. A request is reported

as anomalous if this anomaly score is above the corresponding

detection threshold. The anomaly score value is calculated

using a weighted sum as shown in Eq.(1). In this equation, w e

represents the weight associated with evaluation e, while pe is

its returned probability value. The probability p e is subtracted

from 1 because a value close to zero indicates a possible

anomalous event. In this case it should yield a relative high

anomaly score. The we values are estabilished a priori and

they can be adjusted regarding the analyzed application, web

page or script, after a brief analysis process on historical data

of web server.

AS =
∑

e∈Evaluations

we ∗ (1 − pe) (1)

Our evaluation procedures are very similar to those proposed

by Kruegel et al., but we used only six anomaly evaluations

to perform detection process and we refined evaluation pro-

cedures in some points. The evaluations used are enumerated

below:

Length of values associated with parameters;

Distribution of characters in values associated with parame-

ters;

Presence of limited set of values associated with parameters;

Presence or absence of a parameter in a request;

Order of parameters in a request;

Access frequency to a web page or script;

When a certain request contains several parameters, we chose

to consider the lower probability value returned by our

anomaly evaluations, in order to avoid a malicious user to hide

a single invalid input into a series of valid inputs. Additionally,

when a script without parameters to elaborate is analyzed,

only two evaluations are performed: the check of presence or

absence of parameters in the request and the access frequency

to the script.

Length of values associated with parameters:The length

of a value associated with a parameter of a request can be

used to detect anomalous requests, especially when these

values are either fixed-size tokens or short strings derived

from user input (such as fields in a form). For example, to

overflow a buffer in a target application, it is necessary to

send a large amount of data, depending on the length of the

buffer. In the training phase the goal of this evaluation is

to approximate the actual but unknown distribution of the

parameter lengths, so in the detection phase it can detect

instances that significantly deviate from the observed normal

behavior. Clearly, the probability density function of the un-

derlying real distribution often doesn’t follow a smooth curve.

Additionally the distribution has a large variance in several

cases. Nevertheless, the evaluation is able to efficiently identify

significant deviations.

LEARNING:in the learning phase, the length of values associ-

ated with a certain parameter in a request can be expressed

as a random variable, and it is possible to calculate mean

μ and variance σ2 associated with it. The mean and the

variance of the real parameter values length distribution are so

approximated by calculating the sample mean and the sample

variance for the lengths l1, l2, . . . , ln of the values associated

with the analyzed parameter and processed during the learning

phase (assuming that n requests with that parameter were

processed). The cost of this evaluation is proportional to

the number n of queries analyzed during the learning phase,

followed by a constant cost to compute the mean and the

variance.

DETECTION:In the detection phase we already know the

estimated parameter length distribution, in particular μ and

σ2. The task of this phase is to evaluate the anomaly of a

value associated with the analyzed parameter with length l.

We assume that a value with length less than μ, relating to

a specific parameter, is associated with a probability value of

1. This is due the fact we consider this evaluation able to

detect anomalous requests in which a large amount of data

is injected in one or some values. To evaluate the anomaly

of a string with length l higher than μ, we quantify the

”distance” of the length l from the mean value μ with the

help of the Cantelli inequality [5]. The Cantelli inequality is

an efficient metric to model decreasing probabilities for strings

with lengths that increasingly exceed the mean. It puts, for an

arbitrary distribution with mean μ and variance σ 2, an upper

bound on the probability that a generic length x is higher than

l, as shown in Equation 2. When l is very distant from μ then

the probability value associated with a string having a greater

length than l should decrease. In this case an attacker cannot

insert malicious input by padding the string and increasing its

length, because an increase in length reduce the probability

value associated with that string.

p(l) =

⎧⎪⎨
⎪⎩

1 l ≤ μ

σ2

σ2+(l−μ)2
l > μ

(2)

Distribution of characters in values associated with param-

eters When we analyze a request, sometimes we are able to

detect an anomalous value associated with a certain parameter

by looking at its distribution of characters. This is due the fact

that often user input have a regular structure, is mostly human-

readable, and almost always contain only printable characters.

Additionally, a large percentage of characters in regular values

are drawn mainly from letters, numbers, and sometimes a

187

few special characters. However, there are some cases in

which a malicious user sends binary data (e.g., buffer overflow

attacks), or inject a string with a noticeable strange character

sequence (e.g., with many repetition of the dot character in

directory traversal exploits). Anyway, when we analyze a set of

several requests containing same parameters, similarities often

can be observed between the character frequencies of values

associated with a certain parameter. In fact, if we consider a

string drawn from Italian or English language, we observe that

there are words in which some characters are more frequent

than others but often there is no one that is clearly more

prevalent than others. So, if we sort in descending order the

relative frequencies for all possible characters in a legitimate

string, one can expect that the relative frequencies slowly

decrease in value. In case of malicious input, instead, these

frequencies often drop extremely fast. This can be the result

of a certain padding character that is repeated many times in a

buffer overflow attack or because of the many occurrences of

the dot character in a directory traversal attempt. Therefore we

assume that the character distribution of a value is represented

by the array of its relative frequencies sorted in descending

order.

LEARNING the goal of the learning phase is to build a

profile of the normal character distribution of a generic value

associated with a certain parameter, for each parameter of a

script. For this purpose, the character distribution for each

observed parameter is stored. Then an ”idealized” character

distribution is approximated by setting, for each index i of the

relative frequencies array, the average of all n values of stored

character distributions that are in the position i, assuming

that n requests with that parameter are analyzed. Because all

individual character distributions sum up to unity, their average

will do so as well, and the idealized character distribution is

well-defined. The cost of building this model is linear in the

number of parameters that are analyzed during this phase. For

each parameter, the character distribution has to be determined,

an operation which has a cost that is proportional to the length

of its value string.

DETECTION: the task of the detection phase is to determine

the probability that the character distribution of a certain

value is conforming with the modelized legitimate character

distribution associated with its reference parameter. In this

case, more precisely, we want to check if this array is a sample

drawn from a population with a certain distribution, that can

be represented by the idealized character distribution of its

reference parameter. This probability, or more precisely, the

confidence in this hypothesis is calculated by the Pearson χ2

statistical test[5]. We chose to group the values of the array in

six intervals defined as follows:[0], [1, 3], [4, 6], [7, 11], [12,

15], [16, 255], assuming that possible characters are drawn

from a subset of 256 character (ASCII - 8 bit) and reflecting

the fact that the relative frequencies are sorted in descending

order, so values in position i are higher when i is small. Addi-

tionally, the value representative of an interval is the average of

values between the considered indexes. When a new parameter

is analyzed, the number of occurrences of each character in

the string value is determined. Afterward, the values are sorted

in descending order and combined by aggregating values that

belong to the same interval i. The resultant value is indicated

as Oi. The χ2 value is so determined as shown in Equation

3. In this equation Ei represents the expected value and it is

calculated by multiplying the value of the interval i for the

length of the string analyzed.

χ2 =
i<6∑
i=0

Oi − Ei

Ei
(3)

The χ2 test is then used to calculate the probability that the

given sample has been drawn from the legitimate character

distribution. The actual probability p is read from a predefined

table (Table I) using the χ2 value and the degrees of freedom

as index, observing that in this test the degrees of freedom

are calculated as (numberofintervals − 1). The derived

value p is used as the return value for this model. When

the probability that the sample is drawn from the legitimate

character distribution increases, p increases as well. The cost

of evaluate an input string using this method consists of the

calculation of the χ2 value[].

TABLE I
PROBABILITY VALUES FOR 5 DEGREES OF FREEDOM

χ2 p χ2 p

0.41 0.995 9.24 0.1
0.55 0.99 11.07 0.05
0.83 0.975 12.83 0.025
1.15 0.95 15.09 0.01
1.61 0.9 16.75 0.005

Presence of limited set of values associated with param-

eters:the purpose of this evaluation is to determine whether

the values of a certain parameter are drawn from a limited set

of possible alternatives (i.e., ”checkbox”, ”radio” or ”select”

HTML input types). When a malicious user attempts to use

these parameters to pass to the analyzed script illegal values

or values that are not in the trusted set, the intrusion attempt

can be detected. When a set of possible alternatives can

be identified for a certain parameter, it is assumed that the

parameter values are random and no attacks can be detected

by this evaluation.

LEARNING:the goal of this phase is to model when the values

associated with a certain parameter are random or part of

an enumeration. When a set of different occurrences of the

analyzed parameter values are observed, one can see that in

the case of an enumeration, the number of different values

encountered does not exceed a certain unknown threshold t.

Instead, when the number of different parameter values grows

proportional to the total number of analyzed instances, the use

of random values is indicated. It is consequently necessary to

estabilish the correlation between the total number of analyzed

values and the total number of different values encountered

during this phase. More formally, to decide if a parameter is

associated with an enumeration, we calculate the statistical

correlation ρ between the values of the functions f and g,

defined ∀x ∈ {1, 2, ..., n} as follows on N0, where n is the

total number of values encountered during this phase, and S (x)

represents the set of values encountered at the time the x th

188

value is analyzed:

f(x) = x (4)

g(x) =

⎧⎨
⎩

g(x− 1) + 1 xthvalue ∈ S(x)

g(x− 1) − 1 xthvalue /∈ S(x)

0 x = 0
(5)

The correlation parameter ρ is derived after the training

data has been processed. It is calculated from f and g with

their respective variances Var(f), Var(g) and the covariance

Covar(f,g) as shown below:

ρ =
Covar(f, g)√

V ar(f) ∗ V ar(g)
(6)

If ρ is less than 0, then f and g are negatively correlated and an

enumeration is assumed, reflecting the fact that increasing the

value of observed values, the number of different occurrences

has not shown a proportional increase too. This means that

some values was encountered several times during the training

phase. In the opposite case, where ρ is greater than 0, the

values observed have shown sufficient variation to support

the hypothesis that they are not drawn from a small set of

predefined values. Naturally, when an enumeration is assumed,

the complete set of values encountered is stored for use in the

detection phase. The cost of building this model is strictly

connected to the calculation of the covariance between these

two simple functions. This cost depends on the number of

analyzed requests.

DETECTION:once it has been determined that the values of

a certain parameter of a script are tokens drawn from an

enumeration, any new value v is expected to appear in the set

S of known values. When this happens, a probability value of

1 is returned. If the value is not in the established set of values,

a probability value of 0 is returned, as shown in Equation 7. If

it has been determined that the parameter values are random,

the model always returns 1. In order to increase the efficiency

of the detection we use the Java HashMap data type to store

and retrieve values.

p(v) =
{

1 v ∈ S
0 v /∈ S (7)

Presence or absence of a parameter in a request: Most

of the time, server-side programs or scripts are not directly

invoked by users typing the input parameters into the URIs

themselves. Instead, client-side programs or scripts pre-process

the data and transform it into a suitable request. This usually

results in a high regularity in the number, name, and order of

parameters. Another interesting situation is when developers

with little expertise use ”hidden” type forms in their HTML

pages and then process the data in a separate script. In this

case this type of parameters does not appear in requests logged

by the web server, so its presence can indicate the attempt of

an intrusion. The analysis performed by this evaluation takes

advantage of these facts and tries to detect requests that deviate

from the estabilished profile, built in the training phase. This

evaluation described in this section, deals with the presence

and absence of parameters pi in a query string q and consider

a query as a whole, differing from previous ones, which focus

on features of individual query parameters. This approach

assumes that the absence or abnormal presence of one or more

parameters in a query might indicate malicious behavior. This

allows for the detection of intrusion attempts where server-

side applications or scripts are probed or exploited by sending

malformed requests.

LEARNING: the goal of this phase is to estabilish when a script

is associated with some parameters and, in the positive case,

to create a model of acceptable subsets of parameters that

appear simultaneously in a query string. This is done simply

by storing each distinct subset Sq = {pi, ..., pk} of parameters

seen during the training phase.

DETECTION: the detection phase have to deal with three

different situations: Scripts without visible parameters - In

this case the evaluation is performed observing if the analyzed

request has one or more parameters in its URI. In this case

a probability value of 0 is returned, 1 otherwise; Scripts with

visible parameters - In this case, for each request analyzed, the

current parameter set is extracted. When the observed set of

parameters has been encountered during the training phase, 1

is returned, otherwise 0. Generic scripts - This situation deals

with scripts that can appear with or without parameters. In

this case the detection process is performed with the method

described in the situation 2, when a set of parameters can be

extracted from the analyzed request. Otherwise a probability

value of 1 is returned. The current script type is determined

by reading a code of two boolean values, set in the training

phase, where 11 is a generic script, 10 is a script without

visible parameters, 01 is a script with visible parameters and

00 is for the Unknown.

Order of parameters in a request:As discussed in the

previous section, legitimate requests often contain the same

parameters in the same order. This is usually not the case for

hand-crafted requests, as the order chosen by a malicious user

can be arbitrary and has no influence on the execution of the

program. The goal of this evaluation is to determine whether

the given order of parameters is consistent with a profile built

during the learning phase.

LEARNING The order constraints between all k parameters of

a legitimate query string are determined during this phase. It

is consequently necessary to estabilish an order relationship

between parameters. So we assume that a parameter p t of a

script precedes another parameter ps when pt and ps appear

together in the parameter subset of at least one query string

and pt comes before ps in the ordered list of parameters of

all queries where they appear together. In order to store these

relationships between parameters we use a matrix M of (s x s)

elements, where s is the total number of parameters associated

with the analyzed script and Mij = 1 if pi precedes pj , 0

otherwise. So, for every query string q i, with i = 1,. . . ,n, that

is analyzed during the training period, the ordered list of its

parameters p1, p2, ..., pi is processed. For each attribute pair

(pt, ps) in this list, with t �= s, the Mts value is set to 1. In

this phase all analyzed requests are assumed to be normal,

so the final result is that Mts �= Mst when pt precedes ps,

assuming that parameters can only appear in the same order.

If parameters pt and ps are admitted in both different orders,

then Mts = Mst. The cost of building this profile is not high,

because the total number of parameters processed by a generic

189

script is usually relatively small.

DETECTION The detection process checks whether the pa-

rameters of a query string satisfy the order constraints deter-

mined during the learning phase. Given a query string with

parameters p1, p2, ..., pi and the matrix M, all the parameter

pairs (pj , pk), with j �= k, are analyzed to detect potential

violations. A violation occurs when for any single pair (p j , pk)
of the current query string, where pj precedes pk, the cor-

risponding Mjk value is 0. In this case the evaluation returns

a probability value of 0, otherwise it returns 1.

Access frequency to a web page or script:different server-

side applications or web scripts normally are invoked with

different frequencies. However, after monitoring a specific

web page or script in a sufficiently long time interval, one

can often observe that the general access patterns remain

relatively constant. It is possible to distinguish between two

types of access frequencies for each web page or script. One

is the frequency of the application being accessed from a

certain client (based on the IP address), the other is the total

frequency of all accesses. When a malicious user attempts

a DoS (Denial of Service) exploit for a certain script, the

number of accesses observed in a small time interval from

that client can increase drastically. Otherwise the frequency of

all accesses can grow extremely in case of DDos (Distributed

DoS) attempts. Changes in access patterns can indicate in-

trusion attempts (e.g., when an application is usually accessed

infrequently but is suddenly exposed to a burst of invocations).

This increase could be also the result of an attacker probing

for vulnerabilities or trying to guess parameter values. A

single determined attacker can evade detection by executing

his actions slowly, but often most intruders use tools that

execute brute force attacks, raising the total access frequency

to a suspicious level.

LEARNING:the objective of this phase is to build a model

of normal access frequency pattern for a web page or script.

To determine the expected normal access frequencies, the

time period between the first and the last request in the

training data set is divided into consecutive time intervals of a

fixed size (60 seconds in our implementation). Then, the total

number of requests and the numbers of requests from distinct

clients (distinct IP addresses) are counted in each of these

intervals. The counts for the total accesses and the counts for

the accesses from distinct clients can be considered as two

random variables, which respective means and variances can

be evaluated. These values can represent the normal web page

or script behavior in terms of number of requests made to it.

The cost of building this profile is proportional to the number

of requests that are analyzed during the training period.

DETECTION:this evaluation focuses on whole sequences of

queries, so it is necessary to maintain data of recent accesses

to the analyzed script for a certain time interval. The main

goal is to be able to detect vulnerability probing, parameter

value guessing and DoS attempts. So during detection, time

is divided into intervals of the same fixed size that was

used during the learning phase. When a request is evaluated,

the number of total requests n1 and the number of requests

from this client n2, both in the current time interval, are

determined. Similar to the attribute length evaluation, the

Cantelli inequality is used to calculate the probability of n1,

given the mean and the variance of the total access frequencies,

and the probability of n2, given the mean and the variance of

access frequencies from distinct clients. This two probabilities

are then combined in a weighted sum, as shown below, and

returned by this evaluation.

p(a) =
2∑

i=1

wi ∗ p(ni) (8)

The wi values are initially set to 1/i, but they can adjusted
by the system administrator taking in account the specific

web page or script type. The detection cost is proportional to

the number of requests analyzed during the current detection

interval. This module can be linked to a prevention module:

we did it, but we do not talk about it in this paper.

IV. EVALUATION

This section describes the approach used in order to evaluate

the intrusion detection system proposed. The evaluation was

performed by gathering on-line (in two different experiment)

real data from the main web server of an Italian company,

SIMobile s.r.l.(www.simobile.it). The IDS was configured and

integrated with the web architecture (e.g., operating system,

web server, DBMS), by installing it as a service.

TUNING PHASE: the system tuning phase was performed

off-line, analyzing a stored database of historical legitimate

HTTP/HTTPS requests. So we usedthem to model the normal

system behavior. Table II, shows relevant informations about

the learning set, like data gathering time interval, total number

of analyzed requests and total number of pages or scripts

modeled.

DETECTION:there are several indexes to evaluate the

effectiveness of an intrusion detection system. In our work,

we used a set of typical indexes often used in diagnostic

tests, as shown below.

TABLE II
LEARNING PHASE INFORMATIONS

Time interval Log size # of requests # of modeled scripts

165 days 16 MByte 87284 260

Sensitivity (Sen)= TP
TP+FN ,

Specificity (Spe)= TN
TN+FP ,

Positive predictive value (PPV) = TP
TP+FP ,

Negative predictive value (NPV) = TN
TN+FN ,

Prevalence (Prev)= TP+FN
TP+FN+FP+TN ,

Where TP,FN,FP,FN are respectively: true positive, false

negative,false positive and false negative. The test has an high

degree of effectiveness when sensitivity and specificity values

are close to 1. Other two fundamental indexes are related to

false alarms, as shown below.

False Positive Rate (FPR) = FP
TN+FP = 1 − specificity ,

False Negative Rate (FNR) = FN
FN+TP = 1 − sensitivity .

Obviously, the test has an high degree of effectiveness when

the false positive/negative rate is close to 0. The system has

been evaluated by analyzing on-line the HTTP/HTTPS traffic

towards the monitored web server. In our experiment the

190

weight we of Equation (1) has been set to 1/6 = 0, 167 and

the weight wi of Equation (8) has been set to 1/2 = 0, 5.

Table III reports the results of one of the two experiments.

TABLE III
EVALUATIONS RESULTS

Monitoring days 55 alerts 28 Sen 1

Request logged 18894 TP 17 Spe 0,997
Suspicious events 28 TN 3655 FPR 0,003
Intrusive events 17 FP 11 FNR 0

FN 0 PPV 0,607
Prev 0,0046 NPV 1

We have a false negative when the system fails to identify a

potentially intrusive behavior; therefore, we can not compute

the number of false negatives with an automatic procedure.

The number reported in Table III has been manually computed

by the system administrator day by day. His task consisted in

checking daily requests (around 343 requests per day) and

identifying potential intrusions not signaled by the system.

The reliability of the evaluation depends on two factors: the

total number of analyzed requests and the comparison with the

related works. The total number of analyzed request is related

to the average server traffic load of the monitored company,

but however the system shows that results are comparable with

the main reference work [15]. Anyway we expect a sensible

improvement in reducing false positives when automatically

updating the misuse engine with new specific signatures and

the anomaly engine with adjusted thresholds after a longer

monitoring period.

V. CONCLUSIONS

In this work we considered the security problem of web-

applications and the application of Intrusion Detection Sys-

tems to this kind of systems.We proposed an intrusion de-

tection model that improves the previous model proposed

by [15]. I this model we combined an anomaly detection

approach with a misuse detection approach. Indeed, the best

way to reveal web application attacks is to use the precision

of signature based systems with the flexibility of anomaly

detection systems and to solve problems coming from the

combination of two approaches. About anomaly detection we

obtained a great advantage combining different evaluation

systems to cover the great number of attack typologies. The

model proposed doesn’t need any specific configuration, but

only a training period. We implemented this model in a IDS

that we experimented in a real context.

TABLE IV
IPS COMPARISON

Sistem Sensitivity FP/ # logs DATA

Our IDS 100% 0,02% - 0,06 % Real Data
[15] 100% 0,002% - 1,45% Simulated
[14] - 0,069% Real Data

Table IV shows that our results are comparable with the

main reference work [15] in terms of false positive , with

the difference that while their results came from a simulation,

we applied our IDS to a real company network. Furthermore,

the Positive Predictive Value is about 60 %, that is a tipical

value of PPV for IDS/IPS, as described in [10] and [1]. False

positives in particular, occured in the first days of monitoring

and then decreased, as consequence of adjusting detection

thresholds.

REFERENCES
[1] J.S. Baras. A.Cardenas and K. Seamon. A framework for the evaluation

of intrusion detection systems. In IEEE Symposium on Security and
Privacy.

[2] Cisco. Cisco intrusion prevention system. Technical report,
http://www.cisco.com/en/US/products/sw/secursw/ps2113/index.html.

[3] Mark Davis. Unicode technical standard 18, unicode regular expressions.
Technical report, http://www.unicode.org/unicode/reports/tr18.

[4] D.E. Denning. An intrusion detection model. volume 2, pages 222–232,
1987.

[5] Luc Devroye. In Non-Uniform Random Variate Generation, 1986.
Springer-Verlag, New York.

[6] L. Me E. Tombini, H. Debar and M. Ducasse. A Serial Combination of
Anomaly and Misuse IDSes Applied to HTTP Traffic. December 2004.

[7] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, CA,, 2004.

[8] Apache Software Foundations. Apache http server log files. Technical
report, http://httpd.apache.org/docs/2.2/logs.html.

[9] A.K. Ghosh, J. Wanken, and F. Charron. Detecting anomalous and
unknown intrusions against programs. volume AZ, pages 259–267,
December 1998.

[10] David Dagon Wanke Lee Guofei Gu, Prahlad Fogla. In Measuring
Intrusion Detection Capability: An Informmation-Theoretic Approac.,
March 2006. In Proceedings of ACM Symposium of InformAction,
Computer and Communications Security(ASIACCS06).

[11] IBM. Ibm internet security sytems proventia net-
work intrusion preventionsystem. Technical report,
http://www.iss.net/products/product sections/Intrusion Prevention.html.

[12] S. Stolfo L. Portnoy, E. Eskin. Intrusion detection with unlabeled data
using clustering. Novembre 2001.

[13] T. Lane and C.E. Brodley. Temporal sequence learning and data
reduction foranomaly detection. pages 150–158. ACM Press, 1998.

[14] M. Dacier M. Almgren, H. Debar. A lightweight tool for detecting web
server attacks. In ISOC Symposium on Network and Distributed Systems
Security.

[15] W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer. Using General-
ization and Characterization Techniques in the Anomaly-based Detection
of Web Attacks. In Proceeding of the Network and Distributed System
Security (NDSS) Symposium San Diego, CA, 2006.

191

Efficient Virus Detection Using Dynamic Instruction Sequences

Jianyong Dai, Ratan Guha and Joohan Lee
School of Electrical Engineering and Computer Science

University of Central Florida
4000 Central Florida Blvd, Orlando, Florida, 32816

E-mail: {daijy, guha, jlee} @cs.ucf.edu

KEYWORDS
Virus Detection, Data Mining

ABSTRACT

In this paper, we present a novel approach to detect
unknown virus using dynamic instruction sequences
mining techniques. We collect runtime instruction
sequences from unknown executables and organize
instruction sequences into basic blocks. We extract
instruction sequence patterns based on three types of
instruction associations within derived basic blocks.
Following a data mining process, we perform feature
extraction, feature selection and then build a
classification model to learn instruction association
patterns from both benign and malicious dataset
automatically. By applying this classification model, we
can predict the nature of an unknown program. Our
result shows that our approach is accurate, reliable and
efficient.

INTRODUCTION

Malicious software is becoming a major threat to the
computer world. The general availability of the
malicious software programming skill and malicious
code authoring tools makes it easier to build new
malicious codes. Recent statistics for Windows
Malicious Software Removal Tool (MSRT) by
Microsoft shows that about 0.46% of computers are
infected by one or more malicious codes and this
number is keep increasing [1]. Moreover, the advent of
more sophisticated virus writing techniques such as
polymorphism [2] and metamorphism [3] makes it even
harder to detect a virus.

The prevailing technique in the antivirus industry is
based on signature matching. The detection mechanism
searches for a signature pattern that identifies a
particular virus or strain of viruses. Though accurate in
detecting known viruses, the technique falls short for
detecting new or unknown viruses for which no
identifying pattern is present. Whenever a new virus
comes into the wild, virus experts extract identifying
byte sequences of that virus either manually or
automatically [4], then deliver the fingerprint of the new
virus through an automatic update process. The end user
will finally get the fingerprint and be able to scan for
the new viruses.

However, zero-day attacks are not uncommon these
days [34]. These zero-day viruses propagate really fast
and cause catastrophic damage to the computers before
the new identifying fingerprint is distributed [5].

Several approaches have been proposed to detect un-
known virus without signatures. These approaches can
be further divided into two categories: static approaches
and dynamic approaches. Static approaches check
executable binary or assembly code derived from the
executables without executing it. Detecting virus by
binary code is semantic unaware and may not capture
the nature of virus code. Static approaches based on
assembly code seems to be promising, however,
deriving assembly code from an executable itself is a
hard problem. We find that approximately 90% of virus
binary code cannot be fully disassembled by state of the
art disassembler. Dynamic approaches run the
executables inside an isolated environment and capture
the runtime behavior. Most existing dynamic
approaches are based on system calls made by the
unknown executable at runtime. The idea behind is that
viral behavior of a malicious code is revealed by system
calls. However, some malicious code will not reveal
itself by making such system calls in every invocation
of the virus code. On the other hand, some malicious
behaviors such as self-modifying are not revealed
through system calls. Based on these observations, we
propose to use dynamic instruction sequences instead of
system calls to detect virus dynamically.

Instead of manually analyzing captured runtime trace of
every unknown executable, some people designed some
automatic mechanisms. The obvious approach is to
derive heuristic rules based on expert knowledge.
However, this approach is time consuming and easier to
be evaded by the virus writer. The other approach is
data mining. Here data mining refers to a classification
problem to determine whether a program can be
classified into either malicious or benign.

The key problem for this classification problem is how
to extract features from captured runtime instruction se-
quences. We believe the way how instructions group to-
gether capture the nature of malicious behavior. To this
end, we devise a notion “instruction association”.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

192

In the first step, we organize instructions into logic as-
sembly. Logic assembly is a reconstructed program
assembly using available runtime instruction sequences.
It may have incomplete code coverage, but logic
assembly will keep the structure of the executable code
as much as possible. Another merit of logic assembly is
that we can deal with self-modifying code during the
process of logic assembly construction.

The second step is to extract frequent instruction group
inside basic block inside logic assembly. We call these
instruction groups “instruction associations”. We use
three variations of instruction associations. First, we
consider the exact consecutive order of instructions in a
block. Second, we consider the order of the instructions
in a block but not necessarily consecutive. The third is
the instruction association that observes which
instructions appear together in a block but does not
consider the order.

We use the frequency of instruction association as fea-
tures of our dataset. We then build classification models
based on the dataset.

While accuracy is the main focus for virus detection,
efficiency is another concern. No matter how accurate
the detection mechanism is, if it takes long time to
determine if an executable is a virus or not, it is not
useful in practice as well. Our analysis shows that
compare to system calls, our approach takes less time to
collect enough data for the classification model, and the
processing time is affordable.

RELATED RESEARCH

Although the problem of determining whether unknown
program is malicious or not has been proven to be
generally undecidable [6], detecting viruses with an
acceptable detecting rate is still possible. A number of
approaches have been proposed to detect unknown
viruses.

Static approaches check executable binaries or assembly
code without actually executing the unknown program.
The work of Arnold et al [7] uses binary trigram as their
detecting criteria. They use neural network as their
classifier and reported a good result in detecting boot
sector viruses for a small sample size.

InSeon et al [8] also use binary sequences as features.
However, they construct a self organizing map on top of
these features. Self organizing map converts binary se-
quences into a two dimensional map. They claim that
malicious viruses from the same virus family demon-
strate same characteristic in the resulting graph. But
they do not give a quantitative way to differentiate a
virus from benign code.

Schultz et al [9] use comprehensive features in their
classifiers. They use three groups of features. The first

group is the list of DLLs and DLL function calls used
by the binary. The second group is string information
acquired from GNU strings utility. The third group is a
simple binary sequence feature. They conduct
experimentation using numerous classifiers such as
RIPPER, Naïve Bayes, Multi-Naïve Bayes.

In recent years, researchers start to explore the
possibility to use N-Gram in detecting computer viruses
[10, 11, 12]. Here N-Gram refers to consecutive binary
sequences of fixed size inside binary code.

Kolter et al [12] extract all N-Gram from training set
and then perform a feature selection process based on
information gain. Top 500 N-Gram features are
selected. Then, they mark the presence of each N-Gram
in the training dataset. These binary tabular data are
used as the input data for numerous classifiers. They
experimented with Instance-based Learner, TFIDF
classifier, Naïve Bayes, Support Vector Machines,
Decision Trees and Boosted Classifiers. Instead of
accuracy, they only reported AUC (Areas Under
Curves). The best result is achieved by boosted J48 at
AUC, 0.996.

Although above approaches show satisfactory results,
these detection techniques are limited in that they do not
distinguish the instructions from data and are blind to
the structure of the program which carries important
information to understand its behavior. We redo the
expe-riment mentioned in [12] and we find that the key
contributors that lead to the classifications are not from
bytes which representing virus code, rather, they are
from structural binary or string constants. Since
structural binary and string constants are not essential
components to a virus, this suggests that those detection
mechanisms can be evaded easily.

Another area of current researches focuses on higher
level features based on assembly code.

Sung A.H.et al [13] proposes to collect API call se-
quences from assembly code and compare these
sequences to known malicious API call sequences.

Mihai et al [14] uses template matching against
assembly code to detect known malicious behavior such
as self-modification.

In [15], the author proposes to use control graph ex-
tracted from assembly code and then use graph
comparing algorithm to match it against known virus
control graphs.

These approaches seem to be promising. The problem is
that disassembling executable code itself is a hard
problem [16, 17, 18].

193

Besides static analysis, runtime features have also been
used in virus research. Most of current approaches are
based on system calls collected from runtime trace.

TTAnalyze [19] is a tool to executing an unknown ex-
ecutable inside a virtual machine, capture all system
calls and parameters of each system call to a log file. An
expert can check the log file to find any malicious
behavior ma-nually.

Steven A. Hofmeyr et al [20] proposes one of the very
first data mining approaches using dynamic system call.
They build an N-Gram system call sequences database
for benign programs. For every unknown executable,
they obtain system call sequences N-Grams and
compare it with the database, if they cannot find a
similar N-Gram, then the detection system triggers alert.
In [21], the author proposes several data mining ap-
proaches based on system calls N-Gram as well. They
try to build a benign and malicious system call N-Gram
database, and obtain rules from this database. For
unknown system call trace, they calculate a score based
on the count of benign N-Gram and malicious N-Gram.
In the same paper, they also propose an approach to use
first (n-1) system calls inside N-Gram as features to
predict the nth system call. The average violation score
determines the nature of the unknown executable.

In [22], the author compares three approaches based on
simple N-Gram frequency, data mining and hidden
Markov model (HMM) approach, and conclude that
though HMM is slow, it usually leads to the most
accuracy model.

In [23], the author runs viruses executables inside a vir-
tual machine, collecting operating system call sequences
of that program. The author intends to cluster viruses
into groups. The author uses k-medoid clustering
algorithm to group the viruses, and uses Levenshtein
distance to calculate the distance between operating
system call sequences of different runtime traces.

LOGIC ASSEMBLY

In this paper, we propose to use instruction sequences
captured at runtime as our source to build classification
models.

In order to capture runtime instruction sequences, we
execute binary code inside OllyDbg [24]. OllyDbg has
the functionality to log each instruction along with its
virtual memory address when executing. OllyDbg logs
in-struction in the form of assembly code. Because virus
codes are destructive, we execute virus code and
OllyDbg inside a virtual machine. Every time we finish
running a virus code, we reset the disk image of the
virtual machine.

OllyDbg captures execution log at a rate around 6,000
instructions per second in our computer. For some

executable requires interaction, we use the most
straightforward way, such as typing “enter” key in a
command line application or press “Ok” button in a
GUI application to respond.

In a conventional disassembler, assembly instructions
are organized into basic blocks. A basic block is a
sequence of instructions without any jump targets in the
middle. Usually disassembler will generate a label for
each basic block automatically. However, execution log
generated by OllyDbg is simply a chronological record
of all instructions executed. The instructions do not
group into basic blocks and there is no labels. We
believe that basic block capture the structure of
instruction sequences and thus we process the
instruction traces and organize them into basic blocks.
We call the resulting assembly code “logic assembly”.
Compared with static disassembler, dynamic captured
instruction sequences may have incomplete code
coverage. This fact implies the following consequences
about logic assembly code:

1. Some basic blocks may be completely missing

2. Some basic blocks may contains less instructions

3. Some jump targets may be missing, that makes

two basic blocks merge together

Despite these differences, logic assembly carries as
much structural information of a program as possible.
We design the algorithm to construct logic assembly
from runtime instructions trace. The algorithm consists
of three steps and we describe below:

1. Sort all instructions in the execution log on their

virtual addresses. Repeated code fragments are ig-
nored.

2. Scan all jump instructions. If it is a control flow

transfer instruction (conditional or unconditional),
we mark it as the beginning of a new basic block.

3. Output all instruction sequences in order along

with labels

Each assembly instruction usually consists of opera-tion
code (opcode) and operands. Some instruction set such
as 80x86 also have instruction prefix to represent
repetition, condition, etc. We pay attention to the
opcode and ignore the operands and prefix since the
opcode represents the behavior of the program. The
resulting assembly code is called abstract assembly
[25].
Figure 1 shows an example of logic assembly and ab-
stract assembly construction. Figure 1.a is the original
instruction sequences captured by OllyDbg. We remove
duplicated code from line 7 to line 14, and generate
label for jump destination line 3. Figure 1.b is the logic

194

assembly we generated. We further omit the operands
and keep opcode, and we finally get abstract assembly
Figure 1.c.

One merit of dynamic instruction sequences over
assembly is that dynamic instruction sequences expose
some type of self-modifying behavior. If a program
modifies its code at runtime, we may observe two
different instructions at the same virtual address in
runtime trace. A program may modify its own code
more than once. We devise a mechanism to capture this
behavior while constructing logic assembly.

We associate an incarnation number with each virtual
address we have seen in the dynamic instruction
sequences. Initial incarnation number is 1. Each time we
met an instruction at the same virtual address, we
compare this assembly instruction with the one we have
seen before at that virtual address, if the instruction
changes, we increate the incarnation number.
Subsequent jump instruction will mark the beginning of
a basic block on the newest incarnation. We treat
instructions of different incarnation as different code
segment, and generate basic blocks separately. Figure 2
illustrate this process.

In this way we keep the behavior of any historical invo-
cations even the code is later overwrote by newly
generated code.

INSTRUCTION ASSOCIATIONS

Once we get abstract assembly, we are interested in
finding relationship among instructions within each
basic block. We believe the way instruction sequences
groups together within each block carries the
information of the behavior of an executable.

The instruction sequences we are interested in are not
limited to consecutive and ordered sequences. Virus
writers frequently change the order of instructions and
insert irrelevant instructions manually to create a new
virus variation. Further, metamorphism viruses [3]
make this process automatic. The resulting virus
variation still carries the malicious behavior. However,
any detection mechanism based on consecutive and
ordered sequences such as N-Gram could be fooled.

We have two considerations to obtain the relationship
among instructions. First, whether the order of
instructions matters or not; Second, whether the
instructions should be consecutive or not. Based on
these two criteria, we use three methods to collect
features.

1. The order of the sequences is not considered and

there could be instructions in between.

2. The order of instructions is considered, however, it

is not necessary for instruction sequences to be
consecutive.

3. The instructions are both ordered and consecutive.

We call these “Type 1”, “Type 2” and “Type 3”
instruction associations. “Type 3” instruction
association is similar to N-Gram. “Type 2” instruction
association can deal with garbage insertion. “Type 1”
instruction can deal with both garbage insertion and
code reorder.
Figure 3 illustrates different type of instruction associa-
tions of length 2 we have obtained on an instruction se-
quence consisting of 4 instructions.

b. Logic Assembly

a. Original Log

01002157 loc1 pop ecx
01002158 lea ecx,dword ptr ds:[eax+1]
0100215b loc2 mov dl,byte ptr ds:[eax]
0100215d inc eax
0100215e test dl,dl
01002160 jnz short 0100215b

1. 01002157 pop ecx
2. 01002158 lea ecx, ds:[eax+1]
3. 0100215b mov dl, ds:[eax]
4. 0100215d inc eax
5. 0100215e test dl,dl
6. 01002160 jnz short 0100215b
7. 0100215b mov dl, ds:[eax]
8. 0100215d inc eax
 9. 0100215e test dl,dl
10.01002160 jnz short 0100215b
11.0100215b mov dl, ds:[eax]
12.0100215d inc eax
13.0100215e test dl,dl
14.01002160 jnz short 0100215b

Repetition

Repetition

loc1 pop lea
loc2 mov inc test jnz

c. Abstract Assembly

Figure 1 Logic Assembly and Abstract Assembly

Modified to
jump to

Incarnation 1 Incarnation 2

generate logic assembly

basic block 1

basic block 2

basic block 3

Figure 2 Different Incarnations

195

DATA MINING PROCESS

The overall data mining process can be divided into 7
steps. They are:

1. Run executable inside a virtual machine, obtain in-

struction sequences from Ollydbg

2. Construct logic assembly

3. Generate abstract assembly

4. Select instruction associations features

5. Extract frequency of instruction associations

features in the training dataset and testing dataset

6. Build classification models

7. Apply classification models on testing dataset

This process is illustrated in figure 4.

Here we describe step 4 in detail. The features for our
classifier are selected instruction associations. To select
appropriate features, we use the following two criteria:

1. The instruction associations should be not too rare

in the training dataset consisting of both benign
and malicious executables. If it occurs very rare,
we would rather consider this instruction
association is a noise and not use it as our feature

2. The instruction associations should be an indicator

of benign or malicious code; In other words, it
should be abundant in benign code and rare in
malicious code, or vice versa.

To satisfy the first criteria, we extract frequent instruc-
tion associations from training dataset. Only frequent
instruction associations can be considered as our feature.
We use a variation of Apriori algorithm [26] to generate
all three types of frequent instruction associations from
abstract assembly. Although there exists algorithms to
optimize Apriori algorithm [30], the optimization only
applicable to type 1 instruction association, besides, this
step only occurs at training time. We believe optimize
applying process is more critical because it will run on
each computer under protection. Training, however,
only need to be done on a specific hardware.

One parameter of Apriori algorithm is “minimum sup-
port”. It is the minimal frequency of frequent
associations among all transactions. More specifically,
it is the minimum percentage of basic blocks that
contains the instruction sequences in our case. We do
experiments on different support level as described in
out experimental result.

To satisfy the second criteria, we define the term

contrast

CountB (Fi) normalized count of Fi in benign

instruction file
CountM (Fi) normalized count of Fi in malicious

instruction file
ε a small constant to avoid error when the

dominant is 0
In this formula definition, normalized count is the fre-
quency of that instruction sequence divided by the total
number of basic blocks in abstract assembly. We use a
larger benign code dataset than malicious code dataset.
The use of normalization will factor out the effect of
unequal dataset size.

We select top L features as our feature set. For one ex-
ecutable in training dataset, we count the number of
basic blocks containing the feature, normalized by the
number of basic blocks of that executable. We process
every executable in our training dataset, and eventually
we generate the input for our classifier.

Type 1
push sub
mov sub

mov push

Type 2
sub push
sub mov
sub sub

push mov
push sub
mov sub

Type 3
sub push
push mov
mov sub

Instruction Sequences:

Figure 3 Instruction Associations of Length 2

sub push mov sub

⎪
⎪
⎩

⎪⎪
⎨

⎧

<
+
+

≥
+
+

=
)()(

)(
)(

)()(
)(
)(

)(
FicountMFicountB

FicountB
FicountM

FicountMFicountB
FicountM
FicountB

FiContrast

ε
ε
ε
ε

Figure 4 Data Mining Process

Training
Instruction
Sequences

Training
Abstract

Assembly

Top Instruction
Association

Features

Training
Dataset

Testing
Instruction
Sequences

Testing
Abstract

Assembly

Testing
Dataset

Classification
Model

Build

Apply

196

We use two classifiers in our experiment: C4.5 decision
tree [27] and libSVM [28] Support Vector Machine.

C4.5 decision tree is a classification algorithm that is
constructed by recursively splitting the dataset into parts.
Each such split is determined by the result of the
entropy gain of all possible splits among all attributes
inside the tree node. The decision tree keeps growing as
more splits are performed until a specific stop rule is
satisfied. During postpruning, some splits are removed
to relieve overfitting problem. When a record of an
unknown class comes in, it is classified through a
sequence of nodes from the tree root down to the leaf
node. Then, it is labeled by the class the leaf node
represents.

Support Vector Machine (SVM) [35] is essentially a
ma-thematical optimization problem which is originated
from the linear discriminant problem. However, if two
classes are inseparable in two dimensions, SVM can use
a mapping, which is called kernel function, to map two
dimension data into a higher dimension. The two
classes may be separable in higher dimension. libSVM
is a popular C implementation of SVM on Unix.

We also tested some other classifiers such as random
forest [33]. We do not detect any classifier has clear
advantage over others in the measure of accuracy.
However, one reason drives us to use C4.5 and SVM in
our experiment is that both classifiers are efficient to
make decision. The performance of decision making
process is the key to the system performance (See
performance analysis).

EXPERIMENTAL RESULTS

Dataset
Due to the prevailing dominance of Win32 viruses to-
day, we only use Win32 viruses as our virus dataset.
We collect 267 Win32 viruses from VX heaven [17].

We also choose 368 benign executables which consist
of Windows system executables, commercial
executables and open source executables. These
executables have the similar average size and variation
as the malicious dataset.

For both malicious and benign codes, we randomly
choose 70% of them as a training dataset and the
remain-ing 30% as a testing dataset.

Criteria
In out experiment, we use accuracy on testing dataset as
our main criteria to evaluation the performance of
classification models. However, we also calculate false
positive rate and false negative rate. False positive rate
is the proportion of benign executables that were
erroneously reported as being malicious. On contrary,
false negative rate is the proportion of malicious

executables that were erroneously identified as benign.
We believe in a virus detection mechanism, low false
negative rate is more vital than low false positive rate. It
is wise to be more cautious against those suspicious un-
known executables. High false positive certainly make
things inconvenient for the user, but high false negative
will destroy user’s computer, which is more harmful.

Parameter Selection
There are five primary parameters in our classifier, they
are:
1. Instruction association type IA (type 1, 2 or 3)

2. Support level of frequent instruction association

(S). We experiment 0.003, 0.005, 0.01

3. Number of features (L), we try 10, 20, 50, 100,

200, 300. At some support level, some instruction
association type generates relatively fewer number
of available features. For example, at support lever
0.01, only 23 type 1 instruction associations are
frequent. In that case, we use up to the maximum
available features

4. Type of classifier (C), we compare C4.5 decision

tree and SVM (Support Vector Machine)

5. Number of instruction captured (N). We try 1000,

2000, 4000, 6000, 8000

IA S L C N Accuracy
2 0.01 300 SVM 1000 0.962/0.930
1 0.01 200 C45 1000 0.919/0.923
1 0.01 200 C45 6000 0.943/0.923
2 0.01 300 SVM 8000 0.950/0.920
1 0.01 200 SVM 2000 0.924/0.919
2 0.01 200 C45 8000 0.960/0.918
1 0.01 300 C45 8000 0.945/0.918
1 0.01 200 C45 8000 0.941/0.918
1 0.01 300 C45 4000 0.919/0.918
2 0.01 300 SVM 4000 0.955/0.914

Table 1 Top 10 Configurations

Table 1 lists top 10 configurations we get along with
accuracy on both training dataset and testing dataset.

The result shows that support level 0.01 is clearly
superior to others. It shows that frequent patterns are
more important than infrequent patterns.

Instruction association type 1 and 2 outperform type 3.
That is an interesting result which could serve to justify
our approach in that traditional N-Gram based approach
checks type 3 instruction association only.

The effect of number of instructions captured N is not
quite clear yet. We further calculate average accuracy at
different n in figure 5. We see that in general accuracy

197

increase when we use a large N. However, the
difference becomes very small when N>2000. That
justify that when we use the first 4000 instructions, we
can capture the behavior of the unknown executable.
One interesting phenomenon is when N=1000, we get
some really good result. Our top 2 classifiers all have
the setting N=1000. That means in some settings, first
1000 instructions already capture the character of the
executable, further instructions might only give noises.

Figure 5 Effect of N
Model Selection
One problem in our best performed classifier is that it
uses 300 features. The number of features affects the
per-formance of our detector (See performance
analysis). To this end, we choose the second best setting.
The false positive rate for this classifier is 0.114, and
the false negative rate is 0.013. We don’t have space to
show more data for false positive rate and false negative
rate. In general, false positive rate is much higher than
false negative rate in our experiments. That is exciting
because we expect a lower false negative rate.

PERFORMANCE ANALYSIS

In this section, we focus on performance when applying
the classification model on the end user computer. The
performance to process one unknown executable is
determined by the following factors: Capturing
instruction sequences; Generating logic assembly;
Counting the occurrence of instruction associations in
feature set to generate testing features; Applying
classification model.

Unlike system call, instruction sequences generate fast
and at a stable rate. On our test computer, we generate
around 6,000 instruction sequences in 1 second under
Ollydbg. That is enough for the input for our classifier.
This is the one major advantage over system call
approach, which takes time to get enough system call
traces.

Generating logic assembly consists of three phases. In
the first phase, we need to sort the instruction sequences
according to their virtual address. This could take up to

O(nlogn) to finish. In the second phase, we mark jump
destination using one linear scan of all instructions,
which takes O(n). Maintaining different incarnations
requires a memory map to remember the instruction and
incarnation of each virtual address. Every instruction
takes linear time to check this memory map, so this
additional task will not increase the order of the overall
processing time. Finally, we traverse the sorted
instruction list to output basic blocks, which takes O(n).
So the overall time complexity in logic assembly
generation is O(nlogn).

Generating testing features requires counting the fre-
quency of L features. Suppose average basic block
contains k instructions, thus we have average n/k basic
blocks. For every basic block, we will do a search for
each one of L features.

Different types of instruction association use different
approach to search inside a basic block. For type 1
instruction association, we use an occurrence bit for
every instruction in the association, if all bit is on, then
the basic block contains that instruction association. For
type 2, we construct a finite state machine (FSM), and
scan the basic block from the beginning. If we
encounter an instruction matching the state in FSM, we
advance the state of FSM, and begin matching the next
instruction. For type 3, it is similar to a substring search.
All these three types of search requires only one linear
scan of the basic block, makes the bound of O(k).

We can calculate the processing time of testing feature
generation as the multiply of the above factors. So this
step takes (search time per feature per block)* (feature
number) * (basic block number) = O(n/k*k*L) = O(nL).

The time complexity to apply a classification model is a
property of specific classification model. For C4.5
decision tree, the applying time complexity is
proportional to the depth of the tree [27], which is a
con-stant at the applying time. SVM takes O(L) to apply
the model on a specific sample [31].

Based on the discussion above, we conclude that the
time complexity to process an unknown executable is
bounded by max (O(nlogn), O(nL)), in which n is the
number of instructions captured, L is the number of
features.

In our experiment, processing instructions captured in 1
second, for which n≈ 6000, the calculation time is
usually less than 3 seconds. This suggests that this
approach can be used in practice.

CONCLUSION

In this paper, we have proposed a novel malicious code
detection approach by mining dynamic instruction
sequences and described experiments conducted against
recent Win32 viruses.

198

Experimental results indicate that the proposed data
mining approaches can detect malicious codes reliably
even for the unknown computer viruses. The best
classification rate on testing dataset is 93.0%. The
performance in measure of time is acceptable in
practical usage.

Compared with other approaches, instruction associa-
tion deal with the virus code directly and is robust to
me-tamorphism.

We also plan to build an end user simulator based on
the best data mining model. The simulator will run the
unknown executable inside a controlled environment,
capture initial dynamic instruction sequences and make
decision based on them.

REFERENCES

[1] Microsoft Antimalware Team , “Microsoft Security Intelligence
Report”, Volume 3, 2007,
http://www.microsoft.com/security/portal/sir.aspx

[2] C. Nachenberg, “Computer virus-antivirus coevolution”,
Communications of the ACM, Volume 40 , Issue 1, pp:46–51, 1997

[3] P. Sz¨or and P. Ferrie, “Hunting for metamorphic”, 11th
International Virus Bulletin Conference, Prague, Czech Republic,
2001

[4] Jeffrey O. Kephart, William C. Arnold, "Automatic Extraction of
Computer Virus Signatures", 4th International Virus Bulletin
Conference, Jersey, Channel Islands, 1994.

[5] Stuart Staniford, Vern Paxson, Nicholas Weaver, "How to 0wn the
Internet in Your Spare Time", 11th Usenix Security Symposium,
San Francisco, USA, 2002

[6] F. Cohen, “Computational Aspects of Computer Viruses”,
Computers & Security, volume 8, pp:325-344, 1989

[7] William Arnold, Gerald Tesauro, "Automatically generated Win32
heuristic virus detection", 10th International Virus Bulletin
conference, Orlando, FL, USA, 2000

[8] InSeon Yoo, "Visualizing windows executable viruses using self-
organizing maps", Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, Fairfax, VA,
USA, 2004

[9] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J.
Stolfo, "Data Mining Methods for Detection of New Malicious
Executables", Proceedings of IEEE Symposium on Security and
Privacy, Oakland, CA, USA, 2001

[10] Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan,
"Detection of New Malicious Code Using N-grams Signatures",
Proceedings of the Second Annual Conference on Privacy,
Security and Trust (PST'04), pp: 193-196, Fredericton, New
Brunswick, Canada, 2004

[11] Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan, “N-
Gram-based Detection of New Malicious Code”, Proceeding of the
28th Annual International Computer Software and Applications
Conference (COMPSAC’04), Hong Kong, China, 2004

[12] Kolter, J.Z., & Maloof, M.A., "Learning to detect malicious
executables in the wild", In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp:470-478. New York, NY, 2004.

[13] Sung, A.H et al “Static analyzer of vicious executables (SAVE)”,
20th Annual Computer Security Applications Conference, Tucson,
AZ, USA, 2004

[14] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song,
Randal E. Bryant, "Semantics-Aware Malware Detection", IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 2005

[15] Mihai Christodorescu, Somesh Jha, "Static Analysis of Executables
to Detect Malicious Patterns", 12th USENIX Security Symposium,
Washington DC, USA, 2003

[16] Christopher Kruegel et al, “Static Disassembly of Obfuscated
Binaries”, Proceedings of the 13th conference on USENIX Security
Symposium, San Diego, CA, USA, 2004

[17] Cullen Linn et al, “Obfuscation of Executable Code to Improve
Resistance to Static Disassembly”, Proceedings of the 10th ACM
conference on Computer and communications security,
Washington D.C., USA, 2003

[18] B. Schwarz, S. Debray, G. Andrews, "Disassembly of Executable
Code Revisited," wcre, p. 0045, 9th Working Conference on
Reverse Engineering, Richmond, Virginia, USA, 2002

[19] Bayer, U., Kruegel, C., Kirda, E, “TTAnalyze: A Tool for Analyzing
Malware”, 15th Annual Conference of the European Institute for
Computer Antivirus Research, Hamburg, Germany, 2006

[20] Steven A. Hofmeyr et al, ”Intrusion detection using sequences of
system calls”, Journal of Computer Security, Volume 6 , Issue 3,
pp:151-180, 1998

[21] Wenke Lee and Salvatore J. Stolfo, “Data Mining Approaches for
Intrusion Detection”, 7th USENIX Security Symposium, San
Antonio, Texas, USA, 1998

[22] Warrender, C et al, “Detecting intrusions using system calls:
alternative data models”, Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, USA, 1999

[23] Tony Lee, Jigar J. Mody, “Behavior Classification”, 2006,
http://blogs.technet.com/antimalware/archive/2006/05/16/42
8749.aspx

[24] http://www.ollydbg.de/
[25] Md. Enamul. Karim et al, “Malware Phylogeny Generation using

Permutations of Code”, Journal in Computer Virology, Volume 1,
Numbers 1-2, 2005

[26] Rakesh Agrawal, Ramakrishnan Srikant, "Fast Algorithms for
Mining Association Rules", Proc. 20th International Conference of
Very Large Data Bases, VLDB, Santiago de Chile, Chile, 1994

[27] J.R.Quinlan, “C4.5:Programs for Machine Learning”, Morgan
Kaufmann Publishers Inc, 1993

[28] http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[29] http://vx.netlux.org
[30] Jiawei Han , Jian Pei , Yiwen Yin, “Mining frequent patterns

without candidate generation”, Proceedings of the ACM
SIGMOD international conference on Management of data, Dallas,
Texas, USA, 2000

[31] Vladimir Vapnik, “Statistical Learning Theory”, John Wiley &
Sons, 1998

[32] http://research.microsoft.com/sn/detours/
[33] Breiman L, "Random Forests", Machine Learning Volume 45, pp:5-

32, Kluwer Academic Publishers, 2001
[34] http://www.isotf.org/zert/
[35] John Shawe-Taylor & Nello Cristianini, "Support Vector

Machines", Cambridge University Press, 2000

199

MIAT-WM5: FORENSIC ACQUISITION FOR WINDOWS MOBILE POCKETPC

Fabio Dellutri, Vittorio Ottaviani, Gianluigi Me

Dip. di Informatica, Sistemi e Produzione - Università degli Studi di Roma “Tor Vergata”
Via del Politecnico 1, 00133 Rome, Italy

Email: {dellutri,ottaviani,me}@disp.uniroma2.it

KEYWORDS
Mobile Forensics, Data Seizure, PDA, PocketPC, Win-
dows Mobile

ABSTRACT
A PocketPC equipped with phone capabilities could be
seen as an advanced smartphone, providing more com-
putational power and available resources. Even though
several technologies have emerged for PDAs and Smart-
phones forensic acquisition and analysis, only few tech-
nologies and products are capable of performing foren-
sic acquisition on PocketPC platform; moreover they rely
on proprietary protocols, proprietary cable-jack and pro-
prietary operating systems. This paper presents the Mo-
bile Internal Acquisition Tool for PocketPC devices. The
approach we propose in this paper focuses on acquir-
ing data from a mobile device’s internal storage memory,
copying data to an external removable memory (like SD,
mini SD, etc.). Such task is performed without the need
of connecting the device to PC. Thanks to this, foren-
sic operators could avoid to travel with luggage plenty of
one-on-one tools for every single mobile device. Finally,
we will show some experimental results, comparing this
methodology with standard products on real world de-
vices.

INTRODUCTION
The mobile phone can be considered the ultimate dis-
ruptive technology: in fact, like telephony, radio, tele-
vision, and the Internet, mobile phones are dramatically
changing nearly every aspect of daily life, both inside
businesses and in the daily lives of individuals, providing
more applications and collecting more private data. The
enriched capabilities of new smartphones (118 million
in 2007, Canalys), such as multi-connectivity (HDSPA,
Bluetooth, IR, WLAN) and multimedia recording, make
the content of the mobile device memory very interest-
ing from a criminal investigation perspective. In par-
ticular, the growing prominence of forensic sciences,
in the investigation chain, led to a broad use of foren-
sic tools to acquire mobile phone memory content, to
witness the evidence of a crime. However, as rule of
thumb, the crime-scene usually offers many different mo-
bile phone/smartphone models, causing the forensic op-
erators to be overwhelmed by using the one-on-one con-

nectors for every single mobile device. In fact, current
acquiring tools, adopted by forensic operators, extract the
internal memory remotely (typically via USB), with pro-
prietary mobile phone connectors: a forensic tool run-
ning on a laptop is connected with the target device and,
using the OS services, it extracts the data like SMS,
MMS, TODO list, pictures, ring tones etc. This approach
has the advantage

• to minimize the interaction with the device and

• to automate the procedure of the interpretation of
the seized data.

However, the main disadvantage is the partial access of
the file system, which relies on the communication pro-
tocol. As discussed above, since many protocols are pro-
prietary, we can not see how many effects the data ex-
changed have on the memory status. For this reason,
we have developed a tool to acquire mobile phone mem-
ory by a SD/MMC (Secure Digital / MultiMediaCard)
memory inserted in the available mobile phone SD/MMC
slot, called MIAT (Mobile Internal Acquisition Tool) for
Symbian (Me et al., 2008). In the fourth quarter of
2007, Canalys estimated that Symbian had a 65% share
of worldwide converged device shipments, ahead of Mi-
crosoft on 12% and RIM on 11% (Canalys, 2007). In this
paper we present the MIAT for the PocketPC platform
running Windows Mobile (MIAT-WM5), which cannot
be considered, roughly, as a porting because of the differ-
ences between Symbian and Windows Mobile operating
systems. For this reason, the MIAT-WM5 takes advan-
tage of Windows Operating system characteristics (e.g.
filesystem, memory management etc) to maximize the
outcome of the acquisition phase for Windows devices.

STATE OF ART
The term PocketPC refers to a Microsoft specification
that sets various hardware and software requirements for
a handheld-sized computer (PDA, Personal Digital As-
sistant) that runs the Windows Mobile operating system
(Wikipedia, Pocket PC definition). As reported in Ta-
ble 1, many tools perform forensic operations on a PDA.
However, as Ayers et al. assert in (Ayers et al., 2007,
2004, 2005), the only NIST certified tool on a Pock-
etPC is Paraben’s PDA Seizure. Such tool performs data
seizure of internal memory in a remote way. Actually, the

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

200

Table 1: PDA forensic tools
Palm OS PocketPC Linux PDA

pdd Acquisition NA NA
Pilot-Link Acquisition NA NA
PDA Seizure Acquisition,

Examination,
Reporting

Acquisition,
Examination,
Reporting

NA

EnCase Acquisition,
Examination,
Reporting

NA Examination,
Reporting

POSE Examination,
Reporting

NA NA

dd NA NA Acquisition

forensic tool is connected to a device by cradle or USB
cable and, through the Microsoft’s ActiveSync protocol,
it extracts data such as user’s files, call logs, SMS, MMS,
TODO list, etc. This approach has the advantage to min-
imize the interaction towards the device and to automate
the process of seized data interpretation. The main dis-
advantage relies on the protocol closeness: we are not
able to measure any memory alteration caused by data
exchange. Moreover, to perform the acquisition process,
PDA seizure degrades the evidence putting a dll file in
the device’s file system.

POCKETPC INTERNAL MEMORY AND STOR-
AGE ARCHITECTURE
In Windows Mobile 2003 PocketPC and earlier, device’s
memory was split in two sections: a ROM section, con-
taining all operating system core files, and a RAM sec-
tion aimed in keeping the user storage (Storage Mem-
ory) and the memory space for running applications and
their data (Program Memory). The user can choose the
amount of memory to be reserved to Storage Memory
and then to the Program Memory. The RAM chip was
built on a volatile memory scheme, so a backup bat-
tery was required to keep the RAM circuitry powered
up, even if the device was just suspended. In case bat-
tery power supply went down, all user’s data were lost.
Such scenario forced user to recharge battery within a
time limit of 72 hours (as mandatory by Microsoft to de-
vices manufacturers).

Since Windows Mobile 5, memory architecture was
redesigned to implement a non-volatile user storage.

64M

RAM

64M

ROM

32M 32M

Core OS Stuff User Storage

Memory sizes reported could change among different PPC models.

Figure 1: Windows Moble 5.0 memory architecture.

Currently, the memory is split in two section (see Fig-
ure 1): the RAM is aimed to hold running processes
data, whereas the ROM keeps core OS code and libraries
(called modules), the registry, databases and user’s files.
Such memory, also called Persistent Storage and con-
tained within a flash memory chip, can be built using
many different technologies (Santarini, 2005):

• XIP model, based on NOR memory and volatile
memory, this technology enables device to store
modules and executables in XIP (execute-in-place)
format and allows the operating system to run appli-
cations directly from ROM, avoiding to copy them
first in the RAM section. NOR memory has poor
write performance.

• Shadow model, which boots the system from NOR
and uses a NAND for the storage. This model is
power-expensive, because the volatile memory re-
quires to be constantly powered on.

• NAND store and download model, which re-
duces costs replacing NOR with OTP (one-time pro-
grammable) memory model.

• Hybrid store and download model, which mixes
SRAM and NAND, covering them with a NOR-like
access interface (to support XIP model).

Windows Mobile 5 and above place the great part of
the applications and system data in the Persistent Stor-
age. Core OS files, user’s files, databases and registry
are seen by applications and users in the same file system
tree, which is hold and controlled by the FileSys.exe pro-
cess. Such process is also responsible for handling the
Object Store, which maps objects like databases, registry
and user’s files in a contiguous heap space. The Object
Store’s role is to manage the stack and the heap mem-
ory, to compress and to expand files, to integrate ROM-
based applications and RAM-based data. For a com-
prehensive explanation about how Windows Mobile uses
the Object Store and manages linear flash memory, see
(Microsoft, Linear Flash Memory Devices on Microsoft
Windows CE.) and (Microsoft, The Windows CE 5.0 Ob-
ject Store.).

The strategy for storing data is based on a transactional
model, which ensures that store is never corrupted after
a power down while data is being written. Finally, the
Storage Manager manages storage devices and their file
systems, offering a high-level layer over storage drivers,
partition drivers, file system drivers and file system fil-
ters.

OUR METHODOLOGY

The approach we propose in this paper focuses on acquir-
ing data from a mobile device’s internal storage memory,
copying data to an external removable memory (like SD,
mini SD, etc.). Such task is performed without the need

201

Start

End
Internal memory collection

and removable support
extraction

turn it on

Put the
device in a

Faraday
cage

Is there a
memory card
plugged-in?

Remove the
memory

card

Make Memory
card for seizure
and insert it in

Is the device
turned on?no

yes

yes

no

Figure 2: Data collection workflow

of connecting the device to PC. Thanks to this, foren-
sic operators could avoid to travel with luggage plenty of
one-on-one tools for every single mobile device.

The complete data seizure process is shown in Figure
2. In order to acquire the memory content of a GSM,
Bluetooth or Wi-Fi enabled mobile device, it is manda-
tory to shield the device with a Faraday cage (Leyland,
1992). Indeed, new incoming calls, SMS, e-mails, Blue-
tooth activity, connection status changes or GSM cell
switch, could trigger events which may modify some
file system’s objects. Unlike old Symbian smartphones,
where we were forced to remove battery supply to re-
move the memory card, in a standard PocketPC it is
possible to plug-in a memory card (typically an SD)
while the device is powered-on (hotplug). This is a great
chance for collecting data which, otherwise, could be
altered if the device was turned off before the seizure
process. Therefore, we have to check first if a mem-
ory card is already plugged, and replace it with a mem-
ory card containing MIAT-WM5. Moreover, if the de-
vice is turned off, now it can be started. MIAT-WM5
can be set as autorunnable, to avoid to start applications
like fexplore.exe to navigate through the filesystem and
to launch the seizure application; indeed it is important to
run as few applications as we can, to avoid locking prob-
lems and changes in the file system triggered by other
processes. Anyway, MIAT-WM5 kills all non-necessary
processes running on the system in order to avoid lock
problems. MIAT-WM5 performs a hashing of each file
before and after the copy, to ensure acquired image in-
tegrity. The report containing file hashes is saved in a log
file. Data stored in the original memory card can be ac-
quired using a MMC or SD reader (USB or integrated)
and a byte stream imaging tool (like DD): binary data are
read from source, then stored as an image file, represent-
ing all the single bytes, including file system’s metadata.
After that, it is possible to analyse the file allocation table
to recover deleted data. When internal memory seizure

has been done, SIM card could be removed and analysed
with specific tools (Oxygen Software, Forensic; Casadei
et al., 2005).

IMPLEMENTATION DETAILS
We have chosen to develop the application using a native
C++ approach, fulfilling the requirement of having a tool
to be launched from an external memory card, without
the need of a pre-installed runtime environment (like java
virtual machine), neither the need to install the tool on
the device. The application runs in stand-alone mode,
and it does not require any third party’s dll. Since the tool
uses the standard Windows Mobile APIs to access the file
system (like Open, Read and Write, FileCopy), we can
reasonably think that these APIs will not change in future
versions of OS: then the forward compatibility can be
assured. In Algorithm 1 is depicted the pseudo-code of
the seizure process, that starts after the main application
killed all the other non-vital running processes.

Algorithm 1 Seizure
Input: A path p.
Output: none.

for all objects obj (files and directories) in p do
if obj is a directory then

Create a directory named p in the SD Card
Recursively call Seizure(p/obj)

else if obj is a file then
Compute MD5 hash of obj
Copy obj in path p on the SD Card
if obj has not been copied then

Access to obj with CEDB APIs
if obj could be accessed then

recreate a similar database in path p on the
SD Card

end if
end if
Compute MD5 hash of the copied obj on the SD
Card

end if
end for

Such algorithm performs two main tasks:

• the copy task, which copies all internal memory’s
files of the mobile device on the memory card;

• the hash task, which ensures the integrity of the
copied files and allows to discover which files have
been modified during the seizure process.

The Seizure algorithm works using APIs like CopyFile
Open Close, and it copies recursively every internal file
system entry on the memory card. This task preserves
the directory structure, copying files according to their
original position. The hash task computes the MD5 hash
of each file found in the device internal memory. Hashes
are written in a log file saved in a separate directory. The

202

Table 3: MIAT-WM5 and PDA seizure comparison, and
their hashes consistency

File Paraben MIAT
/Documents And Settings/default.vol − ?
/Documents And Settings/system.hv − −
/Documents And Settings/default/user.hv − −
/Windows/*.dll − −
/mxip notify.vol

√
?

/cemail.vol
√

?
/mxip system.vol

√ √

/mxip lang.vol
√ √

/pim.vol ?
√

− file not copied
? file copied but its hash does not match√

file copied and hash matches

hash task can be launched as a separate function, and it
surfs the whole filesystem to compute hash of every files.

The Seizure algorithm invokes the hash function be-
fore and after the copy of every single file, allowing to
understand if changes happen during the copy from the
internal filesystem to the Storage Card.

As reported in Section “POCKETPC INTERNAL
MEMORY AND STORAGE ARCHITECTURE”, Win-
dows Mobile places OS’s stuff in a lot of file-like ob-
jects in the same file system seen by the user (un-
der /Windows directory). Most of these files are in-
accessible by the standard file system APIs because
they are objects that are in XIP format: most of
the headers are removed and the addresses are fixed
up so that the programs are able to run with no
need to be loaded into RAM first. The binary has
been stripped down and customized for that particu-
lar device (Yost, 2007). Such files are also flagged
with file attributes like FILE ATTRIBUTE INROM
and FILE ATTRIBUTE ROMMODULE. Our application
skips these files: there is no reason to look for a method
to access such files because they are firmware’s modules
and they could be replaced with new ones only by an
advanced user (using the ROM flashing technique - e.g.
if she is willing to upgrade her firmware with a new ver-
sion of the operating system or she want to modify things
like bootsplash). Moreover, there is another set of files
that cannot be accessed by standard APIs: these files are
database objects locked by operating system processes
which cannot be killed. We reach to access their data us-
ing CEDB APIs and we are able to recreate such files in
the external memory card. In Table 2 it is shown where
most relevant data about user and system are stored in the
file system.

EXPERIMENTAL RESULTS

The working approach of MIAT-WM5 and Paraben is
quite different. MIAT-WM5 scans the filesystem of the
PocketPC saving data in the external memory card, as
Paraben seems to get data from ROM memory at a lower
level than MIAT-WM5. There are some differences
between Paraben and MIAT-WM5, first of all Paraben

Figure 3: MIAT-WM5 screenshot after run a data seizure

needs a computer to seize data from a mobile device, as
it is a Windows application. As described above, MIAT-
WM5 does not need any other device to run: the opera-
tor needs only an external memory card pluggable in the
device. Looking at the results of some tests done on a
physical HTC device and on a emulated one (on a Win-
dows XP computer), Paraben and MIAT-WM5 seems to
extract the same files. Some differences rely on hashes of
some files: Paraben seems to modify some files, such as
pim.vol, and it preserves others, but, as its source code is
not available, we can not explain what happens. MIAT-
WM5 modifies some files, because it access their data
through database APIs and writes a new file containing
same data, with a resulting hash different from the orig-
inal (see Table 3). As described before, OS’s core files
are impossible to be extracted both for MIAT-WM5 and
Paraben. Another relevant consideration to be done is
that Paraben reach to recover something from deleted
files (just erased before the seizure), but in all the experi-
ments these files looked like zero-padded. That suggests
that Windows Mobile replaces erased block sectors very
quickly, probably because the memory size is too short to
preserve them for the entire seizure time. In the testing
phase, we used a PC AMD Athlon64 X2 Dual 1GB Ram
and a QTEK9000 PDA (HTC Universal), equipped with
a Kingston SD 2GB. On such hardware, seizure times
between the two solutions are quite the same: Paraben’s
time depends only on how many files resides on the in-
ternal storage; MIAT-WM5’s time relies both on files
amount and on external memory access time.

Thanks to its hashing characteristics, MIAT-WM5 was
also useful to enumerate all file system’s changes when
device sustains events like simple reset, on-line/off-line
mode change or SIM card removal. Such results are
shown in Table 4. Some files’ hashes are impossible to be
computed (“-” symbol) because those files are locked and
the system does not allow one to perform read operations
on such files.

203

Table 2: Windows Mobile 5.0 relevant files
Filename Location Description
System.hv /Documents And Settings/system.hv System registry hive.
User.hv /Documents And Settings/default/user.hv User registry hive for default user.
Default.vol /Documents And Settings/default.vol Object store replacement volume for persistent CEDB databases.

This file contains MSN contacts
Mxip system.vol, Mxip lang.vol,
Mxip notify.vol, Mxip initdb.vol

/ Metabase volumes, including language-specific data and storage
for notifications.

Cemail.vol / Default SMS and e-mail storage.
Pim.vol / Personal Information Manager (PIM) data, such as address book,

schedules, SIM entries, call logs.

Table 4: File system changes before and after a event and
files lock status

File Before After
Device reboot
/Windows/VSDApp.bin � 2 2

/History.txt � 2 2

/mxip system.vol - 2 2

/mxip lang.vol - � 2

From on-line to off-line mode
/Windows/Profiles/guest/Temporary Internet
Files/ Content.IE5

- 2 �

/Windows/Profiles/guest/Cookies/index.dat - 2 �
/Windows/Profiles/guest/History/History.IE5/
index.dat

- 2 �

SIM card removal
/mxip system.vol - � 2

/mxip lang.vol - � 2

/History.txt � 2 2

/Windows/VSDSIMInfor.bin ⊗ 2 ⊗
/Windows/VSDApp.bin � 2 2

/Windows/Profiles/guest/Cookies/index.dat - � 2

/Windows/Profiles/guest/History/History.IE5/
index.dat

- � 2

/Windows/Profiles/guest/Temporary Internet
Files/Content.IE5

- � 2

/Windows/Start Menu/Programmi/ SIM
i.TIM.lnk

⊗ 2 ⊗

�Modified in the transition
⊗ Disappear after the change
2 Unlocked
� Locked
- Unavailable

CONCLUSIONS
In this paper we proposed an alternative methodology
to seize data from PocketPC devices, based on our be-
lief that forensic model should be opened and verifiable.
Therefore, MIAT-WM5 could be proposed as an open-
source software, in order to give it transparency and ver-
ifiability.

Currently we are working on combining files copy
with a full internal memory dump. With this approach,
we will ensure to extract a complete and consistent snap-
shot of the system. This approach could involve a device-
dependent code because each manufacturer uses a dif-
ferent memory technology (as discussed above in Sec-
tion “POCKETPC INTERNAL MEMORY AND STOR-
AGE ARCHITECTURE”), therefore it implements its
own low level storage SDK (needed to find the storage
addresses range into the ROM).

Moreover, we are improving the application design to
support Windows Mobile 6.0 as well.

ACKNOWLEDGEMENTS
We wish to express our thanks to Giuseppe F. Italiano,
who reviewed the draft of this document.

REFERENCES

Me, G., Rossi, M. (2008). Internal forensic acquisition for mo-
bile equipments. 4th Int’l Workshop on Security in Systems
and Networks (SSN2008), Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS),
2008, IEEE Computer Society Press, TO APPEAR.

Canalys.com (2007). Smart mobile device ship-
ments hit 118 million in 2007, up 53% on 2006.
http://www.canalys.com/pr/2008/r2008021.htm.

Wikipedia. Pocket PC definition
http://en.wikipedia.org/wiki/Pocket PC

Ayers, R, Jansen, W, Moenner, L, Delaitre, A. (2007). Cell
Phone Forensic Tools: An Overview and Analysis Update.
NISTIR 7387, March 2007

Ayers, R, Jansen, W. (2004). PDA Forensic Tools: An Overview
and Analysis. NISTIR 7100, August 2004

Ayers, R, Jansen, W. (2005). An overview and Analysis of PDA
Forensics Tool. The International Journal of Digital Evi-
dence, 2005

204

Paraben’s Forensics Software Paraben Device Seizure.
www.paraben.com

Santarini, M. (2005) NAND versus NOR. EDN, October 13,
2005

Microsoft. File System Boot Process.
MSDN, msdn2.microsoft.com/en-us/library/
aa912276.aspx

Microsoft. Linear Flash Memory Devices on Microsoft Win-
dows CE.
Microsoft TechNet, www.microsoft.com/technet/archive/
wce/plan/flashce.mspx

Microsoft. The Windows CE 5.0 Object Store
MSDN, msdn2.microsoft.com/en-us/library/
ms885891.aspx

Leyland, W. J. (1992). Lightweight portable EMI shielding
container. United States Secretaty, The Navy US. OF. (US)
5136119 http://www.freepatentsonline.com/5136119.html

Oxygen Software. www.opm-2.com/forensic/

Casadei, F, Savoldi, A, Gubian, P. (2005). SIMbrush: an Open
Source Tool for GSM and UMTS Forensic Analysis. In pro-
ceedings of Systematic Approaches to Digital Forensic En-
gineering (IEEE SADFE 2005), pgg. 105-119, Taipei, TW,
7-9 November 2005.

Yost, S. (2007). Why can’t I copy programs out of Windows?.
http://blogs.msdn.com/windowsmobile/archive/2007/12
/29/why-can-t-i-copy-programs-out-of-windows.aspx

AUTHOR BIOGRAPHIES
FABIO DELLUTRI is a Ph. D. student in computer sci-
ence engineering at the Computer Science Engineering
Department, Università degli Studi di Roma “Tor Veg-
ata”. His interests include Web applications and OS se-
curity, mobile digital forensics and experimental algory-
thms. His email is dellutri@disp.uniroma2.it.

VITTORIO OTTAVIANI is a Ph. D. student in
computer science engineering at the Computer Sci-
ence Engineering Department, Università degli Studi
di Roma “Tor Vergata”. His interests include web
applications mobile and OS security, mobile dig-
ital forensics and GIS applications. His email is
ottaviani@disp.uniroma2.it.

GIANLUIGI ME, Ph. D., is an adjunct professor of
Computer Security at the Università degli Studi di Roma
“Tor Vergata”. He holds a strong experience in managing
training for law enforcement high tech crime units and
serves as a member of the advisory board of the Interna-
tional Journal of Electronic Security and Digital Foren-
sics. His research interests include mobile computing ap-
plications, digital forensics, electronic/mobile payments,
and game theory. He is a professional member of the
IEEE. His email is me@disp.uniroma2.it.

205

A proposal for securing a large-scale high-interaction honeypot

J. Briffaut, J.-F. Lalande, C. Toinard
Laboratoire d’Informatique Fondamentale d’Orléans

Université d’Orléans, rue Léonard de Vinci
45067 Orléans, France

{jeremy.briffaut,jean-francois.lalande,christian.toinard}@ensi-bourges.fr

KEYWORDS

High-Interaction Honeypot, Attack Monitoring, IDS

ABSTRACT

This paper presents the design of a secured high-
interaction honeypot. The challenge is to have a honey-
pot that welcomes attackers, allows userland malicious
activities but prevents from system corruption. The hon-
eypot must be scalable to authorize a large amount of
malicious activities and to analyze those activities effi-
ciently. The hardening of the honeypot is proposed for
two kinds of host. The first class prevents system corrup-
tion and has never to be reinstalled. The second class as-
sumes system corruptions but easy reinstallation is avail-
able. A first cluster enables to deploy a wide range of
honeypots and security sensors. A second cluster pro-
vides an efficient auditing facility. The solution is totally
based on open source software and has been validated
during one year. A statistical analysis shows the effi-
ciency of the different sensors. Origin and destination
of attacks are given. Moreover, the complementarities
of the sensors are discussed. Ongoing works focus on
recognition of complex malicious activities using a cor-
relation grid.

INTRODUCTION

This paper proposes an architecture for securing high-
interaction honeypots. The main objective is to welcome
attackers and to provide different operating systems. The
difficulty of high-interaction honeypot is that hackers can
gain a complete control of the system. So, the risk is
high that attackers use the honeypot to carry out se-
vere attacks. Deploying high-interaction honeypot is a
challenging research activity and few works address this
problem with real operating systems and services. Clas-
sical approaches use low interaction honeypot but they
limit the malicious activities. That is why high interac-
tion is required. Currently, they need frequent reinstal-
lations and advanced monitoring of the activities. The
main objective is to prevent high-interaction honeypot
from frequent reinstallation. The second objective is to
efficiently monitor the malicious activities and to main-
tain a cluster of operating systems connected to public
Internet addresses.

Usually low-interaction honeypots do not authorize
the attacker to gain a login shell on the real system. In
low-interaction honeypot all the services are emulated
and even the login shell is emulated. The main draw-
backs of these low-interaction honeypots are: the at-
tacker can discover that he is connected to a fake system;
the services are partially emulated; the vulnerabilities of
these services are missing; host based attacks are impos-
sible to capture.

A high interaction honeypot is required to capture host
based attacks and to offer the vulnerabilities of the target
system. As each operating system, distribution, service,
software can contain different vulnerabilities according
to their version, the deployment of a large heterogeneous
cluster of honeypots is required to increase the number
of possible attacks.

As attackers have a direct access to a real system and
can exploit the vulnerabilities of the target system, they
can gain administrator privileges and compromise easily
the system. The main problems related to high interac-
tion honeypots are: 1) An attacker can exploit a vulner-
ability in order to obtain administration privileges and
stop the monitoring mechanisms; 2) The operating sys-
tem can be stopped or broken; 3) The attacker can use
the honeypot to attack other hosts on the Internet; 4) A
large number of operating systems have to be deployed
and monitored to offer a large amount of vulnerabilities;
5) The malicious activities generate a large amount of
traces and analysis become difficult; 6) The volume of
data, that has to be stored, is even larger when auditing
system calls and when using a great number of comple-
mentary sensors.

The easiest solution to prevent the preceding problems
is to reinstall frequently the operating system. First, it is
not feasible for a large scale honeypot. Second, attacks
are lost and monitoring is corrupted. Finally, the decision
of reinstalling the system requires external analysis and
is complex. Moreover, an attacker can discover that the
operating system has been cleaned between two connec-
tions and possibly can understand that he is connected to
a honeypot.

In this paper, a clustered honeypot is proposed that
offers vulnerable systems accessible by public Internet
addresses. Our high interaction honeypot provides two
types of hosts, 1) secure hosts that let the attackers use
the target system but avoid the compromising of the sys-

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

206

tem and 2) classical systems with strong monitoring and
reinstallation facilities. A second cluster allows collect-
ing and analyzing the activities. Monitoring is available
at various host levels (i.e. from system call level to shell
level) but also at various network levels. The cluster is
safe since it minimizes the possibility of using the hon-
eypot to attack outside hosts.

STATE OF THE ART

Two types of honeypots are distinguished in the litera-
ture. The low level honeypots emulate a limited part of
the services, mainly the network protocols. It allows to
compute statistical results and to model the attack activ-
ities (Kaaniche et al., 2006). On the other hands, the
high-interaction honeypots deploy real operating systems
that allow capturing more complete information. Some
high-interaction honeypots use VMware to emulate the
host (Alata et al., 2006) but hiding the hypervisor is very
hard to achieve: attackers may give up their attacks be-
cause the operating system will probably be reinstalled.
For the papers that focus on the low interaction honey-
pots, or on the exploit of services (Diebold et al., 2005),
the problem is simpler than ours since there is less secu-
rity aspects addressed.

In different white papers about honeypots (Nguyen
et al., 2005; Baumann and Plattner, 2002), the differ-
ent generations of honeypots and their architectures are
described. Our proposed honeypot is part of the sec-
ond generation of honeypots described by (Nguyen et al.,
2005). Several toolkits are presented as the well known
Honeyd (Provos, 2004) which is used by Leurre.com, a
distributed honeypot. These white papers cover the net-
work configuration, host sensors and the modus operandi
for collecting data at the date of year 2003.

The problem of configuring the honeypots is difficult
because one have to find a trade-off between a real pro-
duction host and an adaptive honeypot that let the attack-
ers enter the system. If the honeypots are too easy to en-
ter, the attacker could guess that the host is not a produc-
tion host. On the other way, no results can be obtained
if the honeypot is hidden or too hard to attack. A large
variety of papers try to propose new kinds of honeypots
that solve parts of this problem.

Paper (Hecker et al., 2006) presents how to configure
honeypots dynamically based on network scans. It im-
proves the initial work of Hieb and Graham to adapt the
honeypot behavior (the opened ports) to the detected at-
tacks. In (Kuwatly et al., 2004) the authors tries to build
a honeypot that can be plugged into a local network and
that find automatically unused IP. These works allow a
system administrator to deploy a honeypot according to
his network configuration and to let the honeypot evolves
and adapts the services with the requests of attackers.
These goals are crucial when deploying some honeypots
on a large scale network with thousands of hosts but the
choice of the operating system and the security of this op-
erating system remains an opened question that we want

to address with this paper.
Some papers address the techniques to detect that a

host is a honeypot (Holz and Raynal, 2005; Innes and
Valli, 2005). These techniques are more or less related to
kernel analysis that allows detecting a User-mode Linux
or a VMware host. This is precisely these papers that
show that deploying real operating systems with real ser-
vices is better for capturing attackers, but is possibly
more dangerous for other hosts on the network.

In (Anagnostakis et al., 2005), the authors propose an
advanced hybrid type of honeypots: shadow honeypots.
They analyze the network traffic in order to redirect sus-
picious packets to a shadow honeypot. This shadow hon-
eypot is a replication of the protected software that can
be used to analyze the received attacks. These types of
solution are complex to deploy and our purpose is to col-
lect more information by letting intruders attack directly
the host.

HIGH INTERACTION HONEYPOTS
The figure 1 describes the global architecture of the clus-
tered high interaction honeypots. The architecture is sep-
arated in four parts: the Internet access management, the
clustered honeypot, the cluster for auditing and storage,
and finally the correlation grid. This section details each
part of the proposed architecture and the objectives, the
installed software and their configuration. Intentionally,
focus is done on technical aspects to make possible re-
producing this clustered architecture.

Network management
The honeypot hosts are directly connected on the Inter-
net. Each honeypot has a public IP. All the connections
from Internet to the honeypots are forwarded through a
Honeywall host. The goals of the Honeywall are the fol-
lowing: 1) It limits the bandwidth usage from the inside
to the outside to 10MB/hour; 2) It limits the number of
TCP connection from the inside to the outside to 100 con-
nections per hour; 3) It limits the bandwidth usage from
the outside to the inside to 100MB/hour.

The Honeywall has two network interfaces in bridge
mode (no IP, just forwarding packets) and this way can-
not be seen by intruders. Limitation of bandwidth and
connections is achieved by iptables rules in order to limit
the impact of these possible attacks: 1) Denial of Ser-
vice attacks (DOS) from the inside to the outside; 2) Port
scans from the inside to the outside; 3) Denial of Service
attacks (DOS) from the outside to the inside.

There is no firewall blocking some ports or services
on the Honeywall host. Thus, the intruders see the hon-
eypots as frontal hosts on the Internet. Those honeypots
can be used to attack from the inside other hosts on Inter-
net but with very limited resources.

In order to analyze the network traffic outgoing from
the Honeywall, a hub replicates the packets to a network
analyzer host. This host contains a network Intrusion De-
tection System (Snort IDS) that analyzes the traffic and

207

Figure 1: Clustered high interaction honeypots architecture

possibly send alerts to the local OSSIM agent. It keeps
also a TCP dump (PCAP file) of all the incoming and out-
going network traffic. Traces and OSSIM alerts are sent
to the second cluster for auditing and storage. Two other
network IDS are installed in order to detect the operat-
ing system type of the attacker (P0F) and the services
(PADS). The analysis is passive and thus invisible from
the intruder side. The generated alerts are sent to the OS-
SIM agent.

The network analysis and the Honeywall are separated
because an attacker can possibly exploit a vulnerability
against one of the network IDS. This way, the network
analyzer can be compromised or disabled but cannot be
used as starting point to attack outside hosts because of
the limitation guaranteed by the Honeywall.

In the network management part of our architecture,
control of possible malicious network traffic is supported
and monitoring is available, using network IDS, that pro-
vides alerts and event data for the correlation phase.

Clustered honeypots
The second part of our architecture is the honeypot hosts.
Three kinds of honeypots are represented in figure 1: 1)
Mandatory Access Control enforced the security of the
operating systems (MAC) (Bell and La Padula, 1973); 2)
“Classical” hosts without MAC but Discretionary Access
Control systems (DAC) (Harrison et al., 1976); 3) Mi-
crosoft Windows operating system.

The MAC and DAC systems are deployed on clustered
hosts with five GNU/Linux distributions: debian, gen-
too, fedora and ubuntu. The Microsoft Windows systems
are: NT 4.0, 2000, 2003, XP. Each host has two network
interfaces, one with a public IP address and one with a lo-
cal address 172.30.3.x. This way, all the honeypot hosts
are connected to a local network that enables an intruder,
when connected on one of these hosts, to attack other
honeypots. No firewall is installed on the 14 honeypots.

Each GNU/Linux host has an OPENSSH modified ser-

Figure 2: IDS and tools monitoring host activities

vice that facilitates the open of sessions for the intruders:
when an attacker attempts to log on one of the honeypots
with an ssh brute force scan, our openssh service creates
randomly accounts with a probability of 1% using the
attempted login/password. It gives the intruder a real ac-
count on the system with a home directory. The created
account is persistent and authorizes the intruder to come
later with this login/password and to continue his attack.

In order to capture the activities of the intruders, sev-
eral host IDS and tools are deployed on the GNU/Linux
and Windows systems. These IDS monitor four types of
information sources: the system activities (system calls,
processes), the integrity of the file systems, the logs of
kernel and daemons, and the bash sessions. All these in-
formation are complementary and enable correlation be-
tween network and host data. On each host, the installed
IDS and tools are the followings: 1) Prelude-lml is a sys-
tem log analyzer that reports system activities (connec-
tions, daemon logs like apache, . . .). 2) OSSEC checks
the integrity of the system files, rootkit installation and
modification of the registry and logs. 3) OSSIM agent
collects the alarms generated by PIGA IDS and analyzes
system logs. 4) PIGA IDS is a policy based IDS that de-

208

tect violation of security properties (Blanc et al., 2006).
5) Syslog client forwards all kernel and system logs to
the Logger host. 6) Rpld captures the shell activities per-
formed by the attackers and allows to replay them.

On figure 2 we sum up the data used by each IDS (dot-
ted lines). All the collected alarms, logs, sessions are
sent to the next part of our architecture, the traces stor-
age clusters.

Traces storage
The hosts of the third part of the proposed architecture
are used to store and analyze the alarms and logs captured
on honeypots. The hosts are connected on the 172.30.3.0
network and protected by firewalls allowing only incom-
ing traffic. The opened ports are those used by the OSSIM
server, Prelude server, and syslog server (logger).

Three analysis frameworks are used in order to collect
all events and generate reporting alerts readable by hu-
mans: 1) OSSIM: it provides a framework to manage se-
curity information. It generates reports, aggregates alerts,
send incident tickets, . . . It stores the collected data into a
mysql server (possibly a clustered mysql). 2) Prelude: it
aggregates the collected information and enables to visu-
alize them on a website. All events are stored using the
IDMEF standard. A postegreSQL server is used (possible
a clustered postegreSQL). 3) Syslog (logger): it stores
all the syslog traces of the honeypots on a distributed file
system (LUSTRE).

All network and system events/alarms are stored and
can be visualized by an administrator. As the three
frameworks do not use the same standards, we needs this
three servers for the correlation phase. Another goal of
these servers is to prevent an attacker to delete the log/-
traces/activities generated on honeypots as the reported
events are transmitted in real time (it needs the time for
the daemon to send the information to the server).

Correlation
This last part of our architecture is used to visualize
the alarms and to test correlation algorithms between all
kinds of IDS alarms. Indeed, the main goal is to charac-
terize attacks using network IDS alarms, host IDS alarms,
system events logged in traces. These algorithms send re-
quest to the database of OSSIM, Prelude and syslog using
the private network 10.0.0.0. As the format of the events
is not standard, we merge them in a neutral format into
the database server used by our correlation algorithms.
These algorithms, not described in this paper, are writ-
ten in java and have high CPU and memory consumption.
These algorithms cannot be done in real time and use a
java grid to distribute the computation.

SECURITY OF HONEYPOTS
The main drawback of our architecture is to provide real
systems with vulnerabilities that possibly allow an at-
tacker to get administrator privileges. In this section we
details MAC and DAC hosts.

MAC hosts
With a MAC host, a policy guarantees that the root (staff
role) user does not have the privileges of the super ad-
ministrator (admin role). If an attacker exploits a vul-
nerability and becomes root, the policy limits his privi-
leges on the system as a normal user. The only way of
becoming super administrator is to exploit a kernel vul-
nerability or to attack the MAC mechanism (SELinux). In
this case, the system is compromised and have to be re-
installed using the PXE server. Nevertheless, during one
year of deployment, we never observed such an attack.

The main advantage of these hosts is that they are time
persistent. An attacker can come back later to finish an
attack whereas a reinstallation will suggest that the host
is a honeypot. Moreover attackers can explore the dif-
ferent home directories of other attackers and possibly
reuse/delete/download the uploaded scripts. All these
shell activities are logged by the Rpld server.

DAC hosts and modifications
This classical system can easily be compromised by an
attacker. When an user gets administrator privileges, the
host have to be reinstalled with the PXE server. The draw-
back of these honeypots is that they need more adminis-
trative tasks. Alerts have to be daily monitored and a de-
cision has to be taken to know when the system is “too”
compromised. We implemented a cron job that computes
the differences that appear during the time. When a hon-
eypot file differs from the corresponding file stored on
the PXE, an alert is sent by OSSEC integrity analyzer and
the difference is stored on the PXE SERVER for further
manual analysis.

Auto-installation
The PXE server contains boottp and a tftp server in order
to deploy fresh images of our distributions. It contains
Linux images, Debian, Gentoo, Fedora and Ubuntu with
and without SELinux MAC mechanism and Microsoft
Windows systems, NT 4.0, 2000, 2003, XP. This server is
used to reinstall a compromised honeypot using the PXE
protocol on the 172.30.3.0 network.

STATISTICAL RESULTS
The presented statistics aggregate activities from Febru-
ary 27th 2007 to February 21th 2008 for 2 MAC hon-
eypots (Debian, Gentoo) and 2 DAC honeypots (Debian,
Gentoo) and 1 windows (NT 2000).

Per host results
Figure 3 represents the distribution of alerts per host.
There are two reasons that explains the low number of
alerts on the DAC host. First, we give public IP addresses
in September 2007: attacks on these hosts are achieved
on the private network before this date and Snort did not
report anything during the six first months. Second, PIGA
IDS cannot be deployed without a MAC mechanism, re-
ducing the number of alerts. Note also that the logger

209

Figure 3: Alarms per host

Figure 4: Alarms per sensor

host has also been attacked even if this host has no public
IP address and is protected by a firewall.

There is no real difference between a Debian or Gen-
too distribution because attackers do not target one dis-
tribution. It can be explained because a large part of the
reported alarms are networks alarms that does not target
a specific host.

Statistics for IDS tools
In the database server 8,206,382 events and 302,543
alarms are stored i.e. 950 events per hour and 35 alarms
per hour. An event is an information (as a user connec-
tion) and an alarm is a malicious event possibly a part of
an attack (as a malformed packet). It is a lot of alarms to
monitor, but the major part of these alarms is generated
by Snort and is mainly false positives.

Figure 4 shows the distribution of the network and host
IDS alarms. Snort reports a large amount of false posi-
tives. Indeed, it uses a signature base and detects attacks
in packets using pattern matching: it cannot know if the
attack succeeded or may succeed. This is the main draw-
back of network IDS. False positives are eliminated us-
ing PIGA IDS that detects only 45,590 opened sessions by
scan robots and only 2,219 sessions performing activities
on the corresponding host.

Table 1 reports the main types of alarms and the sen-
sors that detect it. The most frequent alarm deals with the

Figure 5: Alarms per port

Sensor Description Ocurences
Prelude-lml SSHd: Root login refused 498,468
Snort Destination udp port not reachable 452,011
Prelude-lml SSHd: Bad password 49,329
OSSIM SSHd: Possible brute force tentative 43,989
Prelude-lml SSHd: Invalid user 43,311
PIGA Integrity: system file modification 41,063
Prelude-lml FTP bad login 21,366
Snort Potential outbound SSH scan 19,983
PIGA Confidentiality: information flow 16,191

. . .
Snort Alarm for signature k < 1,000
Snort . . . < 1,000
Snort Alarm for signature k+1 < 1,000

. . .

Table 1: Main types of alarms

ssh daemon and is reported by Prelude-lml: it is the first
step to enter our honeypots. Intruders use ssh scan tools
and try to brute force passwords that generates a lot of
alarms. Note that ftp accounts are also targeted by these
scan attacks. For outgoing traffic, Snort reports 19,983
ssh scans because the intruders use gained accounts to
attack outside hosts.

PIGA IDS detected the modifications of the configu-
ration files that a normal user should not access. It de-
tected also information flows mainly from those con-
figuration files to the user space. Moreover, infor-
mation provided by specific files like /etc/shadow or
/etc/apache/httpd.conf have been stolen by the attackers.

The total amount of Snort alarms is 78%. It includes
452,011 UDP port scans plus a lot of alarms with lower
rate associated to different IP addresses.

The figure 5 is consistent with table 1: the ssh port
dominates the number of alarms. The http port is mainly
attacked from the outside in order to install fishing web-
sites. 10% of attacks are malicious ICMP packets. Clas-
sical ports are used in order to exploit classical windows
vulnerabilities (afs3 filesystem, ms-sql-m): these attacks
are worms trying to propagate themselves. The IRC port
is used by IRC bots installed on the honeypots in order to
be connected on outside IRC channels. The bots can be
controlled by attacker’s orders on the channel and could
be used to launch DOS attacks.

210

Figure 6: Alarms per country - incoming

Figure 7: Alarms per country - outgoing

Results per country
Figures 6 and 7 give the ratio for the total of reported
alarms per country. Incoming and outgoing alarms are
separated: the first ones are alarms generated when the
intruders penetrate our honeypots. The second ones are
alarms generated when the intruders use our honeypots
as a base to launch attacks against outside or local hosts.

The world region that launches most of the attacks is
Asia (grey). The other attackers are mainly from Europe
(white). Note that no attack is incoming from the United
States whereas the target of outgoing attacks on figure 7
is more than 40% against the USA.

On figure 7 we added the attacks against our local
hosts. The ratio between attacks against external host or
local host is biased because of the Honeywall that limits
outgoing bandwidth and connections. The most attacked
local host is the Debian SELinux host mainly because
it has a public IP address (and not the Debian host): it
suggest that attackers does not try to discover local hosts
that have not an Internet address; they prefer to attack
a second host that have an Internet address which is the
Gentoo SELinux host.

Time results
Figure 8 shows the evolution of the number of events
(solid lines) and alarms (dotted lines) during one year

Figure 8: Number of events during a year (logarithmic)

Figure 9: Number of malicious activities seen by sensors

of experiments. We can observe a hole of events dur-
ing summer because of a large power supply failure of 3
weeks. In December 2007 we added Prelude-lml to our
architecture and 4 new hosts which increased the number
of events and alarms. If we omit the failure problem and
the arrival of Prelude-lml the number of alarms is con-
stant with time which confirms that attackers are using
random IP addresses on Internet.

We also computed the number of alarms per hour and
we observed that the variations of events/alarms are not
related to specific hours. It varies randomly from 230,000
to 750,000 events and from 9,000 to 20,000 alarms when
considering a specific hour. As intruders use scripts in
order to attack the honeypots, we cannot observe specific
activities on some precise hours.

Discussion
Figure 9 shows the number of malicious activities seen
by each sensor. Snort detects the number of brute force
attacks (more than 850,000) but cannot decide if sessions
are opened. Prelude-lml reports that 230,000 sessions
have been opened. In theory the system offers 1 session
over 100 brute force attacks. In practice, 229,000 ses-
sions have been detected instead of the 85,000 theoreti-
cal sessions because the attackers use similar dictionaries
and the tried logins have probably already been created.
Moreover, the attackers can come back later with the cre-

211

ated login/passwords which increase the number of ses-
sions seen by Prelude.

The third sensor, PIGA IDS, detects opened session
with real activities such as shell commands for explor-
ing the host, download of software, execution of bina-
ries or scripts. The number of activities (12,000) shows
that 95% of sessions are never exploited by the intruder.
Indeed, a bruteforce of ssh creates several accounts (be-
cause of the 1% creation policy). A successful intruder
will only use one of the created accounts. PIGA reports
the number of malware installation. For this purpose,
PIGA factorizes a download, installation, execution of a
software as a malware alarm. We conclude that 37% of
the sessions deals with malwares such as IRC bots or ssh
scanners.

These results show the complementarity of those sen-
sors. Snort enables to know the different intrusion at-
tempts but cannot decide if the attempts is successful.
Snort cannot analyze further the attempt and complemen-
tary tools are needed. Moreover, for ssh connections, a
network IDS is useless to analyze the use of the connec-
tion. Though, other host IDS are required to monitor the
next steps of the attack. In order to do it efficiently, sys-
tem calls must be monitored. In this direction PIGA IDS
proved his efficiency to detect complex scenarios of at-
tacks.

CONCLUSION AND PERSPECTIVES

During one year of experiments, MAC honeypots never
needed reinstallation despite of the detection of 229,000
and 12,359 malicious activities. This result shows the
robustness of the proposed architecture. The DAC hosts
have been reinstalled only three times in three months.
A good monitoring was proposed to both MAC and DAC
system. Automation of reinstallation have been com-
pleted. Our study shows the need of complementary net-
work and host IDS. Some tools generate a large number
of false positive whereas other tools are more precise in
the analysis of intrusions.

The decision of the reinstallation of DAC hosts was
taken manually. In order to make DAC hosts as much
persistent as possible, correlation between the different
collected data is required to take the reinstallation de-
cision. Ongoing works will compute a risk level using
correlation results. Moreover, the data of a compromised
system have to be manually analyzed using the modifica-
tion files such as described in section . Future works will
study how to associate those modifications to a known
malware. This way unknown malware could be high-
lighted.

The next step of this work is to correlate events and
alarms between all sensors in order to model complete
session of attacks. This work has been done for the sys-
tem events of a MAC host. The major difficulties are re-
lated to the correlation with network events and with dis-
tributed attacks.

REFERENCES

Alata, E., Nicomette, V., Kaâniche, M., Dacier, M., and Herrb,
M. (2006). Lessons learned from the deployment of a high-
interaction honeypot. In 6th European Dependable Comput-
ing Conference, pages 39–44, France. IEEE Computer Soci-
ety.

Anagnostakis, K. G., Sidiroglou, S., Akritidis, P., andE.
Markatos, K. X., and Keromytis, A. D. (2005). Detecting
targeted attacks using shadow honeypots. In 14th USENIX
Security Symposium, pages 129–144, Baltimore, MD.

Baumann, R. and Plattner, C. (2002). White paper: Honeypots.

Bell, D. E. and La Padula, L. J. (1973). Secure computer sys-
tems: Mathematical foundations and model. Technical Re-
port M74-244, The MITRE Corporation, Bedford, MA.

Blanc, M., Briffaut, J., Lalande, J.-F., and Toinard, C. (2006).
Distributed control enabling consistent mac policies and ids
based on a meta-policy approach. In Workshop on Poli-
cies for Distributed Systems and Networks, Canada London.
IEEE Computer Society.

Diebold, P., Hess, A., and Schäfer, G. (2005). A honeypot ar-
chitecture for detecting and analyzing unknown network at-
tacks. In 14th Kommunikation in Verteilten Systemen 2005,
Kaiserslautern, Germany.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1976). Pro-
tection in operating systems. Communications of the ACM,
19(8):461–471.

Hecker, C., Nance, K. L., and Hay, B. (2006). Dynamic hon-
eypot construction. In 10th Colloquium for Information Sys-
tems Security Education, University of Maryland, USA.

Holz, T. and Raynal, F. (2005). Detecting honeypots and other
suspicious environments. In Information Assurance Work-
shop, pages 29–36, University of Maryland, USA.

Innes, S. and Valli, C. (2005). Honeypots: How do you know
when you are inside one? In Valli, C. and Woodward, A.,
editors, 4th Australian Digital Forensics Conference, Perth,
Western Australia. School of Computer and Information Sci-
ence, Edith Cowan University.

Kaaniche, M., Deswarte, Y., Alata, E., Dacier, M., and
Nicomette, V. (2006). Empirical analysis and statistical
modeling of attack processes based on honeypots. In Work-
shop on Empirical Evaluation of Dependability and Security
(WEEDS), pages 119–124, Philadelphia, USA.

Kuwatly, I., Sraj, M., Masri, Z. A., and Artail, H. (2004). A dy-
namic honeypot design for intrusion detection. In ICPS ’04:
Proceedings of the The IEEE/ACS International Conference
on Pervasive Services (ICPS’04), pages 95–104, Washing-
ton, DC, USA. IEEE Computer Society.

Nguyen, H. Q., Pouget, F., and Dacier, M. (2005). White paper:
Integration of honeypot data into an alert correlation engine.
Technical report, Institut Eurecom, France.

Provos, N. (2004). A virtual honeypot framework. In SSYM’04:
Proceedings of the 13th conference on USENIX Security
Symposium, Berkeley, CA, USA. USENIX Association.

212

IDENTITY BASED DRM SYSTEM WITH TOTAL ANONYMITY AND DEVICE

FLEXIBILITY USING IBES

Sharath Palavalli, U S Srinivas and Alwyn R Pais

Department of Computer Engineering

National Institute of Technology Karnataka, Surathkal, Srinivasnagar (PO), India-575025

Email: palavalli.sharath@gmail.com

KEYWORDS

Digital Rights Management System, Identity Based En-

cryption System, Smart card based DRM System, Total

anonymity

ABSTRACT

Most of the Digital Rights Management (DRM) sys-

tems fail to cover all requirements like user anonymity,

user fairness, security and others. Device based DRM

systems, adopted by most providers, lack user fairness

and mostly follow proprietary formats. On the contrary,

Smart Card DRM systems satisfy user anonymity and

fairness, but have certain vulnerabilities, as identified in

this paper. We propose a DRM system using Identity

Based Encryption System (IBES) that overcomes the de-

ficiencies and vulnerabilities of the existing DRM sys-

tems. The proposed DRM system is an approach towards

an open framework, wherein, the content processing ap-

plication can be independent of the DRM provider, and

the security is controlled with the help of the smart cards.

INTRODUCTION

Digital Rights Management (DRM) Systems are used

to protect and manage digital content. DRM is basi-

cally an aggregation of Security Technologies to protect

the interest of content owners so that they may maintain

persistent ownership of their content (William and Chi-

Hung, 2004). Content owners are concerned regarding

the content security of individual items, e.g., pictures,

videos, music, e-books, programs and games. The ram-

pant piracy that was witnessed in the heyday of the In-

ternet, with sharing of copyrighted videos and music, has

driven the industry toward the digital rights management

of content. This implies that the rights of viewing (or lis-

tening, reading, or forwarding) of each item can be con-

trolled by the license holders, using, for example, a server

that administers the rights. The rights can be adminis-

tered in a number of ways, including (Amitabh, 2007):

• who can view the content,

• how many times the content can be viewed,

• at what time the rights to view content expire,

• in which geographical area the content can be

viewed,

• on what devices the content can be viewed,

• restrictions on forwarding of content, and

• renewal of rights through payment mechanisms.

This mechanism of management of rights for content

has given birth to the technology of digital rights man-

agement or DRM. DRM creates an essential foundation

of trust, between authors and consumers, that is a pre-

requisite for robust market development. The desired re-

quirements of a DRM system can be summarized as fol-

lows:

• Non-Restrictiveness

– Device mobility

– Communication networks Interoperability

– Off-line usage (As applicable)

• Content Security

• Key/License management

• Consumer privacy/Anonymity

• Rights persistence

• Versatility/Content Format independent

• Monitoring/Traceability and Accountability

• Choice of multiple security levels

DRM Systems can be categorized into Device-based

and Identity-based systems. Basically, the security of a

Device based DRM comes from enforcing usage of com-

pliant players and unique global device identifiers. A

consumer purchasing some digital content from a server

will be given a license. The license will explicitly spec-

ify the device on which the content can be used. These

systems restrict user flexibility in moving content across

different devices and also do not provide user/device

anonymity.

Identity based DRM systems differ from device based

DRM systems in the license description. Here the license

would contain a user identity, which the user would prove

to the application by means of a password, fingerprint

scan, smart card, etc. Although in these systems the user

can move content to any device, user anonymity is lost.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

213

To overcome this deficiency of identity based DRM

systems, Hung-Min Sun et al proposed an IP based DRM

system (Hung-Min et al., 2006), wherein the IP (Internet

Protocol address) of the user device would be used as the

identity. Although this does provide considerable user

anonymity, it still can be traced back, and the approach

for user fairness is accomplished in a very complex and

tedious manner. Also, there is an enormous dependence

on the content processing application for license valida-

tion, which decreases the system security.

A Smart card-based DRM system provides the users

with more flexible usage of contents and fulfills the con-

sumers’ expectations according with “fair use” (Erick-

son, 2003) in the real world. Privacy has an equally

important consideration. Anyone, including the server,

should not know the relationship between the users and

the contents. More precisely, the identity of a user for

the purchased content should be anonymous, even to the

servers. Besides, eavesdropping on the user-device com-

munication channel, to the extent possible must be pre-

vented, none the less, should not reveal any relation be-

tween the user and the content when intercepted. Con-

rado et al propose a Smart card based DRM system (Con-

rado et al., 2003) wherein the smart card acts as the user

authentication device. Using the smart card provides

a certain level of user anonymity and user fairness in

terms of device mobility. Hung-Min Sun et al (Hung-

Min et al., 2007) enhance this system to provide stronger

user anonymity and also add content security to secure

the content during transmission.

However, the system proposed in (Hung-Min et al.,

2007) does not consider various desirable license param-

eters like validity, etc and more importantly, is vulnerable

to a Smart Card Imposter Attack as discussed later. In

our proposed approach, we employ Identity Based En-

cryption System (IBES) to provide anonymity and also

simplify the license purchase and key retrieval processes.

We modify the Identity based Encryption algorithm to

give out obfuscated identities, as discussed further.

The rest of this paper is organized as follows. In Sec-

tion “PREVIOUS WORK”, we review the smart card-

based DRM system proposed by Hung et al (Hung-Min

et al., 2007) and discuss about Identity based encryp-

tion systems. In Section “PROBLEMS IDENTIFIED”,

we point out the various drawbacks and problems iden-

tified. In Section “THE PROPOSED APPRAOCH”, we

propose a new approach which improves on the weak-

nesses and vulnerabilities of (Hung-Min et al., 2007). In

Section “SECURITY”, we focus on the security issues

of our approach. Finally, we conclude this paper “CON-

CLUSION”.

PREVIOUS WORK

In this section, we review the smart card based DRM sys-

tem proposed by Hung-Min Sun et al (Hung-Min et al.,

2007).

Smart Card Based DRM System

The system proposed has three main entities, viz, the

Content Server, the License Server and the User (Client).

The Content server encrypts the content in a key Kc and

stores it for download/streaming. The License server is-

sues licenses to users for viewing the content hosted on

the Content server. The License server would also take

care of the payment options. The license would consist

of the content encryption key, Kc, used for encrypting

the content the user purchases. The User, in this case

the smart card, talks to the License server through the

client application, for the specific licenses, and also de-

crypts them for the client application. The complete pro-

cess would consist of four phases. They are, the Regis-

ter Phase, the Purchase Phase, the Play Phase, and the

Download Phase.

1. Register phase: The content provider uploads the

unencrypted digital content, to the content server

using SSL or other secure mechanisms. The con-

tent server will package the content to an encrypted

format using a content key Kc, which is ran-

domly generated by the content server. The en-

crypted content is stored in the content server and

hosted for download. After packaging, the con-

tent key Kc will be transmitted to the license server

as EPKls(c id||Kc) and the associated signature,

where EPK1s is an asymmetric encryption, PKls

is the license server’s public key, c id is the con-

tent identity, and || represents the concatenation of

strings. The license server will store c id and Kc in

its database and use them for creating licenses.

2. Purchase phase:

(a) The user browses the shopping website and

initiates a purchase.

(b) The device generates a random number RAN

and requests the smart card to calculate

H(RK||RAN) and EPKls(SSI||SK). Here

H is a hash function, SSI is a Secret Secu-

rity Identity in an anonymous payment system

like ‘eCash’, and SK = H(RK||c id||UK)

is a content and user unique key. RK and

UK are the secret keys installed apriori in the

smart card. Because this calculation is exe-

cuted inside the smart card, the user cannot

know the secrets. SK would be used to en-

crypt the content key (Kc) in the license. The

device transmits {c id, EPKls(SSI||SK),

H(RK||RAN), EUK(RAN)} to the license

server.

(c) The license server verifies the validity of the

SSI and checks for sufficient funds. On suc-

cessful completion of both these verifications,

the license server will create the correspond-

ing license:

214

Hash = H(RK||RAN)

Details = {c id, Hash, EUK(RAN)}

User Right = {Details}signLS

License = {ESK(Kc)||User Right}

Here {.}signLS is the signature of the message

signed by the license server. ESK(Kc) and

EUK(RAN) are both symmetric encryptions

with keys SK and UK respectively. An li-

cense index Index = {c id||H(SK)} would

be created for quick access and public hosting.

(d) The license server sends the license to the user.

3. Play Phase:

(a) On ”Play” initiation, c id is extracted from

the header of the downloaded content package.

Then, the device calculates the license index

{c id||H(SK)} and retrieves the license. If

the license does not exist in the device, it tries

to fetch it from the License server. Failing to

find it on the License server would imply that

the user has not purchased the license.

(b) The license retrieved is passed to the smart

card for validation, rights verification and con-

tent key decryption.

(c) The smart card extracts the c id,

H(RN ||RAN), EUK(RAN) and User

Rights from the license by using the license

server’s public key. In order to get the value

RAN, EUK(RAN) is decrypted. The RAN

and the RK stored in the user’s smart card

are used to calculate the new H(RK||RAN).

If the value is not the same with the value

extracted from the license, it means the li-

cense was not meant for this smart card, hence

rejected. After checking H(RK||RAN),

the smart card checks if c id, the identity of

the content being played, matches that in the

license. If they are not the same, it rejects on

terms of license mismatch. If the smart card

has passed both verifications, the user will be

allowed to access the digital content. Then,

the smart card decrypts the content key Kc.

The key Kc will be transmitted to a protected

memory in the device so as to restrict the

access to unauthorized applications.

(d) The encrypted content will be decrypted in the

protected memory of the device. Only the au-

thorized applications can access this decrypted

content and render it. When the user stops

playing the content, the content and Kc in the

protected memory will be deleted regardless

of the content type.

4. Download phase: The user downloads the en-

crypted content package incase the content does not

already exist in his device. When the user inserts his

smart card into another device which does not store

the content, the download phase will be re-activated.

Together with the encrypted content package, the

associated license also, if any, would be downloaded

if necessary. In case of streaming content, only

the URL and the license would be downloaded and

stored.

The usage of smart card ensures that the user can play

the content on any device that complies with the appli-

cation requirements. Moreover it ensures the content

providers that their content always remains secure, ex-

cept in one case as identified further.

Identity Based Encryption System

Identity based Encryption System (IBES) is a public key

cryptosystem designed mainly to remove the redundant

complexity involved in the Public key Infrastructure’s

certification and certificate verification process. In this

system, a recipients well known unique identity ID, like

email address, mobile phone number, IP address, URL,

etc is used as the public key for the encryption. The sys-

tem architecture ensures that only the owner of this par-

ticular unique Identity has the private key for this ID,

and hence none others can decrypt it. This is ensured by

a Private Key Generator (PKG), the trust component of

the system. Figure 1 depicts the system architecture and

the various steps for secure message transfer.

The concept of IBES was proposed by Shamir way

back in 1984. But the first successful and computation-

ally feasible system was published in 2001 by Dan Boneh

and M Franklin (Boneh and Franklin, 2001). Their sys-

tem makes use of a concept called Weil Pairings, a bi-

linear function. But the computationally feasible system

for mobile phones was first demonstrated in 2006, by J.

S. Hwu, R. J. Chen, and Y.B. Lin with their Fast compu-

tation method for Weil Pairings (Hwu et al, 2006). With

this advancement, IBES services can now be ported onto

handheld devices also, which are prime content usage de-

vices today.

The ID-based scheme consists of four algorithms:

Setup, Extraction, Encryption, and Decryption. Setup is

run by the PKG to generate a master key and the system

parameters. This is done on input of a security parame-

ter kID, which specifies the bit length of the group order

and is regarded as the key size of the ID-based scheme.

The Extraction algorithm is carried out by the PKG to

generate a private key corresponding to the identity of a

user. As with regular public key cryptography, the En-

cryption algorithm takes a message and a public key as

inputs to produce a cipher text. Similarly, the Decryption

algorithm is executed by the owner of the corresponding

private key to decrypt the cipher text. These four func-

tions are described as follows.

215

1. Setup: With the parameter kID , the algorithm works

as follows:

(a) Generate a random kID-bit prime p, two

groups (G1; +); (G2; *) of order p, and the

Weil pairing e : G1 × G1 → G2. Choose an

arbitrary generator P ∈ G1.

(b) Pick a random number s ∈ Z∗

p and set Ppub =

sP .

(c) Choose cryptographic hash functions h1 :

0, 1
∗

→ G1
∗ and h2 : G2 ∈ 0, 1

n for

some n. The public system parameters are

p, G1, G2, e, n, P, Ppub, h1, h2 and the master

key s is kept in secret by the PKG.

2. Extraction: For a given string ID ∈ 0, 1
∗ as the

public key, the algorithm works as follows:

(a) Compute QID = h1(ID) ∈ G1.

(b) Set the private key KR = sQID, where s is

the master key held by PKG.

3. Encryption: To encrypt a message M under the

public key ID, the algorithm works as follows:

(a) Compute QID = h1(ID) ∈ G1.

(b) Choose a random r ∈ Z
∗

p .

(c) Set the cipher text to be

C = (U, V) = (rP, M ⊕ h2(e(QID, sP)
r
))

4. Decryption: To decrypt a cipher C = (U, V) en-

crypted using the public key ID, the algorithm uses

the private key KR = sQID to compute M =

V ⊕ h2(e(sQID, U)). This decryption procedure

yields the correct message due to the bilinearity of

the Weil pairing, i.e.,

e(sQID, U) = e(sQID, rP) = e(QID, sP)
r
)

User B

(3) ID
A

(2) KRA

Private Key

Generator

User A

 K R
A

(5) M = D (C)

(1) Authenticate IDA

M

A
ID

(4) C = E (M)

Figure 1: Identity Based Encryption System

In IBES, there is no public key exchange, nor certifi-

cate retrieval or verification, before a message transfer,

as in other crypto systems. Hence a man-in-the-middle

attack is not possible.

PROBLEMS IDENTIFIED

In this section we list the various drawbacks identified

in various systems. Then we explain in detail the Smart

Card Imposter Attack.

Drawbacks

Lists of problems identified in various types of DRM

Systems:

• Device Based DRM systems

– User fairness and flexibility

– User Anonymity

– Proprietary content processing applications

• IP Based DRM systems

– User Anonymity

– Complex process for user fairness

– Dependence on content processing application

for license validation

• Smart Card aided DRM systems

– Vulnerable to Smart-Card Imposter Attack

– License validity period not taken care of

– Processing complexity in signature verifica-

tion and data encryption when communicating

with the license server

– Complex algorithm with two private keys

Smart Card Imposter Attack

Hung-Min Sun et al (Hung-Min et al., 2007) assume all

messages that the license server is receiving are from one

of the system smart cards. But no where do they specify

how to verify or authenticate if the messages are really

coming from one of the system smart cards. The system

security relies on the secrecy of RK and UK which are

random secrets placed in each smart card.

A malicious or tampered program can impose itself

as the smart card, choose two random secrets RK and

UK and purchase license for a content c id following

the normal procedure, except that the program would

perform the encryption operations instead of the smart

card. On successful issuance of the license, which the

license server would do without any suspicions, the pro-

gram could decrypt the license and extract the content

key Kc. Now the key can be used for decrypting content

without any restrictions. Thus failing the purpose of the

DRM as such.

The main intention of not verifying the identity of the

smart card is to provide user anonymity, but it should not

mean loss of authentication. There should be a mecha-

nism where in the system can authenticate that the license

purchase and decryption is done by a smart card only, but

still not revealing which smart card. Our paper addresses

this issue.

216

THE PROPOSED APPROACH

In this section, we propose a solution to solve the prob-

lems mentioned above. Moreover, we improve the ef-

ficiency for the low-computational-capacity smart cards.

We propose to add an Identity based Encryption server to

the architecture given in (Hung-Min et al., 2007), by the

aid of which we would provide total user anonymity, as

far as the DRM system is concerned, and also reduce the

number of keys to be stored and manipulated by the smart

card. Moreover it combats the Smart Card Imposter At-

tack mentioned above, which is a drawback of the system

proposed in (Hung-Min et al., 2007).

Figure 2 depicts the architecture of the proposed sys-

tem.

Content Server IBE Server

User Device

Smart Card

License Server

Figure 2: Architecture of Proposed System

This system would have four main roles, viz, the con-

tent server, the license server, the IBE server and the

client (user). Each user would be issued a smart card

which consists of a unique smart card ID and the IBE

server generated private key for this ID, sQID. It is

assumed that the device used to play the content would

have a card reader for the smart card. Hence the system

would be able to work on any smart card based environ-

ment.

Protocol Overview

The protocol consists of four phases as in (Hung-Min

et al., 2007). They are Content Registration phase, Pur-

chase phase, Download phase and Play phase. The Con-

tent Registration phase occurs when the content provider

uploads content to the content server. After the ‘Con-

tent Registration Phase’, the user can request purchase of

the digital content on websites, and the Purchase Phase

starts. Once the ‘Purchase Phase’ has finished, the digi-

tal content will be downloaded/streamed to the user’s de-

vice in the ‘Download Phase’ and the user can play it in

the ‘Play Phase’Ḟinally, if the content which the user has

bought disappears, or the user moves to a new device, the

Download Phase can be re-done.

Content Registration Phase

In this phase, the content owner uploads the content to the

content server, where in the content is encrypted with a

randomly generated content key Kc, and a content Iden-

tity c id is associated to it. The content server then com-

municates information about this content to the License

server as EPKls(c id||Kc).

Purchase Phase

In the purchase phase, the user locates and shops for a

content c id. The media package would consist of c id,

the license, and the encrypted content or the stream-

ing URL for the content. At this stage the smart card

in the client device is supposed to generate an anony-

mous pseudo ID, SK , as per the system in (Hung-Min

et al., 2007). Instead, here the smart card would reveal,

to the license server, the point QID, which is a point-

mapping of the unique identity of the smart card. The

smart card would send to the license server, through the

user client, EPKls(SSI||QID||c id) where SSI is the

Secret Security Identifier of an anonymous payment sys-

tem like ‘eCash’. On receiving this message from the

user, the License server would decrypt it, an extract the

SSI , QID and c id of the content requested. It checks

if the account presented has sufficient funds for purchase

of content c id and performs the financial transactions.

On a successful transaction, it would create a license

L = EQID
(c id||Kc||User Right XML). The license

would include a small XML as to what kinds of rights

are allowed and various parameters related to each right.

Here the encryption followed would be that of Identity

based encryption systems (Boneh and Franklin, 2001),

with a slight modification that the input would be QID,

an elliptic curve point, rather than the receiver ID, and

hence the initial point mapping algorithm would not be

performed. We could follow an anonymous license deliv-

ery system as proposed in (Hung-Min et al., 2007), where

in the license server would publish the license into a pub-

lic directory with an index I = H(QID||c id) or could

deliver the license to the user directly, as preferred by the

user.

Download/Streaming Phase

This phase allows the user to download the encrypted

content package when the content does not exist in

his/her device. When the user inserts the smart card

into another device which does not have the content, the

download phase will be activated. There is no valida-

tion/restriction on who can download encrypted content

from the content server, as only licensed users will be

able to decrypt it correctly. Although this could lead to

Denial of service attacks in case of on demand videos,

this would not affect broadcast systems.

Play Phase

In this phase, when the user selects to open some content,

the application would retrieve the license for the corre-

sponding c id and submit it to the smart card for decryp-

tion. Since the license was encrypted in QID, only the

smart card with the private key for this would be able to

decrypt it, and none other. The smart card would try to

decrypt the license and extract c id. If the extracted c id

217

and the content c id whose license was submitted, are

equal, then the license was generated for this smart card

only, else invalid. Further, the smart card extracts vari-

ous user right details like license validity, etc, checks for

the expiry and if found valid, extracts the content key Kc

and returns it to the application for use on a ’Protected

Memory’. The application would use the content key to

decrypt the content and process it as per the users request.

SECURITY

Secure against Smart Card imposter attack: Unlike as in

(Hung-Min et al., 2007), here the smart card identity is

a part of the license, which makes sure that the license

server is talking to a smart card only and not an imposter

application. Although an imposter application could sub-

mit a random QID, or any specific QID to the license

server for procuring the license, the private key for this

point would not be available, as the IBE system would

insert private keys directly into the smart cards during

manufacture, and also would update them, if necessary,

in a secure manner. This way, there is no chance for any

non-smart card program to get access to a private key in

this IBE system.

Content Key Protection

Since the license was encrypted in QID, provided by the

smart card, only it would be able to decrypt it. Moreover

a smart card is tamper resistant, which makes it secure

against malicious or tampered applications. Now, irre-

spective of what application is being used to process the

content, the system remains secure, as the smart card is

the only one who can decrypt the license and also vali-

date it.

User Privacy/Anonymity

One major benefit of this protocol would be total user

anonymity as far as the DRM system is concerned. Since

the smart card is giving out QID instead of its ID, there

is no way for anyone else to find out what the identity

of the smart card is, as QID is obtained from a mapping

function that includes a one way hash and other steps.

So although the license server is satisfied that the license

can be decrypted only by a smart card, neither it nor any

adversary, track as to who is purchasing and using what

content, giving total user anonymity.

CONCLUSION

In this paper, we propose a smart card based DRM sys-

tem that employs Identity Based Encryption System to

combat various vulnerabilities and deficiencies identified

in the previous systems. The system security relies to-

tally on the security of the IBE server, License server and

the smart cards. Assuming all these are secure enough,

which is a fair enough assumption, the application that

processes the content need not be a proprietary one and

can follow an open architecture with different flavors.

However, there is one threat, that the application gets

hold of the content key, although in a protected memory

area. To make the system more robust, a key evolving

scheme could be employed where in the content key of

the delivered content keeps changing periodically. The

system provides total user anonymity and also the user

fairness, as the smart card can be plugged into any com-

pliant device to play the content. This is desirable by

both the content consumers and the content providers, as

now the content provider is sure that his content would

stay secure knowing that only those many copies of the

content are usable as many as licenses have been issued.

ACKNOWLEDGEMENT

We would like to express our gratitude towards the In-

formation Security Education and Awareness (ISEA)

Project, MCIT, DIT, Government of India, for its spon-

sorship, and the Department of Computer Enginering,

NITK, Surathkal for providing us the necessary infras-

tructure and co-operation to complete this paper. We

would like to thank “Prof. Asoke K Talukder”, Indian

Institute of Information Technology-Bangalore (IIITB),

for his motivation, guidelines and review comments.

REFERENCES

William Ku, and Chi-Hung Chi. (2004). Survey on the techno-

logical aspects of Digital Rights Management. 7th Informa-

tion Security Conference, LNCS 3225:391-403.

Amitabh Kumar. (2007). Mobile TV: DVB-H, DMB, 3G Sys-

tems and Rich Media Applications. Focal Press publica-

tions, ISBN 13: 978-0-240-80946-5.

Hung-Min Sun, King-Hang Wang, and Yih-Sien Kao. (2006).

IP-Based DRM - A Fair and Privacy Preserving DRM

Framework. International Computer Symposium 2006,

Taipei, Taiwan.

Erickson, J. S. (2003). Fair use, DRM, and Trusted Computing.

Communications of the ACMV, April, volume 46:34-39.

Conrado, C,; Kamperman, F,; Schrijen, C. J,; and Jonker, W.

(2003). Privacy in an Identity-based DRM System. In

Proceedings of the 14th IEEE International Workshop on

Database and Expert Systems Applications, 389-395.

Hung-Min Sun, Chi-Fu Hung and Chien-Ming Chen. (2007).

An Improved Digital Rights Management System based on

Smart Cards. Inaugural IEEE International Conference on

Digital Ecosystems and Technologies, IEEE DEST.

Boneh, D and Franklin, M. (2001). Identity-based Encryp-

tion from the Weil Pairing. Advances in Cryptology,

CRYPTO’01:213-239.

Hwu,J.S,; Chen, R. J,; and Lin, Y.B. (2006). An Effi-

cient Identity-based Cryptosystem for End-to-end Mobile

Security. IEEE Transactions on Wireless Communica-

tions,September, Vol. 5, No. 9.

218

AUTHOR BIOGRAPHIES

Sharath Palavalli was born in Karnataka,

India. He completed his Bachelor of

Engineering in Information Science

from JSS Academy of Technical Edu-

cation, Visveshwaraiah Technological

University, Bangalore. He is currently

pursuing his Master of Technology Degree in Com-

puter Science from NITK, Surathkal. His email is

palavalli.sharath@gmail.com.

U S Srinivas was born in Andhra Pradesh,

India. He completed his Bachelor of

Engineering from Mother Teresa Institute

of Science and Technology, Sathupally,

affiliated to JNTU Hyderabad, Andhra

Pradesh. He is currently pursuing his

Master of Technology Degree in Computer Science from

NITK, Surathkal. His email is chus84@gmail.com.

Alwyn Roshan Pais was born in Kar-

nataka, India. He completed his Bachelor

of Engineering from the Mangalore

University, Karnataka and Master of

Technology from IIT Bombay. He

is currently pursuing his PhD from

NITK, Surathkal. He is currently serving as a Se-

nior Scale Lecturer in the Department of Computer

Engineering, NITK, Surathkal. He is also the co-

ordinator of the ISEA project at NITK. His areas of

interest are Algorithms, Cryptography and Computer

Vision. His email is alwyn.pais@gmail.com

and has personal webpage at

http://compengg.nitk.ac.in/alwyn.htm.

219

Requirements and Initial Design of a Grid
Pseudonymity System

Joni Hahkala, Henri Mikkonen, Mika Silander, and John White

Abstract—Traditionally, grid users have been identifiable and
traceable beyond reasonable doubt by their digital certificates.
However, Grids are used in an ever-increasing variety of con-
texts and thus, the number of usage scenarios has augmented
accordingly. In bio-medicine and other health-related fields a
need for anonymous access to grid resources has been identified.
Anonymous access to resources prevents the resource owners and
other external parties from tracing the users and their actions.
Such anonymity of resource usage in Grids is needed above all in
commercial contexts, e.g. protecting the development process of
a new medicine by anonymizing the accesses to medical research
data bases. In this paper we identify the requirements and give
an initial design for pseudonymity system addressing these needs.

Index Terms—Authentication, Authorization, Grid Security,
Pseudonymity.

I. INTRODUCTION

The Grid computing model envisages a heterogeneous fabric
of computing resources that is provided to users in a trans-
parent way. In this model, Grid users may run processes on
computing resources and store and access data on storage
resources that may not be owned by them or even their parent
organization. The use of resources on any Grid infrastructure
entails a balance between the owner’s need to oversee and
account for the resource usage and the user’s privacy require-
ments.

From the Grid users’ point of view, complete anonymity
is desirable for maximum protection. This requirement can
come from researchers in a field of competitive, commercial
or basic, research [1], [2]. These researchers may wish to
work in secrecy and prevent their competitors from following
their actions on a Grid. This would include being able to
anonymize the credentials used for job submissions and the
reading and writing of data. In general, this is not possible
due to requirements that a Grid user should be traceable for
accounting purposes and in the case of usage policy violation.

Hence, the anonymity problem is to find a compromise
between the requirements of the Grid resource owner and
users. The proposed solution to this problem is the concept of

Manuscript received February 20th, 2008. This work was supported in part
by the European Union grant EGEE-II INFSO-RI 031688 and by the Joint
Committee of the Nordic Research Councils for Natural Sciences (NOS-N)
through its Nordunet-3 programme project “Innovative services and tools for
Nordugrid”.

Joni Hahkala, Henri Mikkonen and John White are with Helsinki Institute
of Physics, CERN/PH, CH-1211 Geneva 23, Switzerland (phone: +41-22-76-
76179; fax: +41-22-76-73600; e-mail: firstname.surname@cern.ch).

Mika Silander is with Helsinki Institute of Physics, PL 9250, 02015
TKK, Finland (phone: +358-9-8562-0909; fax: +358-9-451-5194; e-mail:
mika.silander@hip.fi).

a lesser degree of anonymity, pseudonymity. A pseudonymous
identity, or pseudonym for short, is a unique anonymous
identity given by a trusted third-party (service) to a Grid user.
Only this trusted third party is able to re-establish this identity
association later if necessary. In situations where resource
owners detect misuse of their resources, the trusted third-party
can act as an middle man to solve grievances or in serious
cases can be requested to disclose the true identity of the
suspected abuser, subject to the policies of the particular Grid
infrastructure or the law.

The system presented in this paper is designed to hide the
identity of the user invoking the operations on the Grid. If
used properly and provided there is a sufficiently broad mix
of operations and end users, the system will also prevent the
correlation of operations and thus ensure the resource owners
cannot identify users by workflow tracking.

The rest of the paper is organised as follows: Chapter II
looks into work generally related to pseudonymity. Chapter
III offers a detailed study of the requirements. Chapter IV
analyses the problem in light of the requirements and con-
straints. Chapter V discusses some architectural and functional
issues as Chapter VI describes various solutions to the problem
and specifies the one chosen. We summarize our findings in
Chapter VII and propose future work in Chapter VIII.

II. RELATED WORK

Pseudonymity and pseudonym identifiers have already been
covered by several specifications and software. Their defini-
tions and interpretations are discussed in this section.

A. Shibboleth and SAML

Shibboleth1 is Internet2’s project to provide Single Sign-On
(SSO) on the Web. The current version (1.3) bases on Security
Assertion Markup Language (SAML) 1.1 [3] specifications,
but the upcoming Shibboleth 2.0 will support major portions
of SAML 2.0 [4] Both the current version of Shibboleth
and the SAML 2.0 standard support short-lived opaque name
identifiers. A typical use case starts at a Service Provider (SP)
which wants to know some attributes of the user. Instead of
authenticating the user directly, the SP redirects the user to the
Identity Provider (IDP) for authentication. Once authenticated
and authorized, the IDP generates an opaque name identifier
for the user and communicates it to the requesting SP. The
name identifier is then utilized by the SP for obtaining user
attributes from the IDP.

1Shibboleth site - http://shibboleth.internet2.edu

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

220

As the name identifier is opaque and short-lived, the SP
cannot determine any additional user information apart from
the attributes that are provided by the IDP. The attributes
may include only the Virtual Organization (VO) membership
information that is enough for the SP to authorize but not to
individualize the user.

The integration of Shibboleth’s SAML attribute framework
and Grid security has been studied by the GridShib project
[5]. The goals of the project include e.g. utilization of the
Shibboleth attributes in the user authorization process, but
also pseudonymous access for the Grid users [6]: Shibboleth’s
opaque name identifiers are used in the subject fields of the
X.509 certificates which are issued to the users online after
Shibboleth authentication. The users’ Shibboleth attributes can
be utilized with these pseudonym certificates too.

B. idemix

The approach described in the previous section is very IDP-
centric as the IDP keeps track of its users’ accesses to the SPs.
Anonymous credential systems allow the user’s transactions to
be carried out in a way that they cannot be linked to the same
user [7]. A software called idemix (identity mix) [8] is one
example implementation of such a system. The users establish
pseudonyms with SPs that are used for creating credentials
containing a set of attributes. Afterwards, the users present the
credentials with desired sets of attributes to the same or other
SPs by using zero-knowledge proofs. These proofs ensure
the legitimate possession of the credentials but reveal no
information about the true identity of the user employing them.
The credentials can be used for obtaining new credentials, but
only one master secret is related to all of them. Mechanisms
for retrieving the identity of a user locally (one SP) or globally
(all the SPs) exist, but they require the user’s cooperation.

C. WS-* specifications

As an alternative to SAML, WS-* (Web Services) specifi-
cations also provide a model for federation between IDPs and
SPs. From the set of specifications, WS-Federation defines a
Pseudonym Service which maintains alternate identity infor-
mation for its users [9]. The pseudonym identifiers are part
of the security tokens that are used by resources’ Security
Token Services (STS) for authentication and authorization
purposes. In addition to the Shibboleth-style short-lived (or
one-time) opaque pseudonym identifiers, anything between
them and constant clear-text identifiers are supported. As the
communication with the service itself can occur via IDPs,
the resources’ STSes, or directly with the resource or the
requestor, numerous use cases are supported. A Pseudonym
Service and the claims-based authorization model can be used
to describe the set of attributes required to access a resource
and the IDP can assert that a particular Grid user possesses
those attributes, without divulging their actual identity.

III. REQUIREMENTS

In order for a pseudonymity system to function with current
Grid middleware it should fulfill the following requirements.

Requirement 1. Confidentiality
The pseudonymous identity must hide the true identity of the
user.

The true identity must remain unknown to the service
provider sites, their administrators and other legitimate Grid
users as well as external parties. This implies encrypted
communications is needed between pseudonym attestee and
attester.

Requirement 2. Non-repudiation/Retrievability
The true identity of a Grid user must be, a posteriori, unam-
biguously traceable via the pseudonymity system.

This functionality is mandatory in cases of misuse and may
be imposed by regulatory or law enforcement issues. To this
end, the pseudonymity attester must authenticate pseudonym
requestors and maintain a record of the pseudonyms issued.

Requirement 3. Uniqueness and Short Life-time
A pseudonym must be a unique, short-lived one-time identity
in the Grids in which it is to be employed.

A pseudonym’s Distinguished Name (DN) must not clash
with the existing user DNs, nor with other pseudonyms as this
would undermine the overall user authentication and violate
the earlier requirement of retrievability. And ideally, only one
Grid operation or set of operations should be performed under
the protection of a pseudonym. For the next operations, a
new pseudonym should be requested. This approach reduces
the ability of outside observers to collect data for correlation
attacks with the intent of discovering the true identity of
the user. Pseudonymous credentials should be ephemeral to
reduce the damage in cases of credential compromise. Due
to ephemerity and large volume of issued credentials, the
issuance itself should involve no manual intervention nor
procedures.

Assuming there are several independent pseudonym at-
testers active in a Grid, each must be assigned an own
unique name space. This name space prevents attesters from
accidentally issuing pseudonyms with identical DNs.

Requirement 4. Identity Protection
The pseudonymity attester must be the only party able to
obtain the true identities of users.

The pseudonymity attester must adequately protect the
records of issued credentials and the systems into which they
are stored. Only authorized people are entitled to uncover the
true user identities.

Requirement 5. Credential Source Compatibility
The pseudonymity system should interoperate with different
sources of Grid user credentials.

Even though the user authentication is based on credentials,
they may not necessarily come directly from the user’s client
software. The user’s short- or long-term credentials can be
stored in online credential repositories or be delegated to
other Grid services acting on a user’s behalf. For example,

221

some portal usage scenarios involve the delegation of the
user’s proxy certificate [10] directly to the portal with no user
intervention. Hence, the pseudonym system must support a
broader set of use cases, not only those implied by direct user
access.

Requirement 6. Information leakage prevention
The pseudonymity system must actively counteract the leakage
of information that allows the unique identification of a
pseudonym user.

The operations and actions a pseudonym user performs
and the set of additional personal attributes the user may
have requested for inclusion into the pseudonym credentials,
may provide enough information to uniquely identify the user.
The pseudonymity system should therefore attempt to actively
reduce and hide sources of such information. In the case of
personal attributes from auxiliary authorization systems, the
pseudonymity system should either prevent uniquely identi-
fying pseudonyms to be issued, or, warn the user about the
high probability of disclosure prior to using such a credential.
Other covert sources of information, e.g. IP numbers of
job submission hosts, metadata in submitted files and job
description language attributes are harder to deal with and
their removal or anonymization is ultimately up to the users
themselves.

Requirement 7. Maintaining security
The pseudonymity system must not provide ways to circumvent
existing security.

The pseudonymity must not erode the security of the
systems. There might be cases where enforcing a detailed
policy would need the user’s identity to be revealed and in
these cases the policies can’t be enforced at the time. Later,
the authorized persons can do the enforcement of these policies
and the corresponding actions if needed.

IV. PROBLEM ANALYSIS

Many of today’s Grid middleware systems authenticate
users with PKI certificates. Thus, in addition to the re-
quirements presented in the previous section, we impose on
ourselves an implementation constraint, that of compatibil-
ity: The pseudonymity certification must be compatible with
the certificate-based authentication and interoperate seam-
lessly with existing Grid middleware. This also means the
pseudonymity certification must work in concert with other
commonly used auxiliary authorization systems such as Virtual
Organization Membership Service (VOMS [11]) and Commu-
nity Authorization Service (CAS [12]) without any significant
changes to them.

Existing Grid user certificates and software can be employed
with little effort to ensure that pseudonym requesters are
unambiguously authenticated with cryptographically strong
mechanisms. For the same reason, SSL/TLS channels can
easily be set up to guarantee the confidentiality of commu-
nications. These fulfill the requirements 1 and 2 and comply
with the above implementation constraint.

The pseudonym credential itself can be modeled as a
standard X.509 [13] user certificate but having an anonymizing
DN. The set of resources available to a Grid user acting
under a pseudonym will be more limited than if the user
had employed their ordinary user certificate. This is due to
the fact that authentication and authorization decisions must
be based solely on auxiliary attributes provided by auxiliary
authorization systems, the exact user identity being unavail-
able. Thus, users should be able to request some of their
real identities’ attributes to be included in the pseudonyms
and this implies the pseudonymity system needs to interact
directly with auxiliary authorization services. The VOMS
auxiliary authorization service models the user attributes as
Attribute Certificates [14] (AC). It is commonplace to include
these into the extensions of X.509 certificates and this is a
further motivation to use X.509 certificates as the format for
pseudonym credentials.

Certificate Authorities (CAs) may freely issue certificates
unconstrained by any name space. In Grids however, the
uniqueness of certificates is guaranteed by reserving specific
name spaces for each CA. Only those certificates issued in
conformance with the name space restriction are accepted as
valid credentials in a Grid. The uniqueness of pseudonym
credentials implied by requirement 3, can be ensured similarly
by assigning unique name spaces to the pseudonym attesters.

Requirement 3 also states the pseudonym credentials need to
be short-lived which implies a high volume of credentials to be
issued. Hence they should be generated programmatically. The
pseudonym system must therefore incorporate functionality
similar to online certificate authority (online CA) services, e.g.
EJBCA [15].

Requirement 4 has two implications: firstly, the pseudonym
credential must not contain any information as to the identity
of its requester, secondly, the internal security procedures and
measures of the pseudonym attester must ensure the access to
the records is strictly limited to authorized personnel.

Requirement 5 describes the different types of sources
from which pseudonym credential requests may originate.
Pseudonym certificates requested by the user, either with the
help of their long-term user certificates or a proxy certificate
generated from the former, will leverage the existing X.509
authentication as is. In the course of using Grid resources,
the user may delegate their rights to further components
acting on their behalf such as the credential repository service,
MyProxy [16]. These, in turn, may delegate the credentials
further to Grid portals and hence, pseudonymity requests from
portals need to be handled. In order to increase entropy and
thus hinder statistical correlation attacks (req. 6), a portal
should request new unique pseudonym credentials for each
job launched. Portals will delegate the pseudonym user’s
rights further to the point where the job reaches a Computing
Element(CE) [17]. The CE is responsible for collecting the
resources defined by the job description and selects a com-
puting node for the execution of the job. The collection is
done with the permissions of a limited proxy. The CE may
also decide to request new pseudonym credentials for each

222

resource access needed for the staging of the job, thus, the
pseudonymity system must accept requests from CEs as well.

Requirement 6 is the most difficult to address since there
are many sources that indirectly provide more information
concerning the pseudonym user’s identity. The pseudonym
attester may however, guarantee that the additional personal
attributes the user wishes to include in the pseudonym creden-
tial, e.g. role, group membership information, capabilities etc,
will not uniquely identify the user. This requires modification
of auxiliary authorization services since these must provide the
pseudonymity system information about whether the requested
user attribute combination is uniquely identifying or not.

According to the requirement 7, adding a pseudonymity
system into the overall security infrastructure must not weaken
security nor introduce new security holes. The ability of the
pseudonymity system to circumvent purely identity based lim-
itations like blacklists is at first sight one such hole. However,
an abuser of pseudonyms will be detected equally and can
be deprived the usage of pseudonyms. Other limitations on
the user’s credentials like a proxy certificate limitation, must
prevail.

The Functional Requirements (FR#) and software compo-
nents that are minimally needed to implement a working
pseudonymity system are summarized below:

FR1 The pseudonymity system should authenticate all re-
quests relying on existing Grid security mechanisms, i.e.
SSL/TLS communication and X.509 certificates.

FR2 The communications in all interactions should be pro-
tected with authenticated and encrypted SSL/TLS chan-
nels.

FR3 Pseudonym credentials should be modeled as X.509
certificates.

FR4 Additional individual attributes (role, group etc) should
be modeled as Attribute Certificates.

FR5 Pseudonym credential requests should be honoured to
entities authenticating with user long-term X.509 cer-
tificates and proxy X.509 certificates.

FR6 The credential issuance of the pseudonymity system
must not include manual operations, in other words, it
should operate in the same manner as an online CA.

FR7 Auxiliary authorization services must offer function-
ality that allows the pseudonymity system to judge
whether additional user attributes to be included in the
pseudonym credential identify the user uniquely.

FR8 A pseudonym credential requested with a credential
having rights limitations, must, if granted, return a
pseudonym credential with identical limitations. A lim-
ited proxy is an example of such a credential.

FR9 The pseudonymity system must not create ways to
circumvent the security of the system.

V. DISCUSSION

In this section we discuss some architectural and functional
issues of the pseudonymity system before describing the
alternative solutions in the next section.

A. On the architecture of the pseudonymity system components

We outlay our solution alternatives using three independent
components: the pseudonymity service, the online CA service
and an Attribute Authority. Having this separation allows us
to benefit from existing and well-tested attribute authority
and online CA software. Also, we avoid reimplementing their
functionality within the pseudonymity service. In this setting,
the pseudonymity service acts as a Registration Authority
authenticating the users and validating their requests before
forwarding the requests to the online CA. The pseudonymity
service fulfills the traceability requirement 2 by maintaining
records of the pseudonyms issued to the authenticated users.
Having an automated online CA ensures the timely delivery
of pseudonym credentials in accordance with FR6.

Due to the short-life time of pseudonymous credentials, we
anticipate that certificate revocation functionality is not vital.
However, such functionality can be added later non-intrusively
if deemed necessary. This is similar to the fact that Certificate
Revocation Lists (CRLs) are not used against individual proxy
credentials, but against the underlying long-lived ones.

It is likely that a virtual organization offering Attribute
Authority services will also provide a pseudonymity service
for its user community. Therefore, even though this division
into separate components apparently violates requirement 4,
we consider this an insignificant relaxation of constraints.

B. On generating the pseudonymous identities

In principle, the pseudonymous identifiers could be re-
quested by the user, generated by the pseudonymity system,
or, possibly even the online CA in some cases, depending
on the implementation. This process could also include some
modifications to the request for supporting different protocols
and message formats in the communication with the online
CA by one single message schema between the client and the
pseudonymity system. In this paper we limit ourselves into
stating that all of the above options can be made sufficiently
secure for the purposes of pseudonymity and postpone the final
choice.

After this first stage the Grid user has a pseudonymous cre-
dential with a random DN. This credential does not necessarily
have the user’s attributes attached as these are granted by their
Attribute Authorities. Therefore, in order for the users to gain
access to additional resources enabled by their attributes, the
attributes have to be retrieved on a second stage from a trusted
Attribute Authority that has the knowledge of who possesses
the pseudonymous identity. Variations to this two-step creation
of a pseudonymity credential are described in further detail in
the next section.

C. On required modifications to Attribute Authority compo-
nents

In all the scenarios described in the next section, the internal
data models of Attribute Authorities need to be extended
to associate pseudonyms as aliases of real users. Upon re-
ception of an attribute request related to a pseudonym, the
Attribute Authorities should return information on the degree

223

of uniqueness of the user attributes as stated in FR7. This is
not normal feature of Attribute Authorities and thus implies
slight changes to the ones supported. The threshold degree and
what is done when this limit is reached need be configurable
on a pseudonym service basis. Ultimately it is however the
task of the VOs to attempt to ensure the user groups remain
sufficiently large to prevent this from occurring. Also the
Attribute Authority must have a way of cleaning up the old
expired pseudonyms so that the pseudonymity list doesn’t
become unmaintainably large over time.

VI. SOLUTIONS

We discuss the pros, cons and differences of three al-
ternative architectures. The last one which we propose for
implementation, is in our understanding the most advantageous
architecture.

A. First scenario: All-in-one pseudonymity service

In the first alternative fulfilling the requirements of chap-
ters III and IV, the Grid user communicates only with the
pseudonymity service to acquire a complete pseudonym cre-
dential including the desired set of auxiliary user attributes.
First, as shown in Fig. 1, the Grid user requests a pseudony-
mous credential from the pseudonymity service. Next, the
pseudonymity service contacts the user’s Attribute Authority
and the user attributes are added to the pseudonym credential
request. This request is then passed on to the online CA for
signing. Once signed, the pseudonymity service returns the
now valid credential back to the user.

Fig. 1. All-in-one pseudonymity service. The pseudonymity service contacts
both the Attribute Authority and the online CA.

This scheme has some disadvantages in that the
pseudonymity service will have to handle attribute requests
from the Grid user. If the attribute requests are not handled
by the pseudonymity service, then the Attribute Authority will
have to return all attributes with the pseudonymous credential
for that particular user each time. Another complication is
that the pseudonymity service needs to implement all the

APIs, communication and error handling of the Attribute
Authorities that need be supported. If any of these change,
the pseudonymity service has to be changed accordingly.

An advantage of this scheme is that the pseudonymity
service has the possibility to decline to issue a pseudonymous
identity altogether if the requested user attributes are uniquely
identifying. The pseudonymity service would basically replace
the Attribute Authority so when the user wants a short
lived proxy, he vould use the pseudonymity service instead
of Attribute Authority resulting in pseudo proxy instead of
normal proxy.

B. Second scenario: Pseudonymous identities with user-driven
identity registration

By making the users themselves register their pseudony-
mous identities to the Attribute Authorities as shown in
Fig. 2, we eliminate the need to support this registration
in the pseudonymity service. In addition, the users will
request their auxiliary attributes directly from the Attribute
Authorities exactly as in current Grid middleware. This latter
point removes the burden of supporting the different APIs
of Attribute Authorities in the pseudonymity service. Both
features simplify the API and the internal architecture of the
pseudonymity service.

Fig. 2. Pseudonymous identities with user-driven identity registration.

This two-phase approach differs technically from the first
scenario in that the attributes will have to be included in a
proxy certificate derived from the pseudonymous certificate.
From the end user perspective this is irrelevant since it is
functionally equivalent to ordinary proxy certificates used for
single sign-on.

The pseudonymous credential is associated to the real user
in the Attribute Authority by having the user pass this mapping
directly, as shown in Fig. 2. This method poses a possibility for
misuse as the user can pass somebody else’s pseudonym thus
causing mismatch between the mapping in the online CA and
that in the Attribute Authority. Complex and rigorous controls
would have to be implemented for this method.

224

In contrast to the first scenario, the pseudonymity service
has no possibility to discern whether the requirement of non-
uniquely identifying user attribute sets (FR7) is met. This
responsibility is pushed entirely to the Attribute Authorities.

C. Third scenario: Pseudonymous identities with automatic
identity registration

A second method of mapping the pseudonym to a real
user within the Attribute Authority is for the pseudonym
service to contact the Attribute Authority and register the
pseudonymous credential on behalf of the user. This prevents
the Grid user from tampering with the pseudonymous to real
user credential mapping in the Attribute Authority. Once the
Attribute Authority has this mapping, the Grid users can
contact the service and request their user attributes to be added
to the pseudonymous credential just like they do with their real
credentials.

Fig. 3. Pseudonymous identities with automatic identity registration.

In addition to the simplification of the pseudonymity service
described in the second alternative, this final solution has
the benefit of removing the possibility of tampering with the
pseudonymous identity. Another benefit is that the existing
client software implementations can be used for requesting the
attributes from the Attribute Authorities by pointing them to
use pseudonym credentials instead of the real user credentials.

This solution is the one deemed most promising as it
takes the best advantage of the existing systems incurring the
least changes to them. Also from the user point of view the
system has a distinct pseudonymity step and after that the Grid
systems operate the normal way.

VII. CONCLUSIONS

This paper describes the requirements and initial design of a
general pseudonymity service that provides pseudo anonymous
access to the Grid. The system allows the users to employ
their attributes to access the Grid while hiding their true
identity.

The repercussions of hiding the user’s identity are hard
to determine without getting real world experience with a
prototype. A prototype will also shed light on the magnitude of
the information leakage problem (req. 6). Currently, to reduce
the risk of leaks both the community of users employing
pseudonyms and the mix of actions and operations they
perform in a Grid need to be large. Ideally, every action on
the Grid would use a different pseudonym and use it only
once. This makes it difficult to correlate different actions of
any single user. On the other hand, even different one-time
pseudonym identifiers may be correlated if they are used from
the same IP address and this address is not used by any other
pseudonym user. The pseudonymity system may thus only
partially counteract the leakage problem. Ultimately, the users
themselves are required to actively reduce such risks.

The large groups needed for preventing the correlation of
actions to a single user pose also a problem. For example
using pseudonyms for file access means that the access has
to be based solely on the groups and attributes of the user. If
the groups are large, it means that there are many people that
have access to the files, thus there is less privacy of the files.
Also there is less compartmentalization of users and thus in
case of compromise of a user has bigger potential for damage.
In the end the group size is a balancing act between the VO
needs of identity hiding and resource security.

Also, some legislative concerns must be addressed. For
example, in some countries the law expects site administrators
to know the real identities of the users. The pseudonymity
system does maintain the link, that is obtainable, between
the real user identity and the pseudonymous version but
this may not be enough for some regulations. Unless some
governmental identity escrow is available, this effectively bans
the usage of pseudonyms within these jurisdictions.

It is foreseeable that for large-scale deployments the cer-
tification policy and the pseudonym user’s authentication
sequence should be approved by a Grid Policy Manage-
ment Authority (GridPMA). Another issue in probable con-
flict with most site policies is the generation of long-term
pseudonym credentials for anonymizing long running jobs.
Also, a long-term credential implies a higher security risk than
an ephemeral one.

VIII. FUTURE WORK

The near term work is to implement a prototype of Fig. 3.
It will allow us to gain practical experience of the system
and the identified problem areas, especially the information
leakage problem.

Another important goal to pursue is to ensure the mix
of operations and pseudonymous users is sufficiently broad
to prevent correlation attacks. Also, the connection source
tracking needs to be investigated. To this end, grid portals are
ideal: using pseudonyms through a portal effectively prevents
IP addresses from being tracked assuming job results are also
retrieved through the portal or stored into the grid storage us-
ing a pseudonym. We will explore the benefits and drawbacks
of including portals into the overall architecture.

225

ACKNOWLEDGMENT

The authors wish to hereby thank Olle Mulmo, Ákos
Frohner and David Groep for fruitful discussions, ideas and
feedback contributing to the preparation of this paper.

REFERENCES

[1] EGEE Design Team, “EGEE middleware architecture and planning
(release 1),” Tech. Rep., Aug. 2004.

[2] O. Mulmo, “Global security architecture for web and legacy applica-
tions,” Enabling Grids for E-science in Europe, Tech. Rep., Sep 2005.

[3] J. Hughes and E. Maler, “Security Assertion Markup Language (SAML)
1.1 Technical Overview, Committee Draft,” May 2004, http://www.oasis-
open.org/committees/security/.

[4] ——, “Security Assertion Markup Language (SAML) 2.0 Tech-
nical Overview, Working Draft 04,” Apr. 2005, http://www.oasis-
open.org/committees/security/.

[5] The Globus Alliance, “GridShib Project Web Site,”
http://gridshib.globus.org.

[6] V. Welch, T. Barton, K. Keahey, and F. Siebenlist, “Attributes,
Anonymity, and Access: Shibboleth and Globus Integration to Facilitate
Grid Collaboration,” in 4th Annual PKI R&D Workshop: ”Multiple Paths
to Trust”, NIST Gaithersburg MD, USA, Apr. 2005.

[7] J. Camenisch and A. Lysyanskaya, “An Efficient System for Non-
transferable Anonymous Credentials with Optional Anonymity Revoca-
tion,” in EUROCRYPT ’01: Proceedings of the International Conference
on the Theory and Application of Cryptographic Techniques. London,
UK: Springer-Verlag, 2001, pp. 93–118.

[8] J. Camenisch and E. V. Herreweghen, “Design and implementation of
the idemix anonymous credential system,” in CCS ’02: Proceedings of
the 9th ACM conference on Computer and communications security.
New York, NY, USA: ACM Press, 2002, pp. 21–30.

[9] BEA Systems, BMC Software, CA, IBM Corporation, Layer 7 Tech-
nologies, Microsoft Corporation, Novell, and VeriSign, “Web Ser-
vices Federation Language (WS-Federation), Version 1.1,” Dec. 2006,
http://www.ibm.com/developerworks/library/specification/ws-fed/.

[10] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson,
“Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate
Profile,” RFC 3820, IETF, June 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3820.txt

[11] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, Á. Frohner, A. Gi-
anoli, K. Lőrentey, and F. Pataro, “VOMS, an Authorization System
for Virtual Organizations,” in 1st European Across Grids Conference,
Santiago de Compostela, Spain, Feb. 2003.

[12] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke, “A
Community Authorization Service for Group Collaboration,” in POLICY
’02: Proceedings of the 3rd International Workshop on Policies for
Distributed Systems and Networks (POLICY’02). Washington, DC,
USA: IEEE Computer Society, 2002, p. 50.

[13] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile,” RFC 3280, IETF, Apr. 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3280.txt

[14] S. Farrell and R. Housley, “An Internet Attribute Certificate Profile
for Authorization,” RFC 3281, IETF, Apr. 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3281.txt

[15] EJBCA, “The J2EE Certificate Authority Web Page,”
http://ejbca.sourceforge.net/.

[16] J. Basney, M. Humphrey, and V. Welch, “The MyProxy online credential
repository,” Software: Practice and Experience, vol. 35, no. 9, pp. 801–
816, July 2005.

[17] P. A. et al., “CREAM: A Simple, Grid-accessible, Job Management
System for Local Computational Resources,” in Proceedings CHEP06,
Mumbai, India, 2006.

226

SOPAS: A LOW-COST AND SECURE SOLUTION FOR E-COMMERCE

Marc PASQUET1, Delphine VACQUEZ2, Christophe ROSENBERGER1

1 Laboratoire GREYC: ENSICAEN – Université de CAEN – CNRS
² DRI (Department of Industrial Relationships): ENSICAEN

6 boulevard Maréchal Juin, F-14020 CAEN (France).
marc.pasquet@ensicaen.fr

delphine.vacquez@ensicaen.fr
christophe.rosenberger@ensicaen.fr

KEYWORDS
Smartcards, Authentication, Security for E-Business,
Commercial and Industry Security.

ABSTRACT

We present in this paper a new architecture for remote
banking and e-commerce applications. The proposed
solution is designed to be low cost and provides some
good guarantees of security for a client and his bank
issuer. Indeed, the main problem for an issuer is to
identify and authenticate one client (a cardholder) using
his personal computer through the web when this client
wants to access to remote banking services or when he
wants to pay on a e-commerce site equipped with 3D-
secure payment solution. The proposed solution
described in this paper is MasterCard Chip
Authentication Program compliant and was
experimented in the project called SOPAS. The main
contribution of this system consists in the use of a
smartcard with a I2C bus that pilots a terminal only
equipped with a screen and a keyboard. During the use
of services, the user types his PIN code on the keyboard
and all the security part of the transaction is performed
by the chip of the smartcard. None information of
security stays on the personal computer and a dynamic
token created by the card is sent to the bank and verified
by the front end. We present first the defined
methodology and we analyze the main security aspects
of the proposed solution.

INTRODUCTION

E-commerce is one of the most challenging issue in
computer science nowadays. Many e-payment
architectures have been proposed in the last decade
(Kleist, 2004; Konar, & Mazumdar, 2006; Ekelhart et
al., 2007). Nethertheless, very few have been used in
real conditions for e-commerce. One major reason is
that the defined solution must be supported by major
card schemes such as Mastercard or/and Visa. In the
following, we present two solutions that were defined
within this context.

To limit the risk that the customer can repudiate his
payment transaction, a set of companies (Visa,
MasterCard, GTE, IBM, Microsoft, Netscape, SAIC,

Terisa system, Verisign) have developed, in the eighties
one solution call SET (Secure Electronic Transaction).
The customer’s bank sends him one certificate issued
from one CA (Certification authority) of a PKI (Public
Key Infrastructure) which is stored on his computer.
When he wants to realize a payment on the Web, the
customer must sign with the PKI keys (Rennhard et al.,
2004).

Another solution for electronic payments is 3D secure
(3D–Secure Functional Specification, 2001) developed
by VISA and used by MASTERCARD. The
commercial trademarks are « Secure Code » for
MasterCard and « Verified by Visa » for Visa. The term
3D is the contraction of “Three Domains”:
• Acquiring domain (acquiring bank and merchant) ;
• Issuer domain including the customer

authentication;
• Interbank field which makes it possible the two

other fields to communicate on Internet.

The client realizes his purchase on a merchant’s
Website that is 3D-secure compliant and click on the
payment icon (“MasterCard SecureCode” or “Verified
by VISA”). He is invited to enter his card scheme, card
number and expiration date. The MPI (Merchant Plug-
In) installed in the merchant’s website, contacts the
Visa or MCI directory to obtain the Internet address of
the issuer. Then, using the client’s personal computer,
the MPI contacts the issuer with a formal PAReq (Payer
Authentication Request) message. The client's
authentication is under the bank responsibility. When
that last task is realized, the bank issuer answers to the
MPI of the merchant’s website with a formal PARes

(Payer Authentication Response) message. The MPI
sends an authorization request to the acquiring bank
which transmits it to the issuer which will answer with
an authorization number. This last dialog is realized to
be completely EMV compliant (Europay MasterCard
and Visa). The internationally agreed standards for chip
payment cards. EMV standards are maintained by
EMVCo (EMVCO, 2000). In fact, with 3D-secure, the
authentication problem from the customer / merchant
domain is replaced by the customer / issuing bank
domain (see Figure 1).

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

227

Figure 1: The different communications in 3D-secure
payment

The most important challenge today in the 3D-secure
architecture for a bank issuer, is to authenticate one
client with as many guarantees as possible with the
lowest cost. The goal of the SOPAS project in which we
are involved in, is to propose new e-transaction
architecture. The objective is then to develop a secure
and a low-cost solution that can be attractive for banks
considering security and commercial issues. We show
in this paper some elements on the security of the
proposed architecture and the reasons why we think this
solution can be supported by major card schemes.

We describe in the next section, the proposed
architecture defined within the SOPAS project. In the
third section, we focus on the security issues of the
proposed solution. Conclusions and perspectives of this
work are given in the lat section.

SOPAS PROJECT

The idea of the SOPAS project is to fulfill two services
for one client. The first one is the payment on an e-
commerce site equipped with a 3D-secure payment
solution. The second service deals with remote banking
and concerns the use of a personal computer by a client
through the web to access to his bank account and to
realize different operations (consultation or bank
transfers for example). We think that the proposed
solution must allow this last service for economical
reasons. A bank could be ready to adopt the solution
even it will cost some more money if it can offer an
additional service for a client. Remote banking is
generally a service that is rarely free for a client. A
more secure remote banking could be more expensive
for a client but will provide also some more secure e-
commerce possibilities. We present in the next
subsection some more details on targeted services by
the SOPAS project.

Objectives

First, we have in particular to fulfill the client needs to
use Internet to carry out its remote banking operations.
Today, implemented solutions have the main drawback
to be based on a password authentication that is not
really secure (Pfitzmann et al., 1997). Thus, the SOPAS
project has two major objectives:

• to gain the user's confidence;
• to provide a secure solution whose cost of

deployment is as cheap as possible.

The client must be able to realize different operations
such as those detailed in Table 1:

Table 1: Remote banking operations

Operations Examples
Standard
operations

Consultation, transfer, direct
debit …

Credits Consummation credit, real estate
credit…

Assurance Assurances subscriptions for
automobiles, home…

Saving & Shares Opening of a saving account,
stock buying & selling

These transactions are very sensitive if we consider the
financial impacts of an uncontrolled use. So, before any
access to a banking site, a preliminary authentication is
required. When the client is authenticated, the remote
banking site proposes all the possible operations.

For certain operations realized by the client, it could be
necessary:

• To protect against all alterations, the
transaction exchanges between the client and
the bank;

• To guaranty the good achievement of the
transaction to the client;

• To have the client’s agreement proof.

All that objectives (authentication, integrity, good
achievement and client’s agreement proof) can be
realized by question/answer mechanisms:

• The bank generates a question and the client
uses a personal device to generate an answer to
the bank;

• The bank verifies this answer for the
authentication process or to validate the
transaction.

Second, one client must be able to make a payment on
e-commerce websites in an easy and a secure way. We
assume here that the merchant is 3D-secure compliant.
This is not a strong hypothesis as it is supported by
MASTERCARD and VISA.

228

General principles

We propose to use three elements in order to guarantee
the client's authentication for remote banking and for
3D-secure compliant e-commerce:

1. smartcard: a client is also a cardholder. This
smartcard is considered by the banks as very
secured and have been personalized by the
issuer bank with cryptographic keys to achieve
many secure operations. The belonging of this
smartcard and the knowledge of the PIN code
by the cardholder gives some good guarantees
for the bank issuer for its authentication.

2. Personal device: the personal computer is not a
secure environment for a strong authentication
of the cardholder. We propose to use a separate
device as an interface between the smartcard
and the personal computer. This personal
device must be very secure and low cost. The
solution is here to use a box just equipped with
a 2x12 figure screen, a 4x4 keyboard, a card
reader and no chip. It is the smart card itself
which pilots directly the personal device by its
I2C bus and communicates with the personal
computer by its USB bus. This solution is very
different to the solutions which use a device
which is able to compute. Here the
“intelligence” and the security of this personal
device is completely delegate to the smart card.
When the smart card is not connected to the
personal device, this one has no secret at all
and can be produced everywhere in the word
for a very low cost.

3. CAP (Chip Authentication Program)
(MasterCard, 2004): CAP provides online
chip-based cardholder authentication within
the SecureCode™ program. It encompasses the
chip application, the terminal, and the issuer
server used in the authentication process, and
the interfaces between these components.
When the smartcard is slip in the personal
device, the cardholder is invited to tape is PIN
code on the keyboard. The PIN code goes
directly to the smartcard and this one computes
a token sent to the bank issuer via the personal
device, the computer and the network without
any modification.

Such a solution makes it possible to guarantee a
complete security of the access to remote bank
applications via Internet, ready to develop the
confidence of the users.

The Figure 2 shows the SOPAS scheme for a remote
banking application. The user has a SOPAS smartcard
and a SOPAS personal device giving him access to the
service. The user proves with the card that he is the
legitimate cardholder by entering his PIN code. The

card generates a token call “CAP token” which is used
as authentication proof by the user to his bank. The
token thus generated is transferred from the card to the
user’s personal computer via the personal device, then,
to the front end of the bank via the Internet network.
This device is currently not used to require the user’s
assent at the time of a significant banking operation (as
in case of purchase stock for example). Indeed, the
device would make it possible to seal a transaction; this
seal is for the bank a proof of the user’s assent.

Figure 2: SOPAS solution for remote banking

The SOPAS solution is used mainly to authenticate the
user to his bank. This solution, based primarily on the
concepts of CAP authentication (MasterCard), should
moreover be easily transposable everywhere in the
world (see Figure 3).

Figure 3: SOPAS solution for e-commerce

Interface protocols

The protocol used for the authentication is of
challenge/answer type. The bank sends a random
number to the card which turns over a token function of
the received random number. This mechanism avoids
the attack by replay, contrary to the systems of
authentication having a static signature. Figure 4
illustrates the communication protocols used with the
interfaces of the various entities intervening in the
proposed solution.

Client Token

Client
Card

Personal
device

Personal
computer

Internet

HSM Token

Remote banking
server

Personal
computer Purchase and payment selection

PAReq
PARes

VEReq
VERes

VEReq
VERes

Authorizatio

Authorizatio

Bank issuer
(ACS) Bank Acquire

Visa or MCI
directory

Merchant
site

MP

Internet

Internet

Internet Card
scheme
network

Internet

Client

Client
card

Persona
l device

CAP
Authentication

Token Card
scheme
network

Authentication
server

229

Figure 4: Interface Protocols

We can highlight the different parts of the figure 4:
• The SOPAS Card communicates directly with

the personal device (equipped with a keyboard
and a LCD screen) by a different interface than
which is used to communicate with the
personal computer. The protocol used is then
I²C (ISO, 1995). This is particularly important
from the security point of view of the solution.
This bus makes it possible the card to interact
directly with its cardholder by presenting him
some information via the LCD screen and
while requiring some information (like his PIN
code) via the keyboard of the personal device.
These two operations thus do not require the
intervention of the computer which is
considered as a non secure element.

• The SOPAS card communicates directly with
the user’s personal computer with USB
protocol via the personal device.

• The user’s personal computer is exchanging
information with the front end of the issuer
bank using HTTPS protocol because the
network is Internet.

Architecture

The following diagram (see figure 5) details the
architecture and the relationships between the card and
the personal device. We can observe that the USB and
I²C bus allows the card, either to communicate with the
customer’s personal computer via the USB interface, or
to communicate directly with the personal device in
order to reach its keyboard and its screen.

The second circuit (I²C bus) strongly takes part in the
security solution. The CAP token is calculated by the
card, after the PIN code verification, then sends via the
different devices without any modification and control
to the HSM (Hardware Security Module) connected to
the Bank Front End. So, only the two secure devices
(Card and HSM) are able to calculate or verify the
Token.

Figure 5: SOPAS architecture

SECURITY ANALYSIS

The objective of the section is to provide an analysis of
the SOPAS solution as regarding the security aspects.
We study the whole chain in order to determine the
potential risks, then to provide some associated
countermeasures. This analysis can lead us to possibly
modifications of the specifications of the final solution.
This is particularly justified by different attacks
(phishing and pharming) against remote banking
services and the different well known attacks in e-

230

commerce and e-payment. We will endeavor to show
that these attacks are completely identified within the
framework of this analysis. It will appear that the
SOPAS solution can then, in addition to being a
solution of customer's authentication by his bank, can
be a good solution for the bank authentication by the
customer, making thus inoperative the previous attacks.

Methodology

To realize that study, we have used the EBIOS method
(DCSSI, 2004). The card operating system answers the
safety requirements evaluated according to common
criteria (ISO, 2006). During the personalization of the
card, the later remote applet loading is blocked. The
card and the personal device are delivered by the bank,
and the card delivery follows the standard bank card
protocol (security requirement) and is delivered in a
face to face situation by the bank. The delivering of the
PIN is sent to the cardholder by the standard PIN mailer
procedure.

Due to its cost, the personal device is an object which
cannot be repaired and which is the subject to a
standard exchange in the case of problems (in that
eventuality the material is destroyed). The cardholder
uses the SOPAS architecture in a personal environment
and known conditions as standard use (for example
without a company network environment…). The
personal computer operating system is an area of risk
whose protection is out of the study perimeter. The
remote banking server (software and hardware) follows
completely the security bank requirements. The bank is
supposed to have correctly dimensioned and protected
its architecture against mass attacks. The contract aspect
between the cardholder and the bank must be reviewed
by the bank lawyer and are not covered by this study.
The SOPAS Smart card is not only a debit or credit card
but includes also a CAP capability.

Results

The perimeter includes the following security domains:
• The user,
• The SOPAS smart card,
• The personal device (with its screen and

keyboard),
• The link between the personal device and the

client personal computer,
• the client personal computer,
• The bank server,
• The link between the bank server and the client

personal computer.

The components, directly concerned by the SOPAS
solution, appear in the top left hand in Figure 6. The
total perimeter of the study is represented by an ellipse
in Figure 4. The red entities inside the perimeter are
those whose risks are excluded by the assumptions or

whose countermeasures do not concern directly the
SOPAS solution. For example, the SOPAS solution
cannot ensure that the client personal computer is free
from any virus software. In the same way, SOPAS
cannot ensure that remote banking server is suitably
configured, dimensioned... Nevertheless, for the red
elements belonging to the perimeter, the analysis will be
able, if necessary, to propose a countermeasure.

Figure 6: Study perimeter

The perimeter of this study integrates the data
processing sequence of the authentication, from the card
to the interface of the banking server. Before using the
SOPAS smart card, procedures of personalization and
distribution are necessary. Although, these last do not
belong to the perimeter of the SOPAS solution.

The study of the vulnerabilities realized enables us to
formulate a list of risks incurred by the essential
elements. The transformation of these risks in scenario
makes it possible to better apprehend them and judge
their gravity. In this study, we formulate 19 risks. The
majority of them concerns the banking data of the user
or the technical information allowing the authentication
of the customer by his bank.

The incurred risks are:
• The lost of availability ;
• The usurpation of identity ;
• The break of the RSA Keys of the SOPAS smart

card (Anderson, 1994) ;
• The deterioration of banking data ;
• The disavowal of action ;
• The right abuse ;
• The divulgation ;
• The illicit processing of data.

During this study, a certain number of threats were
identified. The threats which were retained are those
which have a direct impact on the authentication
mechanism. Additional threats, mainly on the remote
banking server (except authentication function) were
sometimes retained because it will have been judged
that the SOPAS smartcard and the SOPAS personal
device could thwart these last. They are mainly the
threats and risks induced by the use of a personal
computer to which remote banking services cannot
grant its confidence. Indeed, it is not rare that the
computer has been infected by a Trojan horse and

231

became victim of the technique known as of the
pharming.

It was shown during the study that the SOPAS solution
makes it possible to cover the risks thus identified by
associating to him a functionality of checking to a
banking server certificate. That prohibits a fraudulent
site to be recognized as being the bank. The user’s
personal computer not being confident, it is of primary
importance so, on one hand, the checking of the server
certificate must be embedded in the smartcard and, and
on the other hand, the result of this checking must be
shown on the personal device screen.

Finally, the risk of disavowal an action was retained
because the authentication of a user does not have any
value of assent on an action realized between the
beginning and the end of connection. This implies the
need for the user to sign each remote banking
operations (of a sufficient amount). The signature
functionality is in fact already present in the SOPAS
smartcard but is just used for the user authentication by
the bank.

This analysis also showed that, so far as we suppose
that the user personal computer is safe (what is not the
case but that nevertheless is posed like assumption), the
encryption of the communications between the SOPAS
smartcard and the user personal computer is not
necessary. Indeed, the messages forwarding between
these two devices are challenge/answer type, and are
secured by that way. Coding from beginning to end
would be a solution to mitigate the vulnerability of the
personal computer which, by the presence of the
malevolent programs, could deteriorate the banking
data. This solution is however not realistic since at one
time or another, the banking data must be posted on the
screen of the personal computer.

To conclude this part, the SOPAS smartcard decreases
the risks induced by the potential vulnerabilities of the
personal computer. Indeed, the secrecies of connection
of the user cannot be recovered any more by a simple
keylogger or other spyware and attacks it by replay is
not more exploitable. The use of a certificate embedded
in the card and the checking of the bank certificate by
the SOPAS smart card could further decrease the risks
induced by phishing and pharming techniques.
Nevertheless, the use of a personal computer that is not
controlled (by the bank) remains the Achilles' heel of
this service. Recurring problems here are found: how to
protect data in an hostile environment?

CONCLUSIONS AND PERSPECTIVES

The SOPAS solution is made up of a personal device
(card reader, screen and keyboard pilot via the I2C bus
by the card) and a smart card (Multi applicative card
with the embedded SOPAS solution and standard

EMV), the cost of the card is a little bit more expensive
than a standard EMV chip card (6 to 8 €) but the
personal device is very cheap (10 to 20 €). This makes
it possible for the bank to deliver cards and personal
devices to their clients interested for secure remote
banking services and e-commerce.

Thus, the equipped user is able to generate a “CAP
token” that he transmits to the bank like an
authentication value, when he wishes to reach his
remote banking services or to pay on the Web. The
bank is convinced to deal with the good person because
the smartcard, before generating the token, requires
from the customer to enter his PIN code (known only
by the card and the card holder), thus resolving the
problem of the CAP token generation.

The security analysis of that solution shows that if we
consider the limits created by the use of a unsecure
personal computer, the SOPAS approach is a very good
and secure solution compared to is deployment price.

There are some perspectives of this work. Two main
changes are possible in order to limit the possibility for
the user to repudiate his action:

1. To oblige the user to sign each remote banking
operations (of a sufficient amount).

2. To use CAP Token generation options. In the
Cap protocol, it is optionally possible to
include the transaction amount and currency in
the CAP transaction. This option is indicated
by a flag in the card application, bit 8 of the
IAF (Internet Authentication Flags).

3.

ACKNOWLEDGMENTS

Authors would like to thank all SOPAS project
members: Alliansys, Credit Mutuel, Cartes Bancaires,
Fime, Gemalto, the Basse-Normandie Region, and the
French Ministry of Industry (DGE), for their kind
cooperation.

REFERENCE

Anderson, R. (1994) Why Cryptosystems Fail.

Communications of the ACM. pp. 32-41
ftp://ftp.cl.cam.ac.uk/users/ rja14/wcf.ps.gz.

DCSSI (2004) EBIOSV2: expression of needs and
identification of security objectives

Ekelhart, A., Fenz, S., Tjoa, A.M., & Weippl, E.R., (2007)
Security Issues for the Use of Semantic Web in E-
Commerce. BIS 2007, LNCS 4439, Springer-Verlag, pp.
1–13

EMVCO (2000) EMV 2000 specifications.
http://www.emvco.com/specifications.cfm

ISO (2006) ISO/CEI 15408 Version 3.1 Common Criteria for
Information Technology Security Evaluation.

232

Kleist, V.F., (2004) A Transaction Cost Model of Electronic
Trust: Transactional Return, Incentives for Network
Security and Optimal Risk in the Digital Economy.
Electronic Commerce Research, vol. 4, pp. 41–57

Konar, D. & Mazumdar, C. (2006) An Improved E-Commerce
Protocol for Fair Exchange. ICDCIT 2006, LNCS 4317,
Springer-Verlag, pp. 305–313.

ISO 7816 (1995) Standardization of smartcards
MasterCard (2004) Chip Authentication Program – Functional

Architecture
Pfitzmann, A. (1997) Trusting Mobile User Devices and

Security Modules. Computer, pp. 61-68.
Rennhard, M., Rafaeli, S., Mathy, L., Plattner, B., &

Hutchison, D. (2004) Towards Pseudonymous e-
Commerce. Electronic Commerce Research, Springer, vol.
4, pp. 83-111.

Visa Corporation. (2001) 3D–Secure Functional Specification,
Chip Card Specification v1.0.

AUTHOR BIOGRAPHIES

Marc PASQUET is an assistant
professor at ENSICAEN, France. He
obtained his Master degree from
ENSAM (Ecole Nationale Supérieure des
Arts et Métiers) in 1977. He worked for
13 years for different companies
belonging to the signal transmission field
and 15 years for the banking sector in the

field of electronic payment. He joined ENSICAEN
(National Engineer School of Caen in France) in 2006
where he is now leading researchs in the field of
electronic payment.

Delphine Vacquez is a Research &
development engineer at ENSICAEN,
France. She obtained her Master degree in
2006 from the University of Caen
(computer science department). She has
been working in the field of secure and

contacless e-payment.

Christophe Rosenberger is a Full
Professor at ENSICAEN, France. He
obtained his Ph.D. degree from the
University of Rennes I in 1999. He works
at the GREYC Laboratory. His research
interests include evaluation of image

processing and biometrics. He is involved recently on e-
transactions applications.

233

234

Performance of Security Mechanisms

in Wireless Ad Hoc Networks

Matthias Becker, Martin Drozda and Sven Schaust

FG Simulation und Modellierung, Institute of Systems Engineering, G. W. Leibniz University of Hannover

Welfengarten 1, 30167 Hannover, Germany.

Email: {xmb,drozda,svs}@sim.uni-hannover.de

Abstract— Adding security mechanisms to computer and com-
munications systems without degrading their performance is a
difficult task. This holds especially for wireless ad hoc networks
that, due to their physical and logical openness, are easier
to attack than wired networks. Additionally, such networks
are expected to have less resources in terms of computational
capabilities and must also rely on batteries for power supply.

We investigate the impact of two misbehavior detection mecha-
nisms based on Neural Networks and Artificial Immune Systems.
In the performance analysis we assume that wireless devices, in
many scenarios, must work with extremely limited computational
resources. An example of such a scenario are sensor networks.
This implicates that the security system of choice has to be
very efficient in order not to disturb the normal wireless device
operation.

Index Terms—Artificial Immune Systems, Neural Networks,

Sensor Networks, Misbehavior Detection.

I. INTRODUCTION AND MOTIVATION

Adding security mechanism to computer and communi-

cation systems results in their decreased performance. The

decrease can even result in a complete system failure caused by

the security mechanism, e.g. an email server might be forced

to stop some services because of its spam filter exhausting the

processor.

Since security mechanisms can have an impact on the qual-

ity of service of stationary systems with huge computational

and power resources, the effect can be much more severe in

computationally limited and energy constrained systems.

In this work we consider wireless sensor networks, which

are a specific kind of ad hoc wireless networks. Ad hoc

networks have no fixed infrastructure (as opposed to wireless

clients that connect to a fixed base station). Typical devices

employed in an ad hoc network are laptops, PDAs, mobile

phones. A sensor network is a collection of small wireless

devices, or sensors, that are able to monitor the deployment

area. The sensors then transmit all measured information to

a collection station (sink). Such measured information is, in

general, forwarded by intermediate sensor that lie between

the information acquisition sensor and the collection station.

Sensor networks are expected to find applications in many

engineering as well as military or rescue scenarios.

A typical security problem in sensor networks is to detect

and isolate misbehaving nodes. The misbehavior might be a

malfunction due to the damage of a sensor node, or a malicious

attempt to disturb or misuse the functions of the sensor

network. The nature of a misbehavior is rather unforeseeable,

thus an intelligent approach is needed that would also respond

to new kinds of attacks. This is in contrast to employing

hard-wired attack signatures that do not offer the flexibility

needed. Additionally, there is usually not enough memory on

sensor nodes to include any attack signature database (e.g.

virus signatures).

Approaches for misbehavior detection in wireless ad hoc

networks based on Artificial Immune Systems (AIS) have

been presented in [9], [14] and with focus on sensor networks

in [22]. An approach based on Neural Networks (NN) can be

found in [23].

Both approaches have been compared in [16]. NN have been

successfully used in pattern matching and for detection in var-

ious fields, among them also detection of user anomaly [18],

[19] and detection of network intrusion [17]. There exist also

flavors of NN where their training continues during operation

which should be valuable for highly dynamic systems such as

ad hoc networks.

In [23], NN have been evaluated for misbehavior detection

in sensor networks and a comparison to AIS with respect to

the detection quality has been done.

In this work, the scenarios used in [23], [22] and [24]

will be the base for this study of the impact of the security

mechanisms (AIS and NN) on system performance. We will

study the computational costs of the learning phase as well

as the computational resources needed in the detection phase,

and how both security mechanisms affect the performance of

a sensor node.

This document is structured as follows. First, we will shortly

review the mechanism of AIS and NN. Second, an outline of

the scenario will be given and third, the detection performance

of AIS and NN as well as the computational resources needed

for the detection will be discussed.

II. ARTIFICIAL IMMUNE SYSTEMS

The Human Immune System is able to distinguish between

what is usually is part of the human body (self antigen), and

everything else (non-self antigen), which is usually some kind

of foreign agent, be it something mechanical (splinter etc.) or

a disease (virus, bacteria).

Inspired by the Human Immune System, Artificial Immune

Systems have been developed and have already been consid-

ered to be a viable means for misbehavior detection in com-

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

235

munication networks, and especially in flexible environments

such as ad hoc and sensor networks.

An Artificial Immune System basically can be divided into

two parts, namely a learning phase and a testing phase. In

the learning phase the system uses a so called self-set, which

represents the expected behavior, to create a set of anomaly

detectors. During the testing (or detection) phase, this detector

set will be used to detect anomalies. It is necessary that any

detector is unable to match a normal behavior. Otherwise false

positives may occur. A false positive is a detected anomaly

which is caused by an incomplete self-set during the learning

phase. We will discuss the process of learning in more details

in the following subsection. The testing phase is the phase in

which the detection actually happens. For an observed time

window the system measures different network and traffic

features for the neighborhood of a single node and computes

an antigen. Each computed antigen is then matched against

the complete detector set of the particular single node.

A misbehavior detection system for ad-hoc wireless net-

works based on AIS has been introduced in [14], [15]. The

authors also suggest to use a co-stimulation for misbehavior

classification in the form of a danger signal. The function of

the danger signal is to inform nodes on a forwarding path about

deterioration in terms of a quality of service (QoS) measure.

The signal is sent from the connection source to the connection

sink, thus propagating QoS information along the connection

route. Danger signals were introduced in [3].

One of the earlier proposals of AIS for misbehavior detec-

tion was given in [9]. The authors describe an AIS able to

detect anomalies at the transport layer of the OSI protocol

stack, considering only TCP connections in a stationary wired

network. They define the normal network behavior (self) as

normal pairwise TCP connections. Each detector is represented

as a 49-bit string. The pattern matching is based on r-

contiguous bits with a fixed r = 12.

In [12] the authors discuss a network intrusion system

that aims at detecting misbehavior by capturing TCP packet

headers. They report that their AIS is unsuitable for detecting

anomalies in communication networks. This result is ques-

tioned in [4] where it is stated that this problem occurs because

of the specific choice of problem representation and also due

to the choice of matching threshold r for r-contiguous bit

matching.

In [22] an AIS approach, measuring network features at the

link and network layer of the OSI stack, has been studied

for sensor networks. The authors use a fixed ad hoc sensor

network scenario with approx. 1700 nodes, of which 236 are

misbehaving, and 10 concurrent connections with a constant

bit rate traffic. The implemented misbehavior in their exper-

iments is probabilistic packet dropping. They conclude that

their AIS is capable of detecting such a misbehavior in the

described environment with about 80% accuracy.

A. Learning Mechanism of Artificial Immune Systems

The process of T-cells maturation and selection in the

thymus is often used as an inspiration for learning in AIS. In

AIS, the characteristics of self and non-self can be represented

as bit-strings. The role of detectors is to detect non-self

antigen. A popular algorithm for matching detectors and non-

self antigen, if represented as bit-strings, is the r-contiguous

bits matching rule. Two bit-strings of equal length match under

the r-contiguous matching rule if there exists a substring of

length r at position p in each of them and these substrings are

identical.

In order to generate a set of working detectors, pseudo

random detectors are created and tested with self. Only if a

detector does not match any self-antigen, the detector is added

to the detector set. This generate-and-test approach (negative

selection) described above is analyzed in [6]. They assume

that both self and non-self sets, as well as detectors can be

modeled as bit-strings of length l. Let the size of the self set

be NS , the probability that a randomly chosen detector and a

string from the self set match be Pm and the probability that

a string from the non-self set is not matched by any detector

be Pf . Then the time and space complexity of this algorithm

for a fixed matching probability Pm is O(
−ln(Pf)

Pm(1−Pm)
NS

NS)

and O(lNS), respectively. This algorithm requires that the

number of required candidate detectors is exponential to NS .

The advantage of this algorithm is its simplicity and good

experimental results in cases when the number of detectors

to be produced is fixed and small [14]. A review of other

approaches to detector computation can be found in [2].

III. NEURAL NETWORKS

Since Neural Networks and the learning via back-

propagation algorithm are well known, we only shortly review

the way Neural Networks work here. Details can be found in

standard textbooks such as [20].

A. Sketch of NN Algorithm

NN learn a function from an input vector to an output vector.

In the so called learning phase input vectors are presented

to the NN and an output vector is calculated. Depending on

whether the output is correct or not, the weights in the NN

are corrected using the back-propagation algorithm in order to

achieve the right output. These procedure is repeated until for

all input vectors, the right output is calculated (within some

epsilon error interval).

The data is divided in a training set and a test set. In the

learning phase, only the training set is used. The test set is

used in order to evaluate the ability of the NN for prediction

of unknown input.

Without these two sets there is the danger of creating a NN

that works perfect on the set used for training (100 percent

correct classification of input vectors), but fails when unknown

input is presented. A similar behavior is often caused by so

called over-fitting, see e.g. [21] for a mathematical analysis of

the problem.

IV. SENSOR NETWORKS

The sensor network simulation scenario used here is de-

scribed in detail in [22], so we only give a sketch of the

scenario here.

236

The sensor network consists of 1718 nodes with a radio

radius of 100m. The distribution of the nodes over a square

area of 2,900m×2,950m is a snapshot of the nodes moving by

the random waypoint mobility model. The motivation in using

this movement model and then creating a snapshot are based

on results on structural robustness of sensor networks [5]. The

traffic in the network is generated by 10 CBR (Constant Bit

Rate) connections. The connections were chosen so that their

length is ∼7 hops and so that these connections share some

common intermediate nodes. For each packet received or sent

by a node the following information has been captured: IP

header type (UDP, 802.11 or DSR [10] in this case), MAC

frame type (RTS, CTS, DATA, ACK in the case of 802.11),

current simulation clock, node address, next hop destination

address, data packet source and destination address and packet

size. We refer the reader to [11] for more information on sensor

networks. We chose source and destination pairs for each

connection so that several alternative independent routes exist;

the idea was to benefit from route repair and route acquisition

mechanisms of the DSR routing protocol, so that the added

value of AIS based misbehavior detection is obvious. Glo-

mosim [7] was used as simulator, with 4-hours of simulated

traffic. We choose to collect traffic information within 28 non-

overlapping 500-second windows in our simulation. In each

500-second window self and non-self antigens were computed

for each node. The experiment was repeated 20 times with

independent Glomosim runs using different random seeds.

A. Encoding of genes

From the captured simulation data the following measures

have been calculated and then coded into genes:

MAC Layer:

#1 Ratio of complete MAC layer handshakes between

nodes si and si+1 and RTS packets sent by si to si+1. If

there is no traffic between two nodes this ratio is set to

∞ (a large number). This ratio is averaged over a time

period. A complete handshake is defined as a completed

sequence of RTS, CTS, DATA, ACK packets between si

and si+1.

#2 Ratio of data packets sent from si to si+1 and then

subsequently forwarded to si+2. If there is no traffic

between two nodes this ratio is set to ∞ (a large

number). This ratio is computed by si in promiscuous

mode. This ratio is also averaged over a time period.

This gene was adapted from the watchdog idea in [13].

#3 Time delay that a data packet spends at si+1 before

being forwarded to si+2. The time delay is observed by

si in promiscuous mode. If there is no traffic between

two nodes the time delay is set to zero. This measure is

averaged over a time period. This gene is a quantitative

extension of the previous gene.

Routing Layer:

#4 The same ratio as in #2 but computed separately for

RERR routing packets.

#5 The same delay as in #3 but computed separately for

RERR routing packets.

Encoding of self and non-self antigens was done as follows.

Each gene value was transformed in a 10-bit signature where

each bit defines an interval1 of a gene specific value range. We

created self and non-self antigen strings by concatenation of

the defined genes. Each self and non-self antigen has therefore

a size of 50 bits. The interval representation was chosen in

order to avoid carry-bits that make the binary representation

less compact.

Simulation runs were done for one of {10, 30, 50%} misbe-

havior levels (packet dropping) and “normal” traffic with no

misbehavior, so that ’self’ could be learned from the normal

behavior and then the quality of the misbehavior detection

could be evaluated either with NN or AIS, using the genes

extracted for the misbehaving nodes for the simulation runs

with misbehavior.

V. TRAINING AND DETECTION QUALITY OF AIS

As described in section II-A, for each node in the network

an AIS has been set up with detectors obtained via the negative

selection algorithm using the genes that encode the traffic

characteristics met around this node during normal network

operation. Only data from nodes with enough traffic has been

used. The experiments in [22] showed that the detection rate is

rather independent of the packet thresholds. Packet threshold

of e.g. 500 means that a node had at least 500 packets to

forward in both the learning and misbehavior (test) phases;

this number is measured over the whole 4-hour simulation

period. Except for some extremely low threshold values the

detection rate stays constant.

Then the genes from the sensor network that includes

misbehaving nodes have been presented to the AIS of the

single nodes for misbehavior detection. A node is defined to

be detected as misbehaving, if it gets flagged in at least 14 out

of 28 possible windows. This definition is equivalent (under

reasonable assumptions) to saying that the time to detection

is double the size of the window, i.e. 1000 seconds in this

case. In [22] it is shown that if the misbehavior level is

set very low, i.e. 10%, the AIS usually struggles to detect

misbehaving nodes, because the traffic pattern of misbehavior

is not distinct enough from the noise appearing in normal

traffic, where also packets are dropped sometimes. At the 30

and 50% misbehaving levels the detection rate stays solid at

about 70-85%.

Beyond the pure detection abilities, in this work we have

a closer look at how parameters related to the computational

complexity of the AIS algorithm influence the detection rate.

Figure 1 shows the impact of r on detection rate. When

r = {7, 10} the AIS performs well, for r > 10 the detection

rate decreases. This is caused by the inadequate numbers of

detectors used; in general the number of detectors should be

doubled when r is increased by one.

Besides r, the number of detectors is the crucial parameter

regarding the detection rate and especially computational

1The interval encoding of genes is adapted from [14]. This way only one
of the 10 bits is set to 1, i.e. there are only 10 possible value levels that it is
possible to encode in this case.

237

 0

 20

 40

 60

 80

 100

20001000500

D
e

te
c
ti
o

n
 r

a
te

 [
%

]

Number of detectors

Detection rate vs. number of detectors

10%
30%
50%

(a)

 0

 20

 40

 60

 80

 100

20001000500

D
e

te
c
ti
o

n
 r

a
te

 [
%

]

Number of detectors

Detection rate vs. number of detectors

10%
30%
50%

(b)

 0

 20

 40

 60

 80

 100

100503025201510987654321

D
e

te
c
ti
o

n
 r

a
te

 [
%

]

Number of hidden neurons

Detection rate using a neural network

10%
30%
50%

(c)

Fig. 2. Detection rate vs (a) number of detectors using 10 connections, (b) number of detectors using 50 connections, (c) the mean number of hidden
neurons. All scenarios use a Poisson based traffic model. Packet threshold was 1000 packets.

complexity. Figures 2 (a) and (b) show that for the actual

problem, less than 1000 detectors are not sufficient for a

good detection rate, 2000 detectors show best success, while

more detectors do not improve the detection rate anymore

and only increase computational complexity and memory

requirements. The figures are based on two scenarios using

Poisson traffic [24], one having 10 connections the other 50

connections. We used the same packet threshold value of 1000

packets for both scenarios in order to verify whether a node

qualifies for detection or not.

VI. TRAINING AND DETECTION QUALITY OF NN

Back-propagation networks with three layers using the

FANN library [8] have been deployed here for misbehav-

ior detection. We used the same representation of good/bad

behavior, i.e. a binary vector of length 50. Therefore the

Neural Networks had 50 input neurons and only one output

neuron (zero indicating good, one indicating bad behavior).

The data from the simulation experiments has been divided

into a training and test set (approx. 2

3
training, 1

3
test). Only

data from experiments/nodes has been used, where enough

data was present (a bad node cannot develop a bad node

pattern, if he is outside the traffic), and where the data was

unambiguous.

 0

 20

 40

 60

 80

 100

 22 19 16 13 10 7

D
e

te
c
ti
o

n
 r

a
te

 [
%

]

r

Number of detectors = 2000

10%
30%
50%

Fig. 1. Detection rate vs r-value of the matching algorithm. Packet threshold
was 1000 packets.

The main parameters of a Neural Network is the number of

hidden layers and the number of neurons in the hidden layers.

For the problem complexity considered here, one hidden layer

is appropriate. The question is, how many neurons the hidden

layer should have, in order to be able to distinguish good and

bad behavior, but also avoiding over-fitting (when a Neural

Network learns the data too exactly, it is not able to succeed on

new, unknown data any more, i.e. the ability to abstract/predict

is lost). Moreover the number of neurons in the hidden layer

is the only free parameter in the Neural Network that has

a direct effect on the computational complexity, since the

number of input and output neurons are predetermined by the

input vectors (genes) and the number of different outcomes.

Thus the detection rates have been evaluated for an increasing

number of hidden neurons.

A. Experiments

Since each training of a Neural Net is an individual process

(depending in the random initial weights and the presentation

order of the vectors during the learning phase) and results in

a different Neural Net finally, several experiments have to be

made in order to get a valid result with mean outcome and

mean deviation. Thus for each configuration (consisting of a

certain number of hidden neurons and a data set) 20 Neural

Nets have been trained and evaluated, figure 2 (c) thus showing

mean values. The variance of the exact value of the output

neuron was very low so that the classification resulting from

the exact value of the output neuron (good/bad) showed no

variance any more. Figure 2 (c) shows how many percent of

the test vectors have been identified correctly as good or bad.

This shows the prediction power of the Neural Net, that is

the correct response to new attacks. The training set has been

learned almost perfectly (Training stopped when over 95% of

the training set had been learned correctly).

If, for comparability with the AIS approach, the training

set would also be considered, then the detection rate would be

around 90 percent. Note that the training data is recognized

correctly with 100 percent.

Regarding the number of hidden neurons (representing the

complexity of the Neural Net) we observe, that a medium

238

number of hidden neurons (between four and nine) shows

best overall success. This corresponds to the experience, that a

certain number of hidden neurons is necessary for the correct

analysis of the data, but on the other side, if there are too

many hidden neurons, the net overfits the data. That means

the training set is recognized correctly (100 percent), but the

net does not have the ability to judge about unknown data,

since it has just learned exactly the training set. As could be

expected, a low level of misbehavior makes it harder recognize

the difference between good and bad behavior.

VII. COMPLEXITY AND PERFORMANCE OF NN AND AIS

ALGORITHM

Comparing the abilities of both AIS and NN in terms of

detection rate for unknown misbehavior, which is between

40 and nearly 80% depending on the level of misbehavior

and other parameters, it can be said that both algorithms

perform well fulfilling this task. Both algorithms are suited

for misbehavior detection in sensor networks.

For the design of a Neural Network, the number of hidden

neurons is the key parameter. We showed that not many hidden

neurons are required for a decent detection rate.

The performance concerning detection rate of NN and AIS

is comparable. Nevertheless both methods are different in

some key aspects when thinking of an application for a real

sensor network. An AIS (with no danger signals utilized) can

be only trained using the normal operation traffic. A Neural

Network however needs also bad behavior to be represented in

its training phase. Otherwise the Neural Network might learn,

that it should always output ’self’ constantly, disregarding

the input. A solution to the described problem would be to

generate non-self patterns, either by injecting errors in the

sensor network or by generating artificial ’non-self’ training

vectors.

A. Computational Requirements of AIS and NN

Once the AIS and NN are trained, an AIS needs nearly

six times more memory resources for its task than a NN (see

[25], [26] for complexity issues in NN). In our setup, good

detection performance was achieved with d = 2, 000, where d

is the desired number of detectors, and with h ≤ 9, where h

is the number of hidden neurons. Within this setup (bit-string

length of 50 bits), the memory needed for AIS is approx.

50 × d = 100 kbits = 12, 500 Bytes. A NN is represented

by a weight matrix of size 50 × h + h × 1 = 459 weight

values, for h = 9. When the weights are coded as float

data types of size 4 Bytes, the memory requirements is 1, 800

Bytes. We remind the reader, Crossbow Mica2 sensors [1] have

4kB RAM and 512kB EEPROM data memory available; these

resources are however shared among all applications and the

operating system.

Figure 3 (a) shows the memory requirements in Kilobytes

for a given problem size. The problem size is normalized to

the case discussed above, that is problem size of one means

h = 9 number of hidden neurons in the Neural Network case,

and d = 2000 detectors in the AIS case. It can be seen that

for larger problem sizes, the memory requirements for AIS

grow to a size which might not be suitable for small sensors

anymore, while the memory requirements stay moderate even

for a large problem size in the NN case.

The computational requirements for detection in AIS is in

worst case d × r × (50 − r) operations (bit comparisons) (r

being the value from the r-contiguous bits matching). That

is 800, 000 comparisons for r = 10. The reason is, when an

antigen is constructed, there are possibly up to d comparisons

with the detectors necessary. The detection in NN can be

measured in multiplication and additions: 50× 10 + 10× 1 =

510 multiplications plus approx. other 510 additions.

Figure 3 (b) shows the growing number of operations with

higher problems size (normalized to the problem above, with

constant r = 10 in the AIS case). The operations in the AIS

are mainly bit comparisons, while in the NN the operations are

multiplications and additions. Note that we chose a logarithmic

scale on y-axis, since the operational requirements differ by

about three orders of magnitude. Since the computational

requirements are also proportional to the energy consumption

this fact clearly indicates that NN have an advantage in energy

constrained sensor networks.

VIII. CONCLUSIONS AND FUTURE WORK

We compared performance and complexity of two ap-

proaches known from computational intelligence, when used

as a means for misbehavior detection in wireless sensor

networks.

We conclude that they meet the memory requirements of

to-date sensor platforms which have a memory in the order

of hundreds of kilobytes, thus a Neural Net as described

above would need less than 1 percent of the memory. Also

the computational effort of doing a few hundred operations

(additions, multiplications or comparisons) is negligible on

sensors with a processor-speed in the order of MHz.

The results in this work suggest that Neural Networks are

better suited for sensor networks with restricted resources,

because NN use less memory and need far less operations

for the detection. While the need of memory of both NN

and AIS is negligible compared to the memory of actual

sensors, the issue of operations in the detection phase is more

crucial. NN need approximately three orders of magnitude

less operations for a classification. This means that each

detection in an AIS needs much more time, slowing down the

operation of the sensor network. While this slow down might

be negligible in sensor networks whose operation is usually not

time critical, the resulting bigger energy consumption of AIS

is more important, and might tip the scale in favor of NN.

However both approaches are different regarding the length

of the preprocessing phase, memory requirements, speed of

computation and the rate of false positives. Both approaches

are suitable for misbehavior detection in sensor networks,

the decision which approach to choose for a specific sensor

network depends on the details of the scenario.

239

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
e

m
o

ry
 i
n

 K
B

Problem Size

Memory Requirements

AIS
NN

(a)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Problem Size

Computational Requirements

AIS
NN

(b)

Fig. 3. (a) Memory requirements vs problem size (normalized, problem size 1 ∼ h = 9, d = 2000), (b) Number of operations vs problem size (normalized,
problem size 1 ∼ h = 9, d = 2000)

ACKNOWLEDGMENTS

This work was supported by the German Research Foun-

dation (DFG) under the grant no. SZ 51/24-2 (Survivable Ad

Hoc Networks – SANE).

REFERENCES

[1] Crossbow Technology Inc. www.xbow.com
[2] U. Aickelin, J. Greensmith, J. Twycross. Immune System Approaches to

Intrusion Detection - A Review. Proc. the 3rd International Conference
on Artificial Immune Systems (ICARIS 2004), 2004.

[3] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod. Danger theory:
The link between ais and ids. Proc. International Conference on Artificial
Immune Systems (ICARIS’03), 2003.

[4] J. Balthrop, S. Forrest, M. Glickman. Revisiting lisys: Parameters and
normal behavior. Proc. Congress on Evolutionary Computing (CEC02),
2002.

[5] C. L. Barrett, M. Drozda, D. C. Engelhart, V. S. Anil Kumar, M. V.
Marathe, M. M. Morin, S. S. Ravi, J. P. Smith. Understanding Protocol
Performance and Robustness of Ad Hoc Networks Through Structural
Analysis. Proc. IEEE International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob 2005), 2005.
[6] P. D’Haeseleer, S. Forrest, P. Helman. An immunological approach to

change detection: Algorithms, analysis and implications. Proc. IEEE
Symposium on Research in Security and Privacy, 1996.

[7] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla. Glo-
MoSim: A Scalable Network Simulation Environment. UCLA Computer
Science Department Technical Report 990027, May 1999.

[8] FANN Library. http://leenissen.dk/fann/
[9] S. Hofmeyr, S. Forrest. Immunity by Design: An Artificial Immune Sys-

tem. Proc. Genetic and Evolutionary Computation Conference (GECCO-
1999), 1999.

[10] D. Johnson, D. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks. Mobile Computing, Tomasz Imielinski and Hank Korth, Eds.
Chapter 5, pp. 153-181, Kluwer Academic Publishers, 1996.

[11] H. Karl, A. Willig. Protocols and Architectures for Wireless Sensor

Networks. John Wiley & Sons, 2005.
[12] J. Kim, P.J. Bentley. Evaluating Negative Selection in an Artificial

Immune System for Network Intrusion Detection, Proc. Genetic and

Evolutionary Computation Conference 2001 (GECCO-2001), 2001.
[13] S. Marti, T. J. Giuli, K. Lai, M. Baker. Mitigating routing misbehavior

in mobile ad hoc networks. Proc. the 6th annual international conference
on Mobile Computing and Networking, 2000.

[14] S. Sarafijanović, J.-Y. Le Boudec. An Artificial Immune System for
Misbehavior Detection in Mobile Ad-Hoc Networks with Virtual Thy-
mus, Clustering, Danger Signal and Memory Detectors. Proc. the 3rd

International Conference on Artificial Immune Systems (ICARIS 2004),
2004.

[15] J.-Y. Le Boudec, S. Sarafijanović. An Artificial Immune System Ap-
proach to Misbehavior Detection in Mobile Ad-Hoc Networks. Proc. Bio-

ADIT’04, 2004.
[16] D. Dasgupta. Artificial Neural Networks and Artificial Immune Systems:

Similarities and Differences. Proc. IEEE Systems, Man, and Cybernetics
Conference (SMC), pp. 873-878, 1997.

[17] M. Moradi, M. Zulkernine. A Neural Network Based System for
Intrusion Detection and Classification of Attacks. Proc. 2004 IEEE
International Conference on Advances in Intelligent Systems-Theory and

Applications, 2004.
[18] J. Ryan, M.J. Lin, R. Miikkulainen. Intrusion Detection with Neural

Networks. Advances in Neural Information Processing Systems, vol.10,
pp. 943–949, MIT Press, 1998.

[19] H. Debar, M. Becker, D. Siboni. A Neural network component for an
intrusion detection system. Proc. IEEE Computer Society Symposium on

Research in Security and Privacy, pp. 240-250, 1992.
[20] S. Haykin. Neural networks: a comprehensive foundation. Prentice Hall,

1999.
[21] A.B. Owen. Overfitting in Neural networks. In Computing Science and

Statistics. Proc. 26th Symposium on the Interface, pp. 57–62, Interface
Foundation of North America, 1994.

[22] M. Drozda, S. Schaust, H. Szczerbicka. Is AIS Based Misbehaviour
Detection Suitable for Wireless Networks? Proc. IEEE Wireless Commu-
nications and Networking Conference (WCNC ’07), pp. 3130-3135, Hong
Kong, 2007.

[23] M. Becker, M. Drozda, S. Jaschke, S. Schaust. Comparing Performance
of Misbehavior Detection Based on Neural Networks and AIS. IEEE Sys-
tems, Man, and Cybernetics Conference (SMC’08), Singapore, submitted.

[24] S. Schaust, M. Drozda, H. Szczerbicka. Impact of Packet Injection
Models on Misbehaviour Detection Performance in Wireless Sensor
Networks. Proc. 3rd IEEE International Workshop on Wireless and Sensor

Networks Security (WSNS), 2007.
[25] A. Engel. Complexity of learning in artificial Neural networks. Theor.

Comput. Sci., vol. 265, no. 1, pp. 285-306, 2001.
[26] M. Roisenberg, J.M. Barreto, F.M. De Azevedo. Neural network com-

plexity classification based on the problem. Proc. IJCNN - IEEE Interna-

tional Joint Conference on Neural Networks, vol.3, pp. 2413-2418, 1998.

240

Efficient Tiny Hardware Cipher under Verilog

Issam Damaj
Dept. of Electrical and Computer Engineering

Dhofar University
P.O. Box 2509, Salalah 211, Oman

i_damaj@du.edu.om

Samer Hamade, and Hassan Diab
Dept. of Electrical and Computer Engineering

American University of Beirut
P.O. Box 11-0236, Beirut, Lebanon

smh22@aub.edu.lb, diab@aub.edu.lb

KEYWORDS
Gate Arrays, Cryptography, Algorithms, Hardware
Design

ABSTRACT

Embedded hardware security has been an increasingly
important need for many modern general and specific
purposes electronic systems. Minute security
algorithms with their expected low-cost and high-speed
corresponding hardware realizations are of particular
interest to fields such as mobile telecommunications,
handheld computing devices, etc. In this paper, we
analyze and evaluate the development of a cheap and
relatively fast hardware implementation of the
extended tiny encryption algorithm (XTEA). The
development will start by modeling the system using
finite state machines (FSMs) and will use Verilog
hardware description language to describe the design.
Minimizing the chip area will be our primary target
rather than the construction of a multi-way massively
parallel implementation with its expected high-speed
and large silicon area. Many hardware design tools are
used to try reaching the best possible optimized
syntheses. The targeted hardware systems are the
reconfigurable Altera’s Stratix II and Xilinx Virtex II
Pro modern field programmable gate arrays (FPGAs).

INTRODUCTION

Security of information has become a main issue in the
ever evolving world of small mobile devices such as
personal digital assistants (PDAs) and cell phones. In
such minute devices, the fight over high performance
and low power consumption, besides security, are
primary targets. However, a great deal of assistance in
creating low-power and high-speed cores, comes from
the simplicity of the selected algorithm for embedding
as a hardware component.

Many encryption algorithms are now available in the
market (Kelsey et al. 1996), and the selection of a
specific one is dependent on the relatively tight
constraints in small devices. The selected algorithm
should be small, relatively secure, with a proven
history of overcoming possible well known attacks on
it. The Tiny Encryption Algorithm (TEA) (Wheeler and
Needham 1994), and hence its successor the Extended-
TEAs (XTEAs) (Needham and Wheeler 1997; Russell

2004; Kelsey et al. 1997; Moon et al. 2002) are among the
best choices available for the above taut requirements
and to be implemented in the research in hand.

Other requirements are still of no less important than
the issues of performance and power consumption;
these include the ease of modifiability, upgradeability
and reuse of the designed security components. The
type of hardware circuits to be used for implementing
the developed cores, largely affects the above
modifiability properties. Here we propose
reconfigurable computers; more specifically field
programmable gate arrays (FPGAs), as a possible
solution with their famous property of programmability
to satisfy the addressed need for modifiability.

FPGAs, nowadays are important components of
reconfigurable systems; they have shown a dramatic
increase in their density over the last few years. For
example, companies like Xilinx and Altera have
enabled the production of FPGAs with several millions
of gates, such as in Virtex-II Pro and Stratix-II FPGAs.
The versatility of FPGAs, opened up completely new
avenues in high-performance computing. These
programmable hardware circuits are aided with various
co-design tools and flexible design methodologies to
form a powerful paradigm for computing.

The traditional implementation of a function on an
FPGA is done using logic synthesis based on VHDL,
Verilog or a similar HDL (hardware description
language). These discrete event simulation languages
are rather different from languages, such as C, C++ or
JAVA. Many FPGA implementation tools are primarily
HDL-based and not well integrated with high-level
software tools. Furthermore, these HDL-based IP
(intellectual property) cores are expensive and they
have complex licensing schemes. In the presented
designs, the hardware implementations are carried out
under Verilog, employing different co-design tools.
The targeted FPGA systems are Altera Startix II and
Xilinx Vertix II Pro. The hardware design tools
involved in this project are Altera’s Quartus, Xilinx
ISE, Mentor Graphics HDL Designer, Leonardo
Spectrum, Precision Synthesis , and ModelSim.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

241

THE TINY ENCRYPTION ALGORITHM

In cryptography, the Tiny Encryption Algorithm (TEA)
is a block cipher notable for its simplicity of
description and implementation (typically a few lines
of code). The cipher was initially presented by
(Wheeler and Needham 1994). TEA operates on 64-bit
blocks and uses a 128-bit key. It has a Feistel structure
with a suggested 64 rounds, typically implemented in
pairs termed cycles. It has an extremely simple key
schedule, mixing all of the key material in exactly the
same way for each cycle.

Figure 1. A single XTEA round with its internal
computational constructs. The crossed square for the

sum, crossed circle for an XOR, >> for a right shift, <<
for a left shift.

XTEA is a symmetric block cipher designed to correct
weaknesses in TEA. Like TEA, XTEA is a 64-bit block
Feistel network with a 128-bit key and a suggested 64
rounds. Several differences from TEA are apparent,
including a somewhat more complex key-schedule and
a rearrangement of the shifts, XORs and additions
(Hong et al. 2003; Ko et al. 2004). Figure 1 show the
block diagram of an XTEA single round.

Figure 2. Block Diagram generated from the
top model by Leonardo spectrum

High-speed hardware implementations of the XTEA
under VHDL were suggested in (Ghazzawi et al. 2006).
The power consumption of the XTEA were studied in
(Kelsey et al. 1996) and compared with results for the
RC5 algorithm.

XTEA HARDWARE

In Figure 2, the block diagram of the created chip is
shown. The 128-bit key is input through the Din pins
entered 64 bits at a time. The same Din pins are used to
enter the plaintext (or ciphertext in the case of
decryption) 64-bits at a time, while Dout pins are used
for outputting the ciphered (or plaintext in the case of
decryption). The remaining pins are for clocking (Clk)
and control signals, moreover, loading the key
(Loadkey), enabling encryption or decryption (Encrypt
or Decrypt), and resetting the system (Reset_n).

The development of the XTEA core is started by

creating a finite state machine (FSM) with four
possible states. The system will be initially in its IDLE
state till the control signals are received. The transition
that takes you from the IDLE state to BUSY_KEY state
is controlled by the external event Loadkey. The state
BUSY_KEY is responsible for inputting the key. After
finishing the key inputting process the system returns
automatically to its IDLE state. The system will
undergo a transition to its BUSY_ENC (encryption
state) or BUSY_DEC (decryption state) according to
the transitions controlled by the events expected on the
Encrypt and Decrypt pins. The system continuous
operation is done by returning to the IDLE state on
finishing the encryption or the decryption is shown in
Figure 3.

A single XTEA round is to be repeated 32 times. A

sequential version on the round level would mean the
creation of circuit corresponding for a single round,
then the output is fed-back to the circuit to become the
input of the following round; this is to happen 32
times. A different degree of parallelism could be
reached if the designer decides to unroll the loop to
construct a fully-pipelined network of rounds. In this
paper, we show a sequential version avoiding any
resources replication and accordingly any additional
expected increased area, cost, and power consumption.
In Figure 4, a circuit block diagram was obtained using
HDL Designer from Mentor Graphics. In Figure 4, the
feedback wires are clearly shown going from the eb1
block to the eb2 main block. The eb2 block contains all
the inputs and outputs, and synchronized by a master
clock. The second block eb1 contains continuous
assignment statements for the main functions (or core)
of the encryption (decryption) algorithm. The output
generated by eb1 is fed-back to eb2 synchronized by
the master clock.

As shown in Figure 1, an XTEA round
implementation requires the construction of the
following computational elements:

− Addition and Subtraction modulo 32.
− Bitwise XOR
− Shift left and right operations

242

Figure 3. Finite State Machine

PERFORMANCE EVALUATION

For the purpose of analysis we present first the results
of testing the design using Altera’s Quartus tool,
where we build the simulation cases graphically. From
the performed simulation, the number of clock cycles
needed to complete a single encryption or decryption
process is 68 cycles (key loading 2 cycles,
encryption/decryption 32 * 2 cycles, and wait states 2
cycles). A pipelined version will, with no doubt,
enhance the performance by decreasing the process
total time, but as a quid pro quo for silicon area.

 In Figure 5, we show the waveforms of testing the
encryption process. The reset signal was activated at
first to insure that all the registers are cleared before
starting any operation, note that the asynchronous reset
is active low once. After that the Loadkey control was
activated for two clock cycles to store the selected key
that will be used in the next process.

Now, the module is ready to either encrypt or decrypt.
One can distinguish between these two by the control
signals provided as an input to the system. After
engaging the Encrypt signal, the system will enter the
BUSY_ENC state, and will finish the encryption after
64 clock cycles. You can notice that the output is
available at that time and that the system is returned to
the IDLE state waiting to the next control signal to
operate.

In Figure 6, we depict the waveforms of decryption
state transition testing. The encryption and the
decryption processes are quite the same in architecture,
but the decryption operates in a reverse manner on the
data, and uses a subtractor rather than an adder. This
test shows the transition of the state from the IDLE to
the BUSY_DEC, the output will be available after 64
clock cycles.

In Figure 7, we show the simulation for testing the key
loading process. In order to reduce the number of IOs
used, the key was distributed over the Din input pins.
Knowing the fact that the key length is 128 bits while
the Din is only 64 bits, we need two clock cycles to

load the key to its internal register inside the FPGA.
This will cost using the Loadkey control driving the
system to the BUSY_KEY state. The BUSY_KEY state
will need two clock cycles to exit and return to the
IDLE state again.

The number of IOs needed in this project is fixed and
can easily be calculated from the module's event list,
this number is equal to 133 IOs. The next step of
assessment is to map the developed design onto
different FPGA systems comparing the use of
resources in each case. The synthesis tools used in this
comparison are Xilinx XST, Mentor Graphics Precision
Synthesis RTL and physical 2004, Altera’s Quartus,
and Leonardo Spectrum 2004. Both, Precision
Synthesis and Leonardo Spectrum are vendor free third
party tools developed to synthesize popular FPGAs. In
Table 1, we show the different findings of compiling
the developed XTEA design to Altera’s Stratix II
FPGAs with three different sizes. In Table 2, we show
the findings after compiling the design to Xilinx Virtix
II Pro FPGA. The chart in Figure 8 shows clearly the
maximum speed of 134 Mbps achieved by mapping
our sequential small-sized design onto the Virtix II Pro
FPGA.

It is clear from the results shown in this section that the
aim of obtaining a relatively small area has been
achieved. The advantage of having a small design with
a small occupied area had its impact on speed, where a
maximum speed of 134 Mbps was achieved with the
suggested sequential design. A similar design achieved
only a speed of 16.8 Mbps in (Ghazzawi et al. 2006),
but was enhanced by eliminating the large area
occupied by the controller part and accordingly
reducing the propagation delay and the number of
clock cycles. The enhanced design in (Ghazzawi et al.
2006) reached a speed of 800 Mbps; more manual
designs where offered expecting speeds above 1 Gbps.

The tiny XTEA for sure is not comparable to any of the
powerful ciphers like the AES finalists, but it had the
following summarized advantages:

− Small expected hardware silicon area.
− It is relatively secure enough with a number

of rounds above 16.
− Fast enough to accompany other projects.
− Low power consumption.

Based on the comparison done between various
synthesis tools, the following is concluded:

− For a small application like the development
of the XTEA, no big improvement is gained by
selecting one synthesis tool over the others.

− Choosing different FPGA device from the
same family will not affect largely the amount
of occupied area.

243

Figure 4. Block Diagram of the Implemented
Sequential System

Increasing the depth of investigation concerning
accelerating the XTEA would lead us, however, to
parallel processing including pipelining. Thus, generic
reasoning about the parallelization of the algorithm in
hand is a possible extension for the proposed work,
besides investigating the correctness of various parallel
hardware implementations. Developing correct
hardware leads to the adoption of a formalization
framework. Through this formal mathematical
framework, different parallel designs could be
generated systematically, using provably correct rules
of refinement. An example of such a framework is the
Bird-Meertens Formalism (BMF) by which one
generates data parallel programs from abstract
specifications using the skeleton approach. The
essence of this approach is to design a generic solution
once, and to use instances of the design many times for
various parallel architectures. Another frame work
starts by formulating an algorithm by a generic formal
functional specification step and generates parallel
programs described in a concurrency framework - CSP
(Communicating Sequential Processes). Through such
developments, our implementations will benefit from
the advances in the area of hardware/software co-
design to generate efficient hardware XTEA circuits.

The generation of an efficient hardware solution for
the XTEA would with no doubt satisfy the need for
speed and efficiency. The parallelized designs could
easily be mapped to various parallel architectures such
as clusters, grids, FPGAs, complex programmable
logic devices (CPLDs), dynamically reconfigurable
systems (the MorphoSys (Bagherzadeh et al. 1999), etc.
The availability of such systems with different sizes
and speeds obliges us to study the parallelization of our
algorithm not only in its sequential or pleasantly data-
parallel version, but also with different degrees of
parallelism. This will include reasoning about the use
of pipelined blocks, partially sequential blocks, etc.
Again, the parallelization is to be n a systematic
parallelization framework which is done in a
straightforward manner.

CONCLUSION

The research presented in this paper is motivated by
the need for low-power, fast, tiny, and cheap hardware
security cores. We have presented a sequential, small-

sized, relatively fast implementation of the extended
tiny encryption algorithm (XTEA). The best achieved
synthesis was by mapping the design onto a Virtex Pro
II FPGA with a tiny area and a speed of 134 Mbps.
The mapped design employed 32 rounds, although 16
rounds are assumed to be secure enough. Many
extensions of the work in hand are present. The
extensions could include the formal development, for
the sake of correctness, of the XTEA and its successors
the XXTEA and block XTEA. Multi-way massively
parallel implementations are expected to increase the
throughput at the expense of silicon area.

REFERENCES

Bagherzadeh N. Kurdahi F. Singh H. Lu G. Lee M. and Filho
E.1999. “MorphoSys: An integrated reconfigurable
system for data-parallel computation-intensive
applications.” IEEE Transactions on Computers.

Ghazzawi W., R. Saraeb, and I. Damaj. 2006. “Hardware

Development of the Extended Tiny Encryption
Algorithm,” in the ACS/IEEE International Conference
on Computer Systems and Applications, Dubai/ Sharjah,
United Arab Emirates (Mar).

Hong S., Deukjo Hong, Youngdai Ko, Donghoon Chang,

Wonil Lee, and Sangjin Lee. 2003, “Differential
cryptanalysis of TEA and XTEA.” In Proceedings of
ICISC 2003, 2003b.

Ko Y., Seokhie Hong, and Wonil Lee. 2004. “Related key

differential attacks on 26 rounds of XTEA and full
rounds of GOST.”In Proceedings of FSE '04, Lecture
Notes in Computer Science, Springer-Verlag,

Kelsey J., Bruce Schneier, and David Wagner.1997.

“Related-key cryptanalysis of-WAY, Biham-DES,
CAST, DES-X NewDES, RC2, and TEA.” Lecture Notes
in Computer Science, 1334: 233-246.

Kelsey J., Bruce Schneier, and David Wagner. 1996. “Key-

schedule cryptanalysis of IDEA, G-DES, GOST,
SAFER, and Triple-DES.” Lecture Notes in Computer
Science, 1109: 237-251.

Moon D., Kyungdeok Hwang, Wonil Lee, Sangjin Lee, and

Jongin Lim. 2002. “Impossible differential cryptanalysis
of reduced round XTEA and TEA.”Lecture Notes in
Computer Science, 2365: 49-60.

Needham R. M. and David J. Wheeler.1997. "Tea

extensions." Technical report, Computer Laboratory,
University of Cambridge(Oct).

Russell M. D. 2004. “Tinyness: An Overview of TEA and

Related Ciphers.”
http://www.users.cs.york.ac.uk/~matthew/TEA/TEA.htm
l

Wheeler D. J. and R. M. Needham.1994. “TEA, a tiny

encryption algorithm.” Fast Software Encryption,
Leuven, LNCS 1008, , pp. 363-366.

244

Issam W. Damaj received his Bachelor of
Engineering (B.Eng.) in Computer Engineering from
Beirut Arab University in 1999 (with high distinction),
and his Master of Engineering (M.Eng.) in Computer
and Communications Engineering from the American
University of Beirut in 2001. He was awarded his
Ph.D. degree in Computer Science from London South
Bank University, London, United Kingdom in 2004.
Currently, he is an Assistant Professor of Electrical and
Computer Engineering and the chairperson of the
Department of Electrical and Computer Engineering,
Dhofar University, Oman. His research interests
include hardware/software co-design, embedded
systems design, reconfigurable computing, parallel
processing, and software engineering.

Samer Hamade is a graduate student at the American
University of Beirut. He is a student in the Faculty of
Engineering and Architecture, Department of Electrical
and Computer Engineering. His major is Computer and
Communications Engineering.

Hassan B. Diab received his B.Sc. (with Honors) in
Communications Engineering from Leeds
Metropolitan University, U.K. in 1981, his M.Sc. (with
Distinction) in Systems Engineering from the
University of Surrey, U.K. in 1982, and his Ph.D. in
Computer Engineering from the University of Bath,
U.K. in 1985. Dr. Diab is a Professor of Electrical and
Computer Engineering at the Faculty of Engineering
and Architecture, American University of Beirut
(AUB), Lebanon and has over 22 years of experience.
He has 116 publications in internationally refereed
journals and conferences. His research interests include
cryptography on high performance computer systems,
modeling and simulation of parallel processing
systems, embedded systems, reconfigurable
computing, simulation of parallel applications, system
simulation using fuzzy logic control, and the
application of simulation for engineering education.

Figure 5. Test Case: Encryption Testing, Input Key: 0x0, Plaintext: 0x0,
Ciphertext: 0XCB929ADACD7E9C4C

Figure 6. Test Case: Decryption State Transition

Table 2. Results of Mapping the Developed Design to Xilinx Vertix II Pro FPGA

Devices Leonardo Spectrum Xilinx XST Precision Synthesis
Device Number: 2VP2fg256
Number of IO: 133 out of 140 (utilization = 94.3%)
CLBs Slices (408 available) 294 393 539
Maximum Frequency in MHz 91.2 120.3 142.4
Speed in Mbps 85.83 113.22 134
LUTs (2816 available) 588 634 624
Slice Flip Flops (2816 available) 298 307 305

245

Figure 7. Test Case: Key Loading.

120
113.8

122.8

111.15
99.23

120.3

130.35

122.82

85.83
113.22

134

0

20

40

60

80

100

120

140

EP2S15F484C EP2S60F672C EP2S90F1508C 2VP2fg256

Leonardo Altera Precision

Figure 8. Speeds in Mbps of the Developed Implementations.

Table 1. Results of Mapping the Developed Design to Altera’s Stratix II FPGAs with Three Different FPGA Sizes.

Devices Leonardo Spectrum Altera Quartus Precision Synthesis
Device Number: EP2S15F484C
Number of IO: 133 out of 343 (utilization = 38.78%)
LUTs used (12480 available) 526 573 539
Maximum Frequency in MHz 127.5 120.95 130.5
Speed in Mbps 120 113.83 122.82
Registers used (14410 available) 297 297 305
Device Number: EP2S60F672C
Number of IO: 133 out of 493 (utilization = 26.98%)
ALUTs used (48352 available) 526 573 539
Maximum Frequency in MHz 118.1 99.23 120.3
Speed in Mbps 111.15 93.39 113.22
Registers used (51182 available) 297 297 305
Device Number: EP2S90F1508C
Number of IO: 133 out of 903 (utilization = 14.73%)
ALUTs used (48352 available) 526 NA 539
Maximum Frequency in MHz 138.5 MHz NA 130.5 MHz
Speed in Mbps 130.35 NA 122.82
Registers used (51182 available) 297 NA 305

Stratix II Virtix II Pro

246

Special Session on Web Services and the
Semantic Grid

(WSSG’08)

247

248

ACCESS CONTROL OF WEB SERVICES USING GENETIC ALGORITHMS
Nabila SEMMACHE and Sadika SELKA

Department of Computer Science

University of The Science And The Technology,

1505-El-Mnouar, Oran, ALGERIA

E-mail: Semmache_hanane@yahoo.fr

KEYWORDS

Web service, SOAP, UDDI, WSDL, WS-Security,

Genetic Algorithm.

ABSTRACT

Although Web services have been simplified a lot in

terms of development, the problem of the security of

these services is crucial and remains still confusing and

complex. This last one lies around three axes: the

Identification and the authenticity of a user, Protection

of the confidential data and the authorization of access

to applications of the web services. In this article,

among the three axes we are interested in the

authorization of access of the users to the applications

of the Web services. For that purpose, we propose an

approach based on genetic algorithms, so that the tasks

of the Web services are secured.

INTRODUCTION

Web service can be defined as a mechanism of

communication between distant applications through the

Internet network, independent of any programming

language and any platform of execution. It is based on

standard Web protocols such as XML (eXtensible

Markup Language), for the coding of the parameters

and the values of return, SOAP (Simple Object Access

Protocol) (Gudgin et al. 2007), for the transport of

messages, WSDL(Web Description Language services)

(Chinnici et al. 2007) for the description and UDDI

(Universal Description, Discovery and Integration)

(Clément et al. 2005) for the publication.

Although these protocols allow today to build

applications and to put them in production, numerous

evolutions remain to be brought to offer the

consideration of quality criteria of services such as

protected from delivery, the transactions and the

security.

These last years, the research in the field of Web

services was very active. A big part of this one was

dedicated to the security.

One of the solutions proposed to secure Web services

was to assure the reliability of the connection between

the customer and the server. With a transport secured as

SSL(Secure Sockets Layer), (Freier and Karlton 1996)

the services do not have to manage themselves the

integrity and the confidentiality of every message; they

need to relay on the mechanisms of the layer transport

underlying. However, they turn out that a security at the

level transport (Merrells 2004) is a limited solution to

exchanges of messages from a point to the other one.

For this security at the level message (Merrells 2004)

was proposed to maximize the reach of the Web

services. The standards of security used at this level are:

WS-Security (Atkinson et al. 2002), WS-Trust (Della-

Libera et al. 2002), WS-Privacy (Nagaratnam et al.

2003), WS-Policy (Curbera et al. 2003), WS-Federation

(Bajaj et al. 2003), WS-SecureConversation (Dixon et

al. 2002) and WS-Authorization (Della-Libera et al.

2002).

In this article, we propose another security at the level

of the tasks of the Web services by using the genetic

algorithms, with the aim of controlling the access of the

users.

ARCHITECTURE OF WEB SERVICES

The efforts of research and development about Web

services led to a number specifications which define the

architecture of the Web services (McCabe et al. 2004).

Figure 1 : Architecture of Web services

The architecture of the Web services articulates around

the following three roles:

Phone book

of the services

Supplier of

services
Applicant of

services

Find

Bind

Publish

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

249

� Supplier of service: corresponds to the owner of

the service. From a technical point of view, it is

constituted by the platform of reception of the

service;

� Applicant of service: corresponds to the

applicant of service. From a technical point of

view, it is constituted by the application which

is going to look for and to call upon a service;

� The phone book of the services: corresponds to

pad of descriptions of services offering

opportunities of publication of services for the

suppliers as well as opportunities of research for

services for the customers.

ARCHITECTURE OF SECURITY OF WEB

SERVICES

For to secure Web services, several mechanisms must

be addresses so as to guarantee the security of the

exchanges of information:

� The authenticity: allows to verify that the

access to an application or to a distant resource

is made only by entities having proved their

identity;

� The integrity: allows to verify that the message

received by the addressee was not modified

during its transmission;

� The confidentiality: allows to verify that the

transmitted messages cannot be read by entities

others than the receiver and the transmitter of

the message;

� The non-repudiation: guarantees to the

addressee of a message that the transmitter of

that this is well the one that it claims to be;

� Authorization of access: put at the disposal of

mechanisms allowing to authorize or not the

access to such or such resource.

The standards of security used at the level message and

that allow to assure these various mechanisms, are

illustrated in the figure 2;

Figure 2 : Architecture of security of web services

� WS-security: Specification of secured

messaging using SOAP messages. It processes

the following three aspects:

1. Specification of mechanisms allowing to

assure the integrity of messages SOAP. It deals

more particularly as the joint use of the

specification XML signature (Bartel et al.

2002) and as the tokens of security.

2. Specification of mechanisms allowing to

assure the confidentiality of messages SOAP.

It deals more particularly as the joint use of the

specification XML encryption (Takeshi et al.

2002) and as the tokens of security.

3. Definition of a mechanism to associate tokens

of security with the headings of messages

SOAP. Without recommending of specific

format, it specifies a method to create new

formats of tokens of security as well as

mechanism of encoding of binary tokens.

� WS-Policy: allows describing in terms of

security the requirements of the addressee as

well as the capacities of security of the

transmitter of a message.

� WS-Trust: describes a model allowing

establishing reliable relations which can base

itself on a system of tokens of security.

� WS-Privacy: describes the policies of

discretion and confidentiality.

� WS-Secure Conversation: describes how two

entities can communicate by authenticating

mutually and by forming a context of security.

� WS-Federation: allows building global reliable

spaces so allowing making authenticity

between entities using different methods of

authenticity.

Fondation SOAP

WS-Security

WS-Policy WS-Trust WS-Privacy

WS-Secure

Conversation

WS-

Federation

WS-

Authorization

250

� WS-Authorization: describes how to manage

and to create rules of authorization, to certify

authorizations via tokens, to exchange these

tokens and to interpret these so as to control

correctly the accesses to the services.

SECURITY OF WEB SERVICES USING

GENETIC ALGORITHMS

In this article, we are interested in the security of the

Web services at the task level to control the access of

the users by using genetic algorithms (Rennard 2002).

The approach which we propose consists of two phases:

phase of discovery and phase of optimization which is

really the genetic process.

Phase Of Discovery

A supplier implements Web service, he defines his

description in the form of a file WSDL and publishes it

by saving it in a phone book UDDI. The example which

follows will be studied throughout the article.

Let us consider the case of a travel agency which offers

Web service of grouped booking combining a plane

ticket, a booking of hotel room and a rent of car among

others. For that purpose, the agency calls Web services

of an airline company, a hotel chain and a renter out of

automobiles.

Here are the tasks executed by every Web service:

- The task executed by Web service of an airline

company is: the booking of ticket;

- The task executed by Web service of a chain of hotel

is: the booking of room;

- The task executed by Web service of a renter out of

automobiles is: the rent of car.

The Parameters of every task, described in WSDL are:

- The parameters of the task booking of ticket: family

name, first name, date of departure, date of exit,

Country of destination;

- The parameters of the task booking of room: family

name, first name, dates of the beginning of stay, Dates

of the end of stay, type of room to be reserved;

- The parameters of the task rent of car: family name,

first name, dates of the beginning of rent, Dates of the

end of rent, Type of car to be rented.

All these parameters will be added to the other

parameters which are not described in the file WSDL.

For example for the spot of booking of tickets the

parameters which will be posted (shown) in WSDL are:

family name, first name, and date of departure, date of

exit and country of destination. Those which are non-

visible are: the number of passport and number of the

ID card. After the discovery of the Web services, the

phase of optimization follows.

Phase Of Optimization

This phase is the release of the genetic process by the

supplier during the invocation of Web service by the

customer for the access control of this last one. This

genetic process passes by:

- A coding of individuals

- The generation of initial population

All the specific parameters in every task of Web service,

supplied by the supplier, are set of individuals which

represent the potential solutions to control the access of

the users.

Coding Of Individuals

The coding which we propose for our approach is

illustrated in table below follows;

Table 1: Table Recapitulating the Correspondences

between Main Terminologies of the Genetic Algorithms

and Web Services

Natural

notion
Definition Coding of

Individuals

Chromosome

One or several

chromosomes form

together the global

genetic plan for the

construction and

the functioning of a

body

The tasks of the

Web services

Genes

We say that

chromosomes are

constituted by

genes

The parameters

of the tasks of

Web services

Alleles
A gene can set

different alleles
The Value of

every parameter

Locus
The position of a

gene
The position of

the parameter

251

The generation of the initial population is made

according to two stages: evaluation of the parameters of

the initial population and Application of the genetic

operators.

Evaluation Of The Parameters Initials

To estimate a specific parameter for a task of Web

service, we choose first of all parameters Pi with i € [1,

n]. Every parameter will have a value Vij with j € [1,

m], determining its degree of importance by

contribution to the other parameters chosen. This value

is calculated as follows:

 (1)

Vij: value j of the parameter i;

Xi: The number of position of the parameter i;

NbrPi : The number of parameters Pi chosen as a task;

For every parameter, we attribute a weight of reliability

Pfi with 0 < Pfi < 1 and i € [1, n], corresponding at the

request of access of the users (0 corresponds to 0 % and

1 corresponds to 100 %). This means that this weight of

reliability Pfi, changes according to the demand of

access of the users.

In a general way, the function of adaptation measures

the performance of an individual in the resolution of the

problem posed. In the precise context of the problem of

access controlling, the adaptation of every specific

parameter to a task of Web services, is expressed in our

approach as follow:

 (2)

According to the previous example of the travel agency,

table2 illustrates the values of the function of adaptation

of the parameters of the task “booking of a ticket".

Table 2: Adaptation values of parameters of

The ticket booking task

Parameters Individuals Values

of F(Pi)

Family name I1 0.18

First name I2 0.20

Country of

destination

I3 0.33

Date of departure I4 0.42

Date of exit I5 0.56

Number of the ID

card

I6 0.75

Number of

passport

I7 0.80

Genetic Operators

Selection

After calculation of the value of adaptation of every

specific parameter to a task of Web services, the

operation of selection which is going to allow us to

select the potential parameters for access controlling

intervenes.

For our approach, the method of chosen selection is

elitism. This method of selection allows selecting the

best individuals of the population. It is thus the most

potential parameters which are going to participate in

the improvement of our population.

In our frame of application, the method of selection is

translated as follow: the value of the function of

adaptation of every parameter will be compared with a

called indication "Indication of reliability" Pa, to

attribute to every task of Web services.

We fix Pa to a value equal to 0.5, corresponding to 50%.

All the parameters which will have a value of adaptation

superior or equal to this value (Pa=0.5), will be

selected.

According to table 2, the selected parameters are:

{(I5,0.56) ; (I6,0.75) ; (I7,0.80)}

When the potential parameters are selected, we proceed

in their mutation.

Mutation

For a better generation, we used another genetic

operator “The Mutation ". The method of mutation

 n

F(Pi) = Vij ∑ Pfi

 i=1

 n

Vij = Xi / ∑ NbrPi

 i=1

252

which we propose consists of a permutation of two

parameters. We are certain that the mutated parameters

will always have the shape of a potential solution

because we change only the order of the parameters.

This permutation is made by basing itself on the value

of adaptation of both parameters in the new intermediate

generation. What means that among the selected

parameters, the one which has the best value of

adaptation will be generated.

According to the selected parameters, the mutation is as

follows:

{(I6,0.75) ; (I5,0.56) ; (I7,0.80)}.

APPLICATION OF GENETIC PROCESS

According to the example of the travel agency, we make

a case study for a hostile customer who would like to

make a booking of a ticket.

The customer calls upon Web service of the booking of

ticket by authenticating. There is a start of the genetic

process. Two cases appear:

First Case (At Least A Parameter In Wsdl)

Among the generated potential parameters, there is at

least a parameter, which is at the level of the WSDL

elaborated by the supplier. For example for the task of

booking of tickets, a generated potential parameter is

the date of exit. Thanks to this parameter we control the

user.

Here also there are two cases which appear:

The user reaches for the first time thus there are no

other parameters which are displayed except those in

WSDL. The user is going to make his booking.

The user is authentic, but he wants to modify his date of

departure. Since this parameter is potential, another

potential parameter, which is not in WSDL, will be

displayed, for example, the number of passport.

� If the number of passport is valid: the

modification is accepted and the access is

authorized.

Let us consider a hostile user who wants to reserve the

ticket using the name of somebody else who has already

reserved.

For example if he wants to modify the date of departure

and it is a potential parameter, then there is a display of

another potential parameter which is not in WSDL. For

example number of passport. Two cases exist:

� If the number of passport is not valid: the

modification is rejected, and so the access is

interrupted.

� If the number of passport is valid: the

modification is accepted, and the access is

authorized.

If in this last case, the customer is suspicious we can

control this thanks to another Web service. For example,

when he wants to pay the expenses of the ticket (with

the banking service), potential parameters appropriate

for this service, will be displayed. For example if the

entered number of bank card is not valid and if it is a

potential parameter, then, there will be a display of

another parameter which is the digital signature.

The second case (no potential parameters in WSDL):

The control is made by the others Web services.

The last case: if the customer enters with another login,

and he does not make his reservation using the name of

another person we consider him as an authentic user

until the first mistake which he will make.

CONCLUSION

In this article, we proposed an approach of access

control of the users in Web services, based on the

genetic algorithms. While trying to generate potential

parameters among those supplied by the supplier, so

that we can demonstrate that from these last ones, the

tasks of Web service, can themselves control the access:

compound Web services and that of the users.

The purpose of WS-Authorization is to describe how

access policies for a Web service are specified and

managed. In particular, the goal is to describe how

claims may be specified within security tokens and how

these claims will be interpreted at the end point.

Thus with WS-authorization, the access control in Web

service is made by verifying constraints attributed to the

specific parameters of Web services tasks.

With regard to our approach, the access control is made

without attribution of constraints for the parameters, the

253

customer just has to touch a potential parameter

generated by the genetic process and described in the

file WSDL so that the control begins.

The second advantage is that in WS-authorization, if the

supplier adds a parameter, he has to specify ways of

access to this new parameter. For our approach, if the

supplier adds parameters, it is enough to activate the

genetic process to generate new potential parameters

and the security starts.

As a perspective of this work, it would be interesting to

take into account the profiles of the users.

REFERENCES

Atkinson .B, S. Hada and P. Hallam-Baker. April 2002. “Web

Services Security (WS-Security)Version1.0”.

Bajaj .S, B. Dixon and C. Kaler. July 2003. “Web Services

Federation Language” .

Bartel .M, J. Boyer, B. Fox and B. LaMacchia. 2002.

“Signature Syntax and Processing”.

Chinnici .R, J. Moreau, A. Ryman and S. Weerawarana. June

2007. “Web Services Description Language (WSDL) Version

2.0”.

Clément .L, A. Hately, C. Riegen and T. Rogers, february

2005. “Universal Description Discovery and Integration

(UDDI) Version 3.0”.

Curbera .F, D. Langworthy and M. Nottingham. May

2003. “Web Services Policy Framework” .

Della-Libera .G, M. Hondo and P. Hemma. December 2002.

“Web Services Trust Language”.

Dixon .B, H. Maruyama and R. Zolfonoon. December 2002.

“Secure Web Services Conversation Language”.

Freier .O and P. Karlton. March 1996. “The SSL

Protocol Version 3.0”.

Gudgin .M, M. Hadley, N. Mendelsohn, J. Moreau, HF.

Nielsen, A. Karmarkar and Y. Lafon. April 2007. “Simple

Object Access Protocol (SOAP) Version 1.2”.

Merrells .J. November 2004. “Web Services Security : Access

Control”.

McCabe .F, E. Newcomer and M. Champion. February 2004.

“Web Services Architecture”.

Nagaratnam .N, M. Hondo and A. Nadalin. June 2003.

“Securing Web Services”.

Takeshi .I, D. Blair and E. Simon. 2002. “Encryption Syntax

and Processing”.

254

ENABLING COLLABORATION IN THE SEMANTIC GRID: SURVEY OF

WEB SERVICE COMPOSITION APPROACHES

Taha Osman, Dhavalkumar Thakker, David Al-Dabass

School of Computing & Informatics,

Nottingham Trent University,

CIB, Nottingham NG11 8NS, United Kingdom.

Email: taha.osman@ntu.ac.uk, dhavalkumar.thakker@students.ntu.ac.uk, david.al-dabass@ntu.ac.uk

KEY WORDS

Web Services, Service Composition, Semantic Web,

Business Process Management.

ABSTRACT

Web Service is loosely coupled highly accessible

distributed computing technology that can expose

applications beyond the firewall. Composition of Web

Services has received much attention from the business

and the research community. Composition techniques

are classified as static, dynamic and semi-automatic

composition, each addressing different application areas

and requirements. In this contribution we analyze

workflow-based and semantic-based composition

approaches, primarily focusing on the facilitation to the

service participants and the scalability required in a

Grid-based environment.

1. INTRODUCTION

The last decade has witnessed an explosion of

application services delivered electronically, ranging

from e-commerce to information service delivered

through the World Wide Web (WWW) to the services

that facilitate trading between business partners, better

known as Business-to-Business (B2B) relationships.

Traditionally these services are facilitated by distributed

technologies such as RPC, CORBA and more recently

RMI. Web Services is the latest distributed computing

technology. It is a form of remote procedure call like

other distributed computing technology, but uses XML

extensively for the messaging, discovery and

description. The use of XML messaging makes Web

Services platform and language neutral. Web Services

use SOAP (Simple Object Access Protocol) for XML

messaging, which in turn uses ubiquitous HTTP for the

transport mechanism. HTTP is considered as a secure

protocol thus it allows the Web Services to be exposed

beyond the firewall. The Web Service messages and

operations with invocation details are described using a

platform-independent language WSDL (Web Services

Description Language). Web Services can be published

and discovered using UDDI (Universal Description

Discovery and Integration) protocol. The Web Services

architecture centred on WSDL, UDDI and SOAP is an

instance of Service Oriented Architecture (SOA). Using

this architecture services can be published using UDDI,

with WSDL based description, and can be searched,

called and bind at run time making it loosely coupled

and highly accessible.

To take advantage of these features of Web Services,

network applications services have to be developed as

Web Services or converted into Web Service using the

wrapping mechanism (Osman T et al, 2005). Moreover,

multiple Web Services can be integrated either to

provide a new, value-added service to the end-user or to

facilitate co-operation between various business

partners. This integration of Web Services is called

“Web Services composition” and is feasible to achieve

because of the Web Services advantages of being

platform, language neutral and loosely coupled. The

composition is particularly apt for grid environments,

where internet-wide computing resources are available

for application services to interoperate and collaborate.

The logic for the composition mainly involves two

activities: selection of the candidate Web Services that

fulfil the requirement in accumulation and flow

management. Flow management is further categorized

into control and data flow, where control flow is the

order in which Web Services operations are invoked,

while the data flow is the order in which the messages

are passed between the Web Services operations. The

level of automation provided in performing selection of

services and flow management classifies composition

into static, semi-automatic and dynamic. Static

composition involves prior hard coding of the service

selection and flow management. Performing selection

and flow management on the fly, in machine-readable

format leads to dynamic composition. In semi-automatic

composition, service composer is involved at some

stage.

This study shows that these approaches can be divided

into two categories. The first category largely endorsed

by the industry, borrows from business processes’

workflow management theory to achieve the

formalization necessary for describing the data flow and

control flow in the composition scheme. The second

category mainly promoted by the research community,

aspires to achieve dynamic composition by semantically

describing the process model of Web service and thus

making it comprehensible to reasoning engines or

software agents.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

255

The structure of the paper is as follows: sections 2 and 3

discuss workflow-based and semantic-based

composition techniques respectively. Section 4 provides

evaluation of the surveyed composition techniques and

in section 5 we conclude the paper.

2. WORKFLOW MANAGEMENT THEORY-

BASED APPROACHES

Workflow is the movement of documents and/or tasks

through a work process. More specifically, workflow is

the operational aspect of a work procedure: how tasks

are structured, who performs them, what their relative

order is, how they are synchronized, how information

flows to support the tasks and how tasks are being

tracked (van der Aalst 2003).

Workflow management systems are a class of

information systems that make it possible to correlate

people’s work and computer applications. Such systems

deal with the control flow (invocation sequence of

applications) and data flow (information flow between

applications) while control flow is important for

achieving overall system objective, data flow is

essential for the successful operation of individual

applications.

In the information systems domain, workflow is being

used since seventies for the office automation systems

(Zisman 1977). This work has lead to identifications of

workflow patterns for control and data flow (van der

Aalst 2003).

One of the applications of workflow management in

information systems domain is to address the Business

Process Management (BPM) problem. Business

process can be considered as workflow of business

activities to carry out business goals (Leymann 2002).

The examples of business activities for customer order

fulfilment business process are: customer placing an

order, checking account status, verifying order and

despatch. Using Workflow management, BPM deals

with achieving the integration of these individual

applications.

Business process can have scope within inter and intra

organization relations. Enterprise Application

Integration (EAI) is the BPM solution to achieve intra-

organization business applications integration, while

Business-to-Business (B2B) integration software

addresses the problem for inter organization business

application integration. Traditional EAI and B2B

integration solutions are very complex, proprietary and

presume many details about the participating

applications making them tightly coupled. For instance,

these solutions assume the use of homogeneous service

interfaces and implementation technology, which is a

substantial limitation considering that different

organizations will make independent decisions about

what technology to use for the construction and

deployment of their part; these decisions made over

time accrete different hardware and software

technologies (High 2004). Tightly coupled systems are

difficult to manage and re-engineering business rules

and requirements in such systems is also challenging.

To overcome these limitations, the business applications

are now being developed using Web services while the

BPM problems (EAI, B2B) are being addressed with the

workflow based integration of Web services, mainly to

utilize SOA based Web services features.

The main industrial standards to achieve workflow

based integration of Web services are WS-BPEL (Web

Services Business Process Execution Language,

shortened to BPEL) (Andrews 2003), WS-CDL (Web

Services Choreography Description Language,

shortened to CDL) (Kavantzas 2004) and BPML

(Business Process Modelling Language) (Van der Aalst

2003). These approaches use WSDL extensively and

build workflow based on WSDL operations and

messages with the data types. The workflow based

process model for these approaches also addresses

requirements for describing flow management in

composition, handling business transaction with roll

back facility, state management for business interaction

support, and also handling exception and errors. The

category of process model and the extent to which these

features are provided differentiates these standards.

The following sections outline two prominent workflow

based industrial standards for Web services

composition.

2.1 Composing services using BPEL

The BPEL specification - enhances and replaces

existing standards Web Services for Business Process

Design (XLANG) (Thatte 2001) from Microsoft and

Web services Flow Language (WSFL) (Leymann 2002)

from IBM. The specification uses workflow

management as process model to achieve the control

and data flow formalization for WSDL defined data and

operations. All the participant services in BPEL process

are modelled as partners. The WSDL files of such

partners are required to create BPEL process. The

partners contribute to the total processing capability of

the BPEL process. BPEL process also has its own

processing capability for dataflow, control flow, data

manipulation, fault and event handling and state

management. The significance of BPEL architecture is

that the process itself is published as a Web Service.

This composed BPEL service can be treated as a single

Web service and can be used for further composition

hence facilitating recursive composition.

2.2 Composition using WS-CDL

BPEL process model deals with B2B integration from a

single party viewpoint i.e., the requirement specified for

the travel agent scenario discussed here is from the

viewpoint of travel agent business logic. Contrary to the

BPEL process model, real world B2B integrations are

peer-to-peer in place of being centralized, where the

collaborating business applications agree to provide

certain functionality in receipt of complimentary

256

functionality from other business applications

highlighting requirement for a description language

documenting peer-to-peer viewpoint since natural B2B

integrations are peer-to-peer collaborative relationships

and not governed by a single party. The W3C

recommendation WS-CDL from W3C Web services

choreography working group confirms aforementioned

conclusions that more work on BPEL is required to

make it adoptable for B2B integration.

WS-CDL is a description language using which the B2B

integration partners can first describe the collaborative

functionality. This description document is considered

as a contract and each party can implement their own

part. The WS-CDL document describes common and

complementary behaviour of all the parties involved,

making the viewpoint global and peer-to-peer

(Kavantzas 2004). The other aspect of WS-CDL

process model is that the internal business logic of each

party remains hidden from the business partners. i.e., for

the travel agent application after receiving price quote

from all airlines can have internal business logic for air

line selection based on some criteria totally hidden from

other partners as the external detail described in WS-

CDL document is just an operation to make reservation

at particular airline.

2.3 Facilitation provided to the service

participants

In order to evaluate the facilitation provided to the

service participants we consider a scenario based on

travel agent service, which manages the reservation of

airline and hotel for a customer trip. The travel agent

can be implemented as BPEL process, which cans

becomposition of four Web services: AirFrance service,

AirUSA service, HotelRating service and HotelService

service. The process logic for the travel agent is: to

check the availability of flight service from two

competing airlines AirFrance and AirUSA, make flight

reservation, and then retrieve hotel ratings from the

HotelRating service at the destination city and make the

reservation using HotelService Web service at the

selected hotel.

For a new service provider to make their service

available for composition they need to provide

minimum functionality consistent with the business

logic outlined by the travel agent which is essentially

composer. Considering a new AirUK service for travel

agent composition, AirUK has the following options:

a) If the AirUK has Web service but does not

implement required functionality then the service

needs to be modified to accommodate the required

functionality.

b) If the AirUK has a non-Web service application

with the required functionality already built-in then

only a WSDL file is required to be created without

modifying existing application. BPEL execution

engine uses Web Services Invocation Framework

(WSIF 2005) for the Invocation of such non web-

services.

c) However, BPEL specification does not address a

case where the Web service provider has a service

available with conceptually similar but syntactically

different parameter structure. The service provider

in this case needs to apply option (a) to be part of

the composition.

Considering the case of service composer who for the

most part encounter problems in parameter mismatch

during the flow management, i.e., a service operation

has different output format from the input of next

service operation in the flow logic, BPEL in its current

form delegate the responsibly with the service composer

to address such parameter mismatch.

The travel agent BPEL process could be published using

JSP technology. This way the service can be retrieved

using simple web page or WSDL file for the composed

Web service can be retrieved from the public UDDI

registry. In such B2C interactions it is totally

transparent from the end-user that the service is a Web

service with the possibility of composition of multiple

Web services or could be implemented on

heterogeneous platforms using heterogeneous

programming languages. However, there is a limited

level of language expressiveness available to the service

requestor to outline the constraints and preferences on

the outputs and quality of service parameters.

To conclude this section, BPEL is widely-used

specification for composing intra-organization Web

services. The business analysts and developers can

collaborate and can compose enterprise Web services

manually using BPEL. The composition is hard coded

and the developers should have the explicit knowledge

of all the details of participating business services which

is a major limitation considering the growth of Web

services within and outside organizations.

3. SEMANTIC WEB -BASED COMPOSITION

Commercial institutions are focusing their efforts on

standardizing the static composition techniques in

preparation for their wider adoption amongst the

business community. In contrast, the research

community efforts concentrate on exploiting semantic

web for the semi-automatic and automatic composition

of Web services.

3.1 Semantic Web services

With respect to automation, the limitation of workflow-

based approaches is that they rely on WSDL based

description for the Web services selection. WSDL is a

static interface and XML grammar which has no notion

of machine interpretable semantics. In Web services

protocol stack, the task of meaningful Web services

discovery was the functionality of UDDI

implementations so that service provider can describe

the capability of their service using the WSDL

257

descriptions and service requester can use these

descriptions to retrieve exactly what they are looking

for. The search in UDDI is based on keywords and

based on human readable descriptions in WSDL,

leaving the selection based on the requestor’s

interpretation and ultimately the solution static.

The problem of automatic Web services discovery and

integration can benefit from the semantic web machine

readable descriptions. The fundamental premise of the

semantic web is to extend Web’s currently human-

oriented interface to a format that is comprehensible to

software programmes. Applied to Web services

composition, this can lead to the automation of services

selection and execution.

The WSDL file of Web services describe the operations

provided; request message format required for invoking

operations and the format of response messages

produced by the Web services. The interpretation of

these details results in understanding of the service

capability. The automation required for the service

composition can be achieved by describing the WSDL

elements semantically, thus allowing software agents to

reason about the service capability, and make all the

decisions related to the composition on behalf of the

user or developer. The decisions include the selection of

appropriate services, their actual composition and close

examination of how they meet the criteria specified by

the user. In contrast, in the static composition approach,

the user or developer manually interprets the

requirements for the required composition and the

available service capability or functionality and makes

decisions regarding how services can be interweaved to

make a value-added service.

The WSDL specification is part of the base Web

services protocol stack and has been already widely

accepted and implemented to describe Web services.

Considering this, the general scenario will be to

annotate individual WSDL elements with corresponding

OWL elements. OWL-S (Dean 2005) is such ontology

specification for describing Web services semantically.

OWL-S ontology provides a mechanism to describe the

capability of Web services in machine-readable form,

which makes it possible to discover and integrate Web

services automatically. OWL-S defines three

interrelated subontologies, known as the profile, process

model and grounding. In brief, the profile is used to

express “what a service does”, for the purpose of

advertising, constructing service requests and

matchmaking; the process model describes “how it

works”, to enable invocation and composition; and the

grounding maps the constructs of the process model

onto detailed specifications of message formats,

protocols and so forth (Martin 2004). Figure 1 outlines

these subontologies.

Figure 1. OWL-S subontologies

The OWL-S based approach facilitates the meaningful

searches with the advantage of (IOPE) in profile and

process based service model hence user can perform in-

depth analysis of multiple services to perform a specific

task.

3.2 Reasoning of the Service Semantics

Ontology based descriptions provides a mechanism to

describe Web services functionality and the information

useful for composition to be encoded in unambiguous

machine understandable form. In order to perform the

automated composition, an intelligent layer is essential

that can interpret semantic descriptions and can order,

combine and execute Web services to achieve the

desired functionality or user goals. In other words, the

intelligent layer should comprehend the descriptions in

order to decide the possible services and build flow

management for those services.

The semantics based approaches can be categorized

based on the intelligent layer employed to achieve Web

services discovery and composition. AI planning and

case based reasoning are some of the methodologies

employed as intelligent layer.

Artificial Intelligence Planning

This section discusses the relevancy of AI planning for

the Web services composition problem and presents the

literature survey on the subject.

Planning is a task of discovering a sequence of actions

that can achieve a goal (Russell 2003). A planning

problem can be described as a five-Tuple problem (

S,s0,G,A,T) where S is the set of all possible states of

the world, s0 denotes the initial state of the planner, G

denotes the set of goal states the planning system should

attempt to reach, A is the set of actions the planner can

perform in attempting to reach a goal state, and the

transition relation T defines the semantics of each action

by describing the state (or set of possible states if the

operation is non-deterministic) that results when a

particular action is executed in a given world state.

Web services composition is similar to planning

problem evident from the following mapping.

258

S is the set of possible Web services, i.e. Web services

available from the service registry

s0 is the initial state where some or none services are

pre-selected for composition

G is the composition of Web services which satisfies the

user requirements.

A is the Web services operations (I) or preconditions (P)

available to planner to reach from the initial to goal state

T is the outputs (O) and effects (E) of invoking Web

services operations.

AI planning dependent approaches use IOPE based

OWL- S profile and process model to achieve required

automation for the Web services composition. For

example, if one starts with composition as goal (some

desired outputs and effects), and matches it to the

outputs and effects of a Web service (modelled as

process), the result is an instantiation of the process,

plus descriptions of new goals to be satisfied based on

the inputs and preconditions of that process. The new

goals (inputs and preconditions) then naturally match

other processes (outputs and effects), so that

composition arises naturally(Martin 2004).

Consistent with the above theory, Wu et al (Wu 2003)

utilize DAML-S based descriptions, the previous

version of OWL-S with SHOP2 planner (Kuter 2005).

The SHOP2 is a Hierarchical Task Network (HTN)

planner that creates plan by task decomposition - a

process in which the planning system decomposes tasks

into smaller and smaller subtasks, until primitive tasks

are found that can be performed directly. The authors

stress similarity between the concepts of task

decomposition in HTN with the process decomposition

in DAML-S.

Sirin et al in (Sirin 2004) describe another approach

which couples OWL reasoner with AI planner to reason

about the world state (effects and pre-condition) during

planning. The reasoning is achieved by describing pre-

condition and effects of the Web services using OWL.

Case Based Reasoning

Experience based learning using CBR is a relatively old

branch of artificial intelligence and cognitive Science

and is being used (Hammond 1986) as an alternative to

rule-based expert system for the problem domains,

which have knowledge captured in terms of experiences

rather than rules. Case based reasoning for Web services

were initially documented in (Limthanmaphon 2003),

where the developed framework uses CBR for Web

services composition. In their approach, the algorithm

for Web services discovery and matchmaking is

keyword based and has no notion for semantics. This

affects the automation aspects for Web services search

and later for composition. Similarly approach described

in (Diaz 2006) proposes an extension of UDDI model

for web services discovery using category-exemplar

type of CBR, where web services are categorized in

domains and stored as exemplar (Porter 1986) of

particular domain. Their implementation of CBR

reasoner facilitates UDDI registry by indexing the cases

based on the functional characteristics of Web services.

However, the approach does not take into consideration

the importance of non-functional parameters in service

selection and the use of semantics at CBR level is

peripheral as they primarily use the UDDI based

component for service discovery. UDDI is text-based

leaving little scope for automation.

There is also a number of existing approaches which

applies CBR for workflow modelling. (Madhusudan

2004) proposes an approach to support workflow

modelling and design by adapting workflow cases from

a repository of process models where workflow

schemas are represented as cases and are stored in case

repositories. The cases are retrieved for a problem

which requires similar business process to solve the

problem. The description and implementation language

of framework is based on XML and main focus is on

assisting workflow designer in creating business process

flows. In similar line, (Cardoso 2005) represents

adaptive workflow management system based on CBR

and targets highly adaptive systems that can react

themselves to different business and organization

settings. The adaptation is achieved through the CBR

based exception handling, where the CBR system is

used to derive an acceptable exception handler. The

system has the ability to adapt itself over time, based on

knowledge acquired about past execution experiences

that will help solve new problems.

3.3 Potential Facilitation to the composition
participants

Despite the enthusiasm of the research community

about the semantic web, there is still some way to go for

creating a unifying framework facilitating the

interoperation of intelligent agents or reasoning engines

attempting to make sense of semantic Web services.

However the workflow based approaches address here-

and-now practical problem of Web services composition

while dynamic Web services composition approaches

holds better futuristic potential that can serve a great

range of business domains. Automatic Web services

composition has the potential to reduce development

time and effort for the development of new applications.

This is due to automatic re-configuration of changing or

unavailable services in the integration.

Semantics assisted dynamic composition can serve all

business domains for the possible B2B, EAI and B2C

integrations. User can specify parameters for the

successful composition and the composition can be

performed at the run-time. The automatic Web services

composition solution can address the problems of

identifying candidate services, composing them, and

verifying closely that they satisfy the request.

The service providers will be able to participate in the

composition to their benefit with minimal effort as the

development effort will be essentially reduced. The

human developer will be taken out of the loop.

259

4. EVALUATION

For our research objectives, we have chosen the

following criteria to study existing Web services

composition approaches.

1. Service matchmaking

Using this evaluation criterion we compare various

approaches based on how the service matchmaking is

performed. The possible options are discovery using

WSDL, UDDI, free-text or OWL-S (previously DAML-

S) profile and process.

Workflow-based approaches use WSDL files to

interpret the capability of a service coupled with the

communications with the service provider or manual

analysis of service parameters. AI planning, CSP, and

agent-based approaches use different algorithms that

utilize semantic web services profiles to match-make

with semantically-encoded problem requests. CBR

based approaches are so fare using UDDI to match-

make web services.

2. Composition

We use this criterion to compare existing approaches to

evaluate them based on the how they employ intelligent

layers to achieve composition of Web services.

Workflow-based approaches use web services workflow

languages such as BPEL and WS-CDL to outline the

workflow of Web services. AI planning-based

approaches utilize AI planner to form composition plans

using existing planners such as SHOP2 (Levesque

1997) or GOLOG (Kuter 2005). CSP based approaches

utilize existing standards WSDL, UDDI and BPEL to

achieve the required composition. CBR based

approaches use bespoke XML based workflow

languages to write composition schema. Agents-based

approaches model web services as agents so that the

problem of web services composition translates to agent

collaboration problem so that it is possible to utilize

existing agent-infrastructure for composition.

3. Automation

Automation criterion is used to measure the level of

automation achieved by various Web services

composition approaches. We measure this using level of

automation in the process of service discovery,

composition and execution.

Most of these approaches support execution of

composition schemes by providing execution engines,

i.e., BPEL approaches use Oracle BPEL PM execution

engine (Oracle 2005) or IBM BPWS4J (BPWS4J 2005),

AI planners use OWL-S execution engines similar to the

OWL-S API (Sirin 2004) provided by the University of

Maryland.

Workflow-based approaches are static web services

composition approaches involving manual intervention

for discovery and composition of services. Semantic

web based approaches achieve varying degree of

automation in the process of composition (automatic

discovery, semi-automatic composition).

4. Transparency

This criterion measures how transparent the process of

composition (discovery, integration and execution) is

from the composition participants.

For workflow-based approaches, end-user is transparent

from the fact that the service presented to them in

response to their request is a composed service,

however the provider and composer has to work closely

to integrate services in the workflow hence making the

process opaque to them.

For AI planning based approaches, service requestor is

transparent to the intelligent process of composition;

however the process is semi-transparent to other

participants. For example, the composer needs to be

involved in the process of domain knowledge

development and maintenance while tools assist them in

converting semantic web services processes into planner

domains. This knowledge is supplied to the planner in

terms of operators and methods of services in order for

planner to build composition plans. The service provider

has to provide semantically enabled service but is

transparent from the process of composition. Similarly,

other semantic web based approaches offer complete

transparency to end-users while requires some level of

attention from service providers and composers.

5. Scalability of composition

Composing two services, however, is not the same as

composing 10 or 100. In a real-world scenario, end

users will typically want to interact with many services

— consider the classic holiday booking scenario —

while enterprise applications will invoke chains of

possibly several hundred services Milanovic 2004)..

Therefore, one of the critical issues is how the proposed

approaches scale with the number of services involved.

In BPEL, multiple service composition is somewhat

tedious because XML files start to grow offering the

approaches relying on BPEL as final composition

scheme limited scalability (CSP based approach).

OWL-S has similar issues and is propagated to the

approaches that rely on using OWL-S process as final

composition scheme (i.e., AI planning, software agent).

Approaches that utilize bespoke XML schemas for final

composition scheme (i.e., software synthesise

approaches output synthesized XML schemas) also face

similar challenges.

5. CONCLUSIONS

This contribution provides survey of two prominent

categories of Web services composition approaches.

The first approach, largely endorsed by the industry,

borrows form business processes’ workflow

management theory to achieve the formalization

necessary for describing the data flow and control in the

composition scheme. The second approach, mainly

260

promoted by the research community, aspires to achieve

more dynamic composition by semantically describing

the process model of Web service and thus making it

comprehensible to reasoning engines or software agents.

The comparison made in this paper has shown that

workflow based approaches are preferred by

organizations as here-and-now and practical, albeit

static, composition technique that robustly supports

their business needs; while dynamic Web services

composition approaches holds better futuristic potential

that can serve a great range of business domains. In

such kind of composition participating services can be

external and public. User can specify parameters for the

successful composition and the composition is

performed at the run-time. The solution addresses the

problems of identifying candidate services, composing

them, and verifying closely that they satisfy the request.

At the end of this literature survey we concluded that

despite the enthusiasm of the research community about

the semantic web, there is still some way to go for

creating a unifying framework facilitating the

interoperation of intelligent agents or reasoning engines

attempting to make sense of semantic Web services.

REFERENCES

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J.,

Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S.,

Trickovic, I., Weerawarana, S. 2003. Business Process

Execution Language for Web Services Version 1.1.

BPWS4J, “Business Process Execution Language for Web

Services Java Run Time”.

http://www.alphaworks.ibm.com/tech/bpws4j.

Cardoso, J., Sheth, A. 2005. Adaptation and Workflow

Management Systems. International Conference

WWW/Internet. Lisbon, Portugal: 356-364.

Dean, M., Hendler, J., Horrocks, I., McGuinness, D., Patel-

Schneider, P. F., Stein, L. A. 2005. Semantic Markup for Web

Services, OWL-S version 1.1.

Hammond, K. 1986. Learning to anticipate and avoid planning

problems through the explanation of failures. Fifth Conference

on Artificial Intelligence, AAAI86. Philadelphia, USA,

Morgan Kaufmann. 1: 556-560.

High, R., Kinder, S., Graham, S. 2004. An Architectural

Introduction and Overview. IBM’s SOA Foundation

Kavantzas N et al, 2004. Web Services Choreography

Description Language (WS-CDL) Version 1.0,

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J. 2005.

"Information gathering during planning for web service

composition." Journal of Web Semantics 3(2-3): 183–205.

Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.

1997. "GOLOG: A logic programming language for dynamic

domains." Journal of Logic Programming 31: 59-84.

Leymann F at al. 2002. “Web Services and business process

management”. IBM Systems Journal, Volume 41-2, 2002,

198-211.

Limthanmaphon, B., Zhang, Y. 2003. Web service

composition with case-based reasoning. the Fourteenth

Australasian database conference on Database technologies.

K. Schewe, Zhou, X Adelaide, Australia, Australian

Computer Society, Inc. Darlinghurst, Australia. 143: 201 –

208.

Madhusudan, T., Zhao, L. J., Marshall, B. 2004. "A case-

based reasoning framework for workflow model

management." Data & Knowledge Engineering archive 50(1):

87-115.

Martin D et al, 2004, "Bringing Semantics to Web Services:

The OWL-S Approach", Proceedings of the First

International Workshop on Semantic Web Services and Web

Process Composition (SWSWPC 2004).

Milanovic, N., Malek, M .2004. "Current solutions for Web

service composition." IEEE Internet Computing 8(6): 51 - 59.

Oracle BPEL Process Manager (PM),

http://www.oracle.com/technology/products/ias/bpel/index.ht

ml.

Osman T et al, 2005. An Integrative Framework for Traffic

Telematics Web Services, to be appeared in the Parallel and

Distributed Computing Networks Conference(PDCN 2005).

Peer, J. 2004. PDDL based Tool for Automatic Web Service

Composition. In Principles and practice of semantic web

reasoning, Springer Verlag, Berling, Germany: 15.

Porter, B. W., Bareiss, R. E. 1986. PROTOS: An experiment

in knowledge acquisition for heuristic classification tasks.

First International Meeting on Advnces in Learning (IMAL)

Les Arcs, France: 159-174.

Russell, S., Norvig, P. 2003. Artificial Intelligence: A Modern

approach, Prentice Hall.

Sirin, E., Parsia, B. 2004. Planning for Semantic Web

Services. In Semantic Web Services Workshop at 3rd

International Semantic Web Conference. Hiroshima, Japan,

Springer Verlag, Berlin, Germany.

Thatte, S. 2001. XLANG Web Services for Business Process

Design.

van der Aalst, W. M. P., ter Hofstede, A.H.M., Kiepuszewski,

B., Barros, A.P. (2003). "Workflow Patterns." Distributed and

Parallel Databases 14(3): 45.

WSIF (2005). WSIF Apache Software Foundation Web

Services project.

Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D. (2003).

Automating DAML-S web services composition using

SHOP2. 2nd International Semantic Web Conference

(ISWC2003).

Zisman, M. D. (1977). Representation, Specification and

Automation of Office Procedures. Warton School of Business,

University of Pennsylvania. PhD.

261

AUTHOR BIOGRAPHIES

DHAVALKUMAR THAKKER took his Masters

degree in Data Communication Systems at Brunel

University, London-UK. He also received his bachelors

degree in engineering from India. He is a PhD student

of Nottingham Trent University, School of computing

and Informatics. His current research interests are

distributed computing technologies, Web Services

composition, Semantic Web and Ontologies. His email

address is dhavalkumar.thakker@students.ntu.ac.uk.

TAHA OSMAN is senior lecturer at the Nottingham

Trent University, UK. He received a B.Sc honours

degree in Computing from Donetsk Polytechnical

Institute, Ukraine in 1992. He joined the Nottingham

Trent University in 1993 where he received an MSc in

Real-time Systems in 1994 and a PhD in 1998. His

current research peruses the utilisation of semantic web

technologies in web services composition and

information retrieval. His email address is

taha.Osman@ntu.ac.uk.

DAVID AL-DABASS is visiting professor at the

Nottingham Trent University, UK. His research work

explores algorithm and architecture for machine

intelligence. His email address is david.al-

dabass@ntu.ac.uk and web page is

http://ducati.doc.ntu.ac.uk/uksim/dad/webpage.htm.

262

Special Session on Pattern Analysis
and Recognition

(PAR’08)

263

264

Robust Recognition of Checkerboard Pattern for Deformable Surface Matching in Multiple
Views

Weibin Sun Xubo Yang Shuangjiu Xiao Wencong Hu
DALAB Shool of Software

Shanghai Jiao Tong University, Shanghai, China 200240
Email: {skyend, yangxubo, xiaosj, ycguyue}@sjtu.edu.cn

KEYWORDS
Recognition checkerboard deformable surface matching

ABSTRACT
Checkerboard pattern can be used in many computer vi-
sion areas by matching the pattern as a surface, such as
camera calibration, stereo vision, projector-camera sys-
tem and even surface reconstruction. However, most
existing checkerboard pattern recognition methods only
work in planar and fine illuminating circumstances. A ro-
bust recognition method for checkerboard pattern is pro-
posed in this paper to deal with those arbitrary surface de-
formation and complex illumination problems. Checker-
board internal corners are defined as special conjunc-
tion points of four alternating dark and bright regions.
A candidate corner’s neighbor points within a rectangu-
lar or a circular window are treated as in different one-
point-width layers. By processing the points layer by
layer, we transform the 2D points distribution into 1D
to detect corners, which simplifies the regions amount
counting and also improves the robustness. After cor-
ner detection, the pre-known checkerboard grids rows
and columns amounts are used to match and decide the
right checkerboard corners. Regions boundary data pro-
duced during the corner detection also assist the match-
ing process. We compare our method with existing cor-
ner detection methods, such as Harris, SUSAN, FAST
and also with the widely adopted checkerboard pattern
recognition method, FindChessboardCorners function in
OpenCV, to show the robustness and effectiveness of our
approach.

INTRODUCTION
Checkerboard pattern(fig. 1) can be useful in many vi-
sion systems. Its alternating bright and dark grids and
grid corners features can be a very strong features to de-
tect and recognize. In most checkerboard applications,
the internal corners(marked by circles in fig. 1), which
are conjunctions of every four close grids, are the main
features to use. Each checkerboard grid is a solid in-
tensity region where the internal corner is surrounded by
four alternating bright and dark regions, so we call these
internal corners the region corners in this paper. By de-
tecting and locating region corners of checkerboard pat-
tern surfaces in two scenes, the mapping between those

Figure 1: Checkerboard pattern with internal corners
marked by circles

corresponding corners on the deformed surfaces of dif-
ferent scenes can be calculated. The mapping between
those two deformed surfaces actually consists of many
homographies between the approximate planar quadran-
gle grids of checkerboard patterns in different scenes.
If both of the two scenes are camera views of a static
checkerboard pattern on an object, the mapping can be
used to model the object in this case, which is actually
a modeling technique in stereo vision. If one of those
scenes is a camera view of a planar checkerboard pat-
tern and the other is the original checkerboard image, the
mapping can be used in camera calibration case (Zhang,
2000). If the checkerboard pattern in the camera view in
the second case is projected onto a surface by a projector,
the mapping can be the foundation of geometry registra-
tion (Brown et al., 2005) in projector-camera augmented
reality system (Bimber and Raskar, 2006; Raskar et al.,
2002) case. What’s more, in the geometry registration
case, by treating each checkerboard grid as a quadrangu-
lar patch, we can reconstruct the projection surface, then
checkerboard pattern can be a special structure light (Ag-
garwal and Wang, 1988; Stockman and Hu, 1986) type.

However, to recognize the checkerboard pattern is very
difficult on deformable surfaces under natural lighting
condition, which are very common environment prob-
lems in various computer vision tasks. This paper will
deal with these problems.

RELATED WORKS

The recognition process is actually the locating process
of checkerboard region corners. All checkerboard region
corners should be detected and located without false cor-
ners and corners that do not belong to the checkerboard.

To detect corners, (Harris and Stephens, 1988) devel-

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

265

oped (Moravec, 1977)’s idea into the famous Plessey cor-
ner detector. This method is based on the first-order
derivatives and has good behavior with respect to detec-
tion. (Smith and Brady, 1997) applied a circular mask
to detect corners, that is, the so called SUSAN detec-
tor, which has the advantages of being robust to noises
and yielding accurate results at a reasonable computation
speed. The SUSAN principle is based on the fact that the
center pixel should be a corner point if the number of the
pixels that have the same brightness as the center pixel
in the circular mask is below a threshold. (Rosten and
Drummond, 2006)developed their FAST method for cor-
ner detection based on their previous works(Rosten and
Drummond, 2005). FAST can perform efficient corner
detection at high speed, however, its threshold to decide
the dark and bright areas in a circle around a candidate
corner weaken the robustness against complex illumina-
tion. Apart from this method, there are various other ones
being proposed in (Trajkovic and Hedley, 1998; Zheng
et al., 1999) to find corners or features. But when those
methods were applied for checkerboard recognition un-
der complex illumination and deformation conditions,
many noise and redundant corner points were detected.
Both problems would bring great trouble to identify the
real checkerboard corners.

Besides those corner detection approaches, there are
some specialized methods for checkerboard recognition.
In (Zhang, 2000), the corners are found by intersecting
lines. The drawback of this approach is that edges may be
in general curved due to radial distortions or deformation.
Furthermore, the subsequent ordering of the corners into
a regular grid can be complex and unreliable. (Bouguet,
2000) proposed an interactive method to find the internal
corners of planar checkerboard pattern image. This tool
is especially convenient when working with a large num-
ber of images. However, the user needs to click on the
four extreme corners on each rectangular checkerboard
pattern image in order to calculate the data of the cor-
ners. The OpenCV function, cvFindChessBoardCorner,
which is widely used, can do automatic corner extraction,
but the algorithm fails rather often under complex illumi-
nation and deformation. (Wang et al., 2007) proposed an
approach to automatically recognize and locate the in-
ternal target corners of the planar checkerboard pattern
image. The proposed approach is based on the character-
istics of local intensity and the grid line architecture of
the planar checkerboard pattern image. (Shu et al., 2003)
proposed a method, which is based on the algorithm of
(Watson, 1981), that exploits the topological structure of
the checkerboard pattern. The main idea is to use Delau-
nay triangulation (Bern and Eppstein, 1992) to connect
the corner points. It can deal with different lighting con-
ditions but also only planar checkerboard pattern.

In this paper, we propose a robust automatic method
that can recognize checkerboard pattern under complex
illumination and deformation. The main idea is to treat
a certain point’s neighbor points within a rectangular or
a circular window as in different one-point-width layers

and transform the 2D points distribution into 1D to de-
tect regions. Corners are correlated and clustered by the
region boundary data to recognize the checkerboard cor-
ners.

NOTATIONS AND MOTIVATION
Let I be the image containing the checkerboard pattern.

I = {~p}, ~p = [x, y] denotes the point in I. (1)

For a vector point ~p, we use (x~p, y~p) to represent its
Cartesian coordinates, (ρ~p, θ~p) to represent its polar coor-
dinates. In a grayscale image, we make I(~p) or I(x~p, y~p)
be the intensity of point ~p, IB(~p) or IB(x~p, y~p) be the
intensity of point ~p in a binary image.

A checkerboard internal corner, which we call it the re-
gion corner(fig. 2(a)), has four alternating dark and bright
regions around it. We define a rectangular and a circular
window covering the four regions feature surrounding a
candidate corner ~p to be R(~p, w) and C(~p, w) in eq. 2.

R(~p, w) = {~pi| |x~pi
− x~p| ≤ w, |y~pi

− y~p| ≤ w}
C(~p, w) = {~pi | ‖~pi − ~p‖ ≤ w} (2)

w here is always an non-negative integer limit the win-
dow’s scope. R(~p, w) is a set of points that are in a
rectangular, actually a 2w + 1 points width square win-
dow(we still call it rectangular to be more general in
the rest of this paper). C(~p, w) is a set containing the
points around ~p within a circular window whose radius
is w points and the center is ~p. The circular window can
be generated by a Bresenham (Bresenham, 1977) circle
when implementing to be efficient and accurate.

The four alternating dark and bright regions around
a corner can be deformed seriously on arbitrary sur-
face. The isotropy against deformation can be achieved
if points within a window are iterated by circumambulat-
ing the corner from the outer to the inner. The layer is
defined in eq. 3 to represent the points being checked in
each circumambulating iteration.

Lr(~p) =< ~p1, . . . , ~pi, . . . , ~pnr >, i ∈ [1, nr]
for circular window ~pi ∈ C(p, r)− C(p, r − 1)

for rectangular window ~pi ∈ R(p, r)− R(p, r − 1)
θ~pj

< θ~pj+1 , j ∈ [1, nr − 1] (3)

In a window R(p, w) or C(p, w), there are w layers from
L1(~p) to Lw(~p). nr is the points amount in Lr(~p). For a
Lr(~p) in R(p, w), nr can be calculated by eq. 4.

nr = 4(2r + 1)− 4 = 8r (4)

For circular window layers Lr(~p) in C(p, w), the Bresen-
ham circle algorithm will decide the nr. To be used later,
we define the first order derivative in a layer Lr(~p) to be:

I ′L(~pi) = I(~pi+1)− I(~pi) (5)

Note that the coordinate index in Lr should be i in ~pi,
this would make the coordinates in Lr be 1D. A layer

266

(a) Region corner (b) Layers

Figure 2: A region corner and its layers within a window
R(~p, 4), from L1(~p) to L4(~p), points are labeled with
their layer indices.

(a) 1D layers image (b) 1D layers brightness
values

Figure 3: 1D form of layers from L1(~p) to L3(~p) in
fig 2(b).

is an ordered tuple of points which are sorted by the se-
quence in which points are iterated when circumambulat-
ing the corner. The circumambulating can be performed
in the order that the polar coordinates θ~p’s incremental
direction(note that within each window, we set the polar
coordinates origin (0, 0) be the center of the window).
fig. 2(b) shows the layers in a rectangular window around
a corner. A layer Lr(~p) is actually a nr points long 1D
sequential array representing a 1D image signal(fig. 3).
It transforms the 2D point distribution within a window
to 1D, then regions in a layer will be line segments after
binarization. That will simplify the detection of regions
around a corner when corners are detected by recogniz-
ing the four alternating regions feature in our method.

To be used by the ring-morphology defined in (Section
CORNER DETECTION), we define some operators for
set operations:

Set cardinality: |A|
Translation: (A)p = {c | c = a + p, a ∈ A}

Complementary set: Ac = {w | w /∈ A} (6)

RECOGNITION
Checkerboard recognition has two steps, corner detection
and checkerboard match. The first step finds all candidate
checkerboard corners. The second step does the checker-
board pattern matching with the help of corners.

CORNER DETECTION
Region corners are detected by checking whether there
are four alternating dark and bright regions around a
candidate corner within a window scope. To be ef-
ficient and robust, firstly, the image I is resized to a

range [ISmin, ISmax)] without changing the width and
height ratio. According to the common camera resolu-
tions from 320 × 240 to 2048 × 1536, the range is set
to be [(300, 200), (2100, 1600)]. There is no difference
between the rectangular window and the circular one to
achieve isotropy against deformations when circumam-
bulating the points in layers around the candidate corner.
We will use the rectangular one in rest of this paper.

The window size parameter, w in R(~p, w) is decided
by the checkerboard grid size. To detect the four alternat-
ing dark and bright regions, the window should not cover
more than four regions, which are actually four grids sur-
rounding a corner. So window width 2w + 1 should be
less than two times of the grid width(we only consider
checkerboard with square grid) gwidth. To be efficient,
we decide the two windows of two neighbor corners be-
longing to a same grid should not intersect too much. So
2w + 1 < gwidth and w ≈ gwidth/2. We also define a
a window size range [WSmin,WSmax] to limit the win-
dow size for extreme large or small grid. gwidth can be
calculated by the amount of checkerboard grids rows gr

and columns gc and the image size widthI and heightI
according to eq. 7 to be a probable value.

gwidth = min{widthI

gc
,
heightI

gr
} (7)

Here gr and gc should be known before recognition. eq. 8
shows the calculating of the window size parameter w.

w =
w′

2
, w′ is calculated by eq. 9. (8)

w′ =

 WSmin if gwidth < WSmin

gwidth if gwidth ∈ [WSmin,WSmax]
WSmax if gwidth > WSmax

(9)

The window size parameter does not need high preci-
sion, we just ignore the 1 in 2w + 1 window width in
eq. 8. The window size range [WSmin,WSmax] re-
flects the minimum scope in which a region corner can
be identified. The region borders around a corner may be
smoothed or extended to blocks rather than border lines
to lose sharpness because of noise, low camera captur-
ing quality and complex lighting. To get robustness, the
window should be able to cover all four regions to detect
them. However, too large window size will cause low
performance. We set this range be [11, 21] to tolerate the
low quality corners in most common camera cases. The
[WSmin,WSmax] with value of [11, 21] limits the win-
dow widths from 11 to 21 of R(~p, w). This range may
be changed when implementing, however, a points block
with over 21 points long width should not be recognized
to be a border line even in human’s eyes, so for most ap-
plications, the range can be fixed to our values without
manual change.

For each layer, a mean value of the layer points is cal-
culated to do thresholding as in eq. 10. Let LB

r (~p) be the

267

Figure 4: A fake region caused by a line

Figure 5: Broken region in L3(~p) of the region corner in
fig. 2

binarization result of Lr(~p).

LB
r (~p) = {~p′i | ~p′i = ~pi,∀~pi ∈ Lr(~p) and

IB(~p′i) =
{

0 if I(~pi) < t
1 if I(~pi) ≥ t

, t =
∑

~pi∈Lr(~p) I(~pi)

|Lr(~p)| }

(10)

This layer-scope threshold can reduce the negative ef-
fects caused by noises to achieve a locally adaptive
thresholding result. After thresholding, a noise reduction
is performed on the binary 1D image signal to remove
fake regions, which are mainly caused by lines or blob
points. fig. 4 shows an example of this fake region caused
by a line. These fake regions are actually regions with
very short widths. We do the binary morphology (Haral-
ick et al., 1987) operations, opening and closing, both of
which are with a same 1D structure elements(SE) SEcd,
to remove noises. The SEcd’s length is determined by
the layer LB

r (~p)’s length nr. A proportion κ of the SEcd

length lse and the layer LB
r (~p)’s length nr is used to cal-

culate lse(eq. 11).

lse = nr · κ (11)

SEcd is defined to be:

SEcd = {1, . . . , lse} (12)

A checkerboard corner should have four regions, so κ
should be less than 1

4 . To be robust, we decide to tol-
erate the deformed region covering about 1

8 layer. To
produce more redundant corners to avoid missing cor-
ners, we tolerate the minimum region taking up only 1

10
layer. So we set κ to 1

10 . To avoid incorrect noise reduc-
tion, layers with small width parameter r < 2 will not
do this operation. What’s more, because the last point
and the first point of a layer in 1D form are actually con-
tinuous in 2D form, a region may break here because of
the 2D to 1D transformation. An example is shown in

fig. 5. These broken regions may be treated as fake re-
gions when noise reducing because of their short widths.
To avoid this problem, we modify the binary morphology
operations by elongating the layer to repeat it one more
time behind its last point to be cycle-compatible, these
modified operations are called the ring-morphology as in
eq. 13.

Dilation: A⊕ring B = { x mod |A| |
(B)x ∩ (A ∪ (A)|A|) 6= ∅}

Erosion: A	ring B = { x mod |A| |
(B)x ∩ (A ∪ (A)|A|)c 6= ∅}

Opening: A ◦ring B = (A	ring B)⊕ring B

Closing: A •ring B = (A⊕ring B)	ring B (13)

The ring-morphology treats a 1D image as a ring that
the head and the end are joined. By performing ring-
morphology opening and closing on the binary layers
LB

r (~p) after thresholding, we can reduce the fake regions.
Then regions count can be calculated by summing ab-
solute value of the first order derivatives I ′L(~pi) of this
binary(only 0 and 1 values) layer. To avoid the similar
region breaking problem, we let the first order derivative
I ′L(~pnr

) at ~pnr
of a layer LB

r (~p) to be:

I ′L(~pnr
) = IB(~p1)− IB(~pnr

) (14)

In checkerboard pattern, one layer should have 4 re-
gions. If all layers of a candidate corner have 4 regions,
this candidate should be a corner. However, to get high
robustness, we define an acceptance threshold value α to
allow some noises. If there are α or more portions of lay-
ers containing 4 regions, the candidate corner is accepted
to be a checkerboard corner. Too large α will cause too
many noise corners while too small α also reduces the
robustness. This acceptance threshold value can be de-
termined by the acceptance degree of human’s eyes and
image noise degree. We set it to be 0.7 to tolerate 30%
noise layers in a window for common camera images.

Till now the corner detection result including the re-
gion corners is produced. Let the result be N. Moreover,
the regions boundaries positions of a corner are recorded
for the later checkerboard match step. Since there are
more than one layers within a corner’s surrounding win-
dow, only the most outer layer is recorded. We repre-
sent the region boundary of a corner ~p within its win-
dow R(~p, w) to be(note that the derivative I ′L(~p) is on
the thresholded binary layer LB

r (~p)):

B~p = {~pi | |I ′L(~pi)| = 1,∀~pi ∈ LB
wmax

(~p)}
wmax = max{wj | wj ∈ [1, w],∑

~pk∈LB
wj

(~p)

|I ′L(~pk)| = 4} (15)

CHECKERBOARD MATCH
The corner detection step can produce noise corners and
redundant corners because of the acceptance threshold

268

value and image noises. To reduce those noise, we per-
form a window neighbors checking on the corner detec-
tion result. To remove the redundant corners, firstly we
cluster the result points, then in each cluster, the mass
center or the point with minimum distances sum to other
points of the same cluster is calculated to be the new
checkerboard corner, other result corners are removed.

When doing noise reduction on the corner detection
result N, each corner ~c ’s neighbors within a window
R(~c, w) is checked to see whether there are enough cor-
ners in the window. If there are enough(more than a
given τ) corners, all corners within the window are re-
served, otherwise the checked corner is removed. This
operation is similar to binary erosion, we also need a
(2wse + 1) × (2wse + 1) structure element SEcr to
perform the neighbors checking. By defining SEcr in
eq. 16, the refined result N′ can be calculated by eq. 17,
in which we also use the translation operation and set
cardinality defined in eq. 6.

SEcr = {~pi,j | i ∈ [1, 2wse + 1], j ∈ [1, 2wse + 1],
x~pi,j

= i− wse − 1, y~pi,j
= j − wse − 1} (16)

N′ = {~p | |(SEcr)~p ∩ N| ≥ τ,∀~p ∈ N} (17)

The τ to reduce noise in eq. 17 should be no larger than
wse. We define wse to be 2 to check a 5 × 5 neighbors
patch and τ to be 2 to eliminate the isolated noise corner,
which is the only one corner within that neighbors patch
when τ is 2.

Redundant corners are reduced by clustering. Cor-
ners result N′ after noise reduction is clustered accord-
ing to their distances between each other. The result
N′ is treated to be a nodes set and each corner in N′ is
a node. If two corners have a distance no larger than
SEcr’s width 2wse+1, there is an edge connecting them.
By defining nodes and edges, we get an undirected graph
G′ (eq. 18).

G′ = (N′, E′)
E′ = {(~pi, ~pj) | ‖~pi − ~pj‖ ≤ 2wse + 1,∀~pi, ~pj ∈ N′}

(18)

Each connected component G′
c(N′

c, E′
c) in G′ is a

cluster. For each cluster G′
c, the mass center or the point

~pc with minimum distances sum to other points of the
same cluster is calculated and made to be the new corner
to replace others in the cluster. ~pc is calculated by eq. 19.
There may be more than one ~pc, just pick a random one
when implementing.

~pc : ~pc ∈ N′
c and

∑
~pj∈N′

c
‖~pj − ~pc‖ =

min{
∑

~pk∈N′
c
‖~pk − ~pi‖ | ∀~pi ∈ N′

c} (19)

Because mass centers of some clusters may be not in N′,
the region boundary positions of those mass centers are
not recorded in corner detection. This problem can be
solved by calculating the mean region boundary positions

of corners in a cluster. ~pc does not have this problem al-
though the mass center is always more accurate in posi-
tion than ~pc to represent the cluster’s position. So when
implementing, ~pc will be an efficient selection. We let N′′

be the corners result after redundant corners reduction.
After noise and redundance reduction, the region

boundary positions data of each found corner are used
to calculate the connectedness of corners. We also use
the graph theory to assist this process. Each corner in N′′

is a node. An edge connecting two corners will exist if
those two corners are on a same region boundary line. An
edge actually connects two checkerboard corners sharing
the same boundary of one checkerboard grid. These two
corners are neighbor corners of a grid. The edge set is
defined by eq. 20.

E′′ = {(~pi, ~pj) | ∃~pik
∈ B~pi

, ~pjl
∈ B~pj

:
(~pik

− ~pi) · (~pjl
− ~pj)

‖~pik
− ~pi‖‖~pjl

− ~pj‖
∈ [−1, ε]} (20)

ε here should be very close to −1. [−1, ε] defines an
acceptance range to tolerate the inaccurate region bound-
aries. The inaccuracy is mainly caused by the serious
deformation within a checkerboard grid. If two cor-
ners ~pi and ~pj are on a same boundary of a checker-
board grid, [−1, ε] defines the cosine value(calculated
by (~pik

−~pi)·(~pjl
−~pj)

‖~pik
−~pi‖‖~pjl

−~pj‖) range of the angle between two re-
gion boundaries vectors: (~pik

− ~pi) and (~pjl
− ~pj), here

~pik
and ~pjl

are on the same grid boundary on which ~pi

and ~pj locate. eq. 20 ignores the relative position of
the two corners when deciding edges. In most applica-
tion cases such as geometry registration, surface recon-
struction, checkerboard usually has large amount of grids
and a grid is treat to be a plane without deformation and
distortion, deformation and distortion only occur among
different grids. However, considering other cases that
can tolerate the non-planar grid and to be robust under
serious deformation, we decide ε to be −0.8 to toler-
ate a ± arccos(−0.8) ≈ ±36◦ bending deformation of
straight boundaries within a grid.

Now the graph G′′ = (N′′, E′′) is produced. With the
assistance of checkerboard grids rows gr and columns gc,
we can find the checkerboard pattern corners by finding
the connected component G′′

c that has exact (gr − 1) ·
(gc− 1) nodes. If there is the only one G′′

c having (gr −
1) · (gc − 1) nodes, it is the set that contains all the right
checkerboard corners.

RESULT AND COMPARISON
We compare our method with Harris, SUSAN and
FAST corner detector to evaluate our corner detection
of checkerboard region corners. We also compare our
method with FindChessboarCorner function in OpenCV
to evaluate our recognition of the checkerboard pattern.

Our comparison focuses on the corner detection ro-
bustness and checkerboard pattern recognition correct-
ness. To evaluate the robustness against complex illumi-

269

(a) A printed checkerboard
with serious deformation and
bad illumination

(b) A projected checkerboard
pattern by a common projec-
tor with deformation and in-
correct color capturing

Figure 6: Checkerboard images by common camera.(You
may enlarge them to see more clearly.)

nation and deformed surface, we use the low-price gen-
eral cameras to capture checkerboard patterns(in fig. 6)
on serious deformed surfaces in a room without enough
environment light. General cameras always have seri-
ous color incorrectness that they can not restore the exact
color of the object it captured, which will cause various
noises. fig. 7 shows our comparison results.

For Harris and SUSAN, both of them fail to deal with
the darker area in fig. 7(b) and 7(a) while too many noises
and redundance are produced in fig. 7(g) and 7(f).

FAST method’s threshold weakens the robustness
against complex illumination significantly. We use both
the default value 20 and an adjusted value 10 in the FAST
demo supplied by the authors of FAST. Under complex
illumination in our test images(fig. 6), FAST with thresh-
old 20 will miss many region corners(fig. 7(e) and 7(j)).
We adjust this value to 10, however, it will produce many
redundant and noise corners(fig. 7(d) and 7(i)). It is
difficult to distinguish the four different corners on the
boundaries of a grid.

OpenCV’s FindChessboardCorner will do threshold-
ing on the global image to transform the dark and bright
grids into black and white. This thresholding can always
fail even with adaptive method under complex illumina-
tion. The results in fig. 7(c) and 7(h) show the failed
detection.

fig. 7(k) and 7(l) show that our method can find all
checkerboard region corners and match them within the
checkerboard pattern successfully while other methods
fail. fig. 6(a) and 6(b) are just two representative images
of a large number of checkerboard images captured by
general cameras in our test. We test our method with
plenty of checkerboard images captured by general cam-
eras under complex illumination and deformation and
find it is robust to recognize the checkerboard pattern
correctly in those images. We also present some of
them(fig. 7(m), 7(n), 7(o)) in this paper. The circumam-
bulating iteration around a corner can get isotropy against
deformation. Thresholding in 1D layers locally will get
robustness against various illumination. The fake region
reduction can ensure the correctness of corner detection.
The acceptance threshold of layers and other parameters
with the values defined in our method according to most
general cases will reduce the effects caused by noise or

deformation. Noise reduction in checkerboard match and
the redundant corner reduction by clustering can ensure
the corners without redundance and noise. Then corners
connected by region boundaries will produce the right
checkerboard corners set.

CONCLUSION AND FUTURE WORKS

We present a robust recognition method for checkerboard
pattern. This method addresses the problem of recog-
nizing checkerboard pattern under complex illumination
and deformation in computer vision systems to do cam-
era calibration, stereo vision, geometry registration or
surface reconstruction. The checkerboard internal cor-
ners(region corners) surrounded by four alternating dark
and bright regions and their boundaries are the features
to find in our recognition. By detecting corners with the
help of our own robust region corner detection approach
and then do checkerboard matching mainly by clustering,
our method can be automatic and robust with the param-
eters values we defined according to most general cases
rather than manually-setting parameters. The experiment
results in (Section EVALUATION) show that our method
can deal with most common checkerboard images cap-
tured by general cameras.

To achieve the most robustness, we detect the region
corners and match checkerboard pattern by recognizing
and using almost all their features which can ensure the
robustness but costs much time. Now our algorithm is
O(mn) time complexity(m for window size, n for im-
age size). In future, we will focus on the speed. Some
features may be simplified to save time without losing
robustness.

ACKNOWLEDGEMENTS

This work is sponsored by 863 National High Tech-
nology R&D Program of China (No.2006AA01Z307)
and National Natural Science Foundation of China
(No.60403044).

REFERENCES

Aggarwal, J. and Wang, Y. (1988). Inference of object surface
structure from structured lighting — an overview. Machine
Vision — Algorithms, Architectures, and Systems, (Proceed-
ings of a workshop ’Machine Vision: Where are we Going”).

Bern, M. and Eppstein, D. (1992). Mesh generation and optimal
triangulation. Computing in Euclidean Geometry, pages 23–
90.

Bimber, O. and Raskar, R. (2006). Modern approaches to aug-
mented reality. ACM SIGGRAPH.

Bouguet, J. (2000). Matlab camera calibration toolbox. .

Bresenham, J. (1977). A linear algorithm for incremental dig-
ital display of circular arcs. Communications of the ACM,
20:100–106.

270

(a) SUSAN result, fail
to find all region cor-
ners.

(b) Harris result, fail to
find all region corners.

(c) OpenCV Find-
ChessboardCorner
result, fail to find all
region corners and
match checkerboard.

(d) FAST with thresh-
old 10. Too many re-
dundant and noise cor-
ners to match checker-
board.

(e) FAST with default
threshold 20, fail to find
all region corners.

(f) SUSAN result, fail
to find all region cor-
ners.

(g) Harris result, fail to
find all region corners.

(h) OpenCV Find-
ChessboardCorner
result, fail to find all
region corners and
match checkerboard.

(i) FAST with threshold
10. Too many redun-
dant and noise corners
to match checkerboard.

(j) FAST with default
threshold 20, fail to find
all region corners.

(k) Our method result,
success.

(l) Our method result,
success.

(m) Our method result
on other image, success.

(n) Our method result
on other image, success.

(o) Our method result
on other image, success.

Figure 7: Comparison Result on fig. 6(a), 6(b) and some of our method results on other images. Corners are marked by
blue cross. Red circles mark the checkerboard pattern’s region corners. SUSAN and Harris corners are marked by red
circle. FAST corners are marked by red pixels.(Enlarge images to see detail.)

Brown, M., M., A., and Yang, R. (2005). Camera-based calibra-
tion techniques for seamless multiprojector displays. IEEE
Transactions on Visualization and Computer Graphics.

Haralick, R., Sternbergn, S., and Zhuang, X. (1987). Image
analysis using mathematical morphology. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 9.

Harris, C. and Stephens, M. (1988). A combined corner and
edge detector. Proc 4th Alvey Vision Conf, pages 189–192.

Moravec, H. (1977). Towards automatic visual obstacle avoid-
ance. Fifth International Joint Conference on Artificial In-
telligence.

Raskar, R., van, B. J., and Chai, J. (2002). A low-cost projector
mosaic with fast registration. ACCV.

Rosten, E. and Drummond, T. (2005). Fusing points and lines
for high performance tracking. ICCV.

Rosten, E. and Drummond, T. (2006). Machine learning for
high-speed corner detection. ECCV, 3951:430–443.

Shu, C., Brunton, A., and Fiala, M. (2003). Automatic grid
finding in calibration patterns using delaunay triangulation.
.

Smith, S. and Brady, J. (1997). Susan - a new approach to low
level image processing. IJCV, 23:45–78.

Stockman, G. and Hu, G. (1986). Sensing 3-d surface patches
using a projected grid. CVPR.

Trajkovic, M. and Hedley, M. (1998). Fast corner detection.
Image and Vision Computing, 16.

Wang, Z., Wu, W., Xu, X., and Xue, D. (2007). Recognition
and location of the internal corners of planar checkerboard
calibration pattern image. Applied Mathematics and Com-
putation, 185:894–906.

Watson, D. (1981). Computing the n-dimensional delaunay tes-
sellation with application to voronoi polytopes. The Com-
puter Journal, 24(2):167.

Zhang, Z. (2000). A flexible new technique for camera cali-
bration. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 22.

Zheng, Z., Wang, H., and Teoh, E. (1999). Analysis of
gray level corner detection. Pattern Recognition Letters,
20(2):149–162.

AUTHOR BIOGRAPHIES
Weibin Sun was born in 1984’s China. His email is
skyend@sjtu.edu.cn and his personal webpage at
http://dalab.se.sjtu.edu.cn/ endysun.

Xubo Yang’s email is yangxubo@sjtu.edu.cn.
Shuangjiu Xiao’s email is xiaosj@sjtu.edu.cn.
Wencong Hu’s email is ycguyue@sjtu.edu.cn.

271

FURTHER OPTIMIZATIONS FOR THE CHAN-VESE ACTIVE CONTOUR MODEL

Zygmunt L. Szpak and Jules R. Tapamo

School of Computer Science

University of KwaZulu-Natal

Durban, 4062, Republic of South Africa

Email: zygmunt.szpak@cs.ukzn.ac.za and tapamoj@ukzn.ac.za

KEYWORDS

Fast level-set, Optimization, Active Contours Without

Edges, Chan-Vese, Shi-Karl, Segmentation

ABSTRACT

When a Chan-Vese active contour model is implemented

in a framework that does not solve partial differential

equations, we show how the mean pixel intensity inside

and outside the curve can be updated efficiently. We

reduce each iteration of the Chan-Vese active contour

by O(n), when compared to an approach whereby the

mean pixel intensities are recalculated for each iteration

by looping over the entire image. After implementing

the Chan-Vese active contour in the Shi-Karl level-set

framework that does not solve partial differential equa-

tions, we show that the active contour may be trapped in

an idempotent cycle, and we introduce a new stopping

criterion to deal with this situation, thereby eliminating

wasted computation cycles. Finally, we optimize the reg-

ularization cycle in the Shi-Karl framework, by detecting

when an additional execution of the regularization cycle

has no effect on the active contour, and breaking out of

the loop.

1. INTRODUCTION

In (Lakshmanan et al., 2006) and (Pan et al., 2006a),

the authors propose efficient implementations for the

Chan-Vese Active Contours Without Edges model (Chan

and Vese, 2001), in a level-set framework that does not

require the calculation of partial differential equations.

These implementations reduce computation time by us-

ing lists of points to represent the contours, and by evolv-

ing the contours by adding and removing points from

these lists; while concurrently updating a level-set func-

tion. Previous work focused on modelling the evolution

of the curve, and no mention was made of how to effi-

ciently calculate the mean pixel intensity inside and out-

side the curve. This is a crucial calculation in the Chan-

Vese model. We show how the mean intensity inside the

curve and outside the curve can be efficiently updated for

each iteration of the curve evolution, and we compare the

resulting speed increase against an approach where the

mean intensities are recalculated over the entire image

at each iteration. Our proposed calculation scheme can

be used whenever the mean intensities inside and outside

the curve are required, and a list of points representing

the curve is used. We implement our solution in the Shi-

Karl (Shi and Karl, 2005a) fast level-set framework, and

emphasize the speed increase of our method by testing it

on large 1024×768 images.

Additionally, we propose a simple modification to the

gaussian filtering curve regularization method, used in

(Shi and Karl, 2005a), which eliminates redundant cy-

cles and hence decreases the time to convergence. We

also show that for certain images, a gaussian filtering reg-

ularization method will prevent the active contour from

terminating. To overcome this problem we introduce an

additional stopping criterion.

The rest of our paper is organized as follows. In Sec-

tion 2 we summarize the Shi-Karl fast level-set frame-

work, that does not require the calculation of partial dif-

ferential equations. We review the Chan-Vese piecewise-

constant active contour model, and discuss its use and

limitations in Section 3. Our proposed optimization for

calculating the mean pixel intensity, inside the curve and

outside the curve, is presented in Section 4, and our new

stopping criterion and optimization for the gaussian fil-

tering regularization method, is introduced in Section 5.

2. SHI-KARL FAST LEVEL-SET METHOD

The level-set method is a numerical technique, for track-

ing a propagating interface which changes topology over

time. It is often used in image segmentation (Paragios

and Deriche, 2000). A segmentation is achieved by plac-

ing a closed curve on an image, and by evolving the curve

according to internal, external and user defined forces.

Snakes (Kass et al., 1987) are used in a similar way to

segment an image, but in the level-set method, the curve

can split and change topology whereas snakes cannot.

The traditional level-set method (Sethian, 1999), requires

the calculation of partial differential equations, that gov-

ern the evolution of the curve. This is a very time con-

suming calculation. In (Shi and Karl, 2005a), the authors

proposed a fast implementation of the level-set method,

that does not require the calculation of partial differen-

tial equations. Their framework resembles the traditional

level-set method, because the curve C is still represented

implicitly as the zero level-set of a function φ. The func-

tion φ is defined as the signed distance function, which is

positive outside C and negative inside C. From this defi-

nition, when a point on C moves inward, its neighboring

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

272

point that previously was inside the curve C, will lie out-

side the curve, and so the value of φ of that neighboring

point will change from negative to positive. Similarly if

a point on C moves outwards, the value of φ of its out-

side neighboring point will change from positive to nega-

tive. This means that the evolution of the curve C can be

controlled without solving partial differential equations,

by manipulating the values of φ for a list of neighboring

points outside C (Lout), and a list of neighboring points

inside C (Lin). Formally, the two lists of neighboring

points can be defined as:

Lin = {x|φ(x) < 0 and ∃ y ∈ N4(x), φ(y) > 0}

(1)

Lout = {x|φ(x) > 0 and ∃ y ∈ N4(x), φ(y) < 0},

(2)

where N4(x) is the discrete 4-connected neighborhood

of a pixel x.

To approximate the signed distance function, φ is de-

fined as:

φ(x) =

3, if x is outside C and x /∈ LOut;

1, if x ∈ LOut;

−1, if x ∈ LIn;

−3, if x is inside C and x /∈ LIn.

(3)

The curve is evolved by switching neighboring pixels

between the two lists Lin and Lout, based on an external

speed function Fext, an internal speed function Fint, and

by updating the level set function φ. The external speed is

used to attract the curve to the regions of interest, while

the internal speed is used to regularize the evolution of

the curve so that the curve remains smooth.

The evolution of C is split into two different cycles.

In the first cycle, C is evolved according to the external

speed; a positive value of Fext moves a point on C out-

wards (by switching the point from Lout to Lin), while

a negative value of Fext moves a point on C inwards (by

switching the point from Lin to Lout).

The external speed is synthesized from the image and

there are many ways to define Fext. For example, the

function Fext could be based on the response of an edge

detector applied to the image; it could be based on a

range of pixel intensities only, or as in the case of the

Chan-Vese Active Contours Without Edges, the speed

could depend on the mean intensities of the regions in-

side and outside the curve C.

In the second cycle, C is evolved according to the in-

ternal speed. The most common way to define Fint, is to

apply a gaussian filter on the level-set function φ for each

point on the curve C. The gaussian filter is a weighted

sum of a neighborhood of φ, centered at a point on the

curve C. If the majority of pixels in the neighborhood

are inside C, switching a point from Lout to Lin has a

smoothing effect on the curve. Otherwise, if the majority

of pixels in the neighborhood are outside C, then switch-

ing a point from Lin to Lout smoothes the curve. This

observation can be summarized into the following rule:

a point is switched from Lout to Lin or vice versa, if the

sign of φ for that point before the gaussian filter is applied

to it, is different from the sign of φ after the gaussian fil-

ter is applied to it.

The evolution of the curve stops when one of two fol-

lowing conditions is satisfied: (a) The speeds at each

neighboring grid point satisfy:

F (x) ≤ 0, ∀x ∈ Lout

F (x) ≥ 0, ∀x ∈ Lin;
(4)

(b) a pre-defined maximum number of iterations Na, is

reached. The pre-defined maximum number of iterations

needs to be specified for a noisy image, because the curve

may fail to converge to the stable state specified in (a).

This fast level-set framework has been used to solve

image processing problems in real time. Before we show

how this framework can be used to calculate and up-

date the mean intensities inside and outside the evolving

curve, we first review the Chan-Vese model in the next

section.

3. CHAN-VESE ACTIVE CONTOUR MODEL

The advantage of the Chan-Vese Active Contours With-

out Edges model, is that it is able to segment an image

that has smooth boundaries. It can do this because the

evolution of the curve does not depend on gradient in-

formation, so weak edges do not affect the final segmen-

tation. The Chan-Vese model suffers from initialization

problems (Pan et al., 2006b). The final segmentation is

dependent on the placement of the initial curve; some-

times this behavior is desirable

The original formulation of the Active Contours With-

out Edges model (Chan and Vese, 2001), focused on bi-

modal images. This was later extended to multiphase im-

ages (Chan and Vese, 2002). In the bi-modal model, it is

assumed that an image I consists of two regions, cf and

cb, of approximately piecewise-constant distinct intensity

values. If the region to be segmented is represented by

cf , then a curve C can be evolved to reach the boundary

of cf by minimizing the energy:

F1(C) + F2(C), (5)

where F1 and F2 are defined as follows:

F1(C) =

∫

inside(C)

|I − c1|
2
dxdy

and (6)

F2(C) =

∫

outside(C)

|I − c2|
2
dxdy.

C represents the curve, and the variables c1 and c2 rep-

resent the average intensities inside and outside the curve

respectively. If the curve C is inside the region to be seg-

mented, represented by intensity cf , then F1(C) ≈ 0 and

F2(C) > 0. If the curve C is outside cf , then F1(C) > 0

and F2(C) ≈ 0. Only when the curve is on the boundary

of the region of interest will F1 ≈ 0 and F2 ≈ 0.

273

To incorporate this energy minimization into the fast

level-set framework, only the external speed function

Fext needs to be defined.

3.1 Definition of the External Speed Function

To incorporate the Chan-Vese model into the Shi-Karl

level-set framework, the authors in (Lakshmanan et al.,

2006) calculate the external speed with:

vi = I(x, y) − ci i ∈ {1, 2}, (7)

where I(x, y) is the pixel intensity of a point on the

curve, c1 is the average pixel intensity inside the curve

and c2 is the average pixel intensity outside the curve.

The external speed Fext is then defined as:

Fext =

{
1, if v1 ≤ 0 and v2 > 0;

−1, if v1 > 0 and v2 ≤ 0.
(8)

This definition of the external speed is not entirely cor-

rect. According to this definition, the curve will only

expand outwards if the pixel intensity of a point on the

curve is greater than the average pixel intensity of the

area outside the curve. Figure 1 a) illustrates such an ex-

ample and the rectangle is successfully segmented. How-

ever, by inverting the colors of the test image such that

the average pixel intensity of the area outside the curve, is

greater than the intensity of a point on the curve, the rect-

angle is not segmented because the curve fails to evolve

outwards (see Figure 1 b)).

To solve this problem we define Fext as:

Fext =

{
1, if |v1| < |v2|;

−1, if |v1| > |v2|,
(9)

where v1 and v2 are calculated with equation (7). In

the next section we show how the average intensities c1

and c2 can be updated efficiently for each evolution iter-

ation of the curve.

4. CALCULATING AND UPDATING THE MEAN

PIXEL INTENSITIES

Previous work on fast implementations of the Chan-Vese

model (Lakshmanan et al., 2006; Pan et al., 2006a), did

not discuss how the mean pixel intensities, outside the

curve and inside the curve, can be calculated. We show

that the mean intensities c1 and c2 can be updated effi-

ciently during the evolution of the curve, since each pixel

on the curve in the Shi-Karl fast level-set framework, is

moved outward or inwards sequentially, and the intensi-

ties of the pixels that are modified in the level-set func-

tion φ are known. In the traditional level-set framework,

where partial differential equations are solved, the level-

set function φ is evaluated over the entire image, or over

a narrow band (Adalsteinsson and Sethian, 1995), and

there is no direct knowledge of which pixels have moved

outwards, which pixels have moved inwards and which

pixels have remained stationary. As a consequence, there

is no direct and obvious knowledge of how the mean in-

tensities inside and outside the curve can be updated on-

line. Hence, the mean intensities are calculated by iterat-

ing over the entire image, for each iteration of the curve

evolution. The original paper on Active Contours With-

out Edges (Chan and Vese, 2001), presents the calcula-

tion of the mean intensities as such, and to our knowl-

edge no faster way of calculating the mean intensities

has been presented in previous works. In fact, even work

that combines the fast Shi-Karl level-set method and the

Chan-Vese Active Contours Without Edges for real-time

contour tracking (Thida et al., 2006), still presents the

calculation of the mean intensities inside and outside the

curve, as the iteration over the entire image for each

frame. For these reasons, we choose the calculation of

the mean intensities inside and outside the curve C, by

iterating over the entire image for each iteration of the

curve evolution, as the baseline against which we com-

pare our proposed method.

Our proposed calculation scheme is simple to imple-

ment. Given Ω the image domain, a value v, and Ωv

defined as follows:

Ωv = {(x, y) ∈ Ω / φ(x, y) = v}, (10)

initial values of c1 and c2 can be obtained as follows:

c1 =
ii(−3)

tpi(−3)
(11)

and

c2 =
io(3)

tpo(3)
, (12)

where for a certain value v, ii(v), io(v), tpo(v) and

tpi(v) are defined as follows:

ii(v) =

∫

Ωv

I(x, y)H(φ(x, y))dxdy; (13)

tpi(v) =

∫

Ωv

H(φ(x, y))dxdy; (14)

io(v) =

∫

Ωv

I(x, y)(1 − H(φ(x, y)))dxdy; (15)

tpo(v) =

∫

Ωv

(1 − H(φ(x, y)))dxdy; (16)

and H(x) is a step function defined as:

H(x) =

{
1, if x > 1;

0, if x < −1.
(17)

In summary, tpi(−3) is the total number of pixels for

which φ = −3; tpo(3) is the total number of pixels for

which φ = 3; ii(−3) is the sum of intensities of the

pixels, for which φ = −3 and io(3) is the sum of the

intensities of the pixels, for which φ = 3.

Once the initial values for c1 and c2 have been calcu-

lated, they can be updated efficiently for the evolution of

274

Figure 1: A Poorly Defined External Speed Function a) The contour successfully evolves and segments the rectangle. b)

The contour fails to evolve at all. The initial placement of the curve is overlayed with dashed lines for clarity.

the curve, every time a pixel is switched from Lin to Lout

or vice-versa, and anytime a pixel is removed from a list

without placing it in the other list. With this in mind,

we modified the two fundamental methods that govern

the evolution of the curve in the Shi-Karl fast level-set

framework: switch in(x) and switch out(x).

The purpose of the switch in(x) procedure is to

move a point on the curve outward by one pixel, while

the switch out(x) procedure moves a point on the

curve inward by one pixel. Our modified procedure

switch in(x) for a point x ∈ LOut is defined as:

1. Delete x from LOut and add it to LIn. Set φ(x) =

−1;

2. ∀y ∈ N4(x) satisfying φ(y) = 3, add y to LOut and

set φ(y) = 1; tpo −→ tpo − 1 and io −→ io − y,

while our modified procedure switch out(x) for a

point x ∈ LIn is defined as:

1. Delete x from LIn and add it to LOut. Set φ(x) =

1;

2. ∀y ∈ N4(x) satisfying φ(y) = −3, add y to LIn

and set φ(y) = −1; tpi −→ tpi − 1 and ii −→

ii − y,

where N4(x) is the discrete 4-connected neighborhood

of x, and ii, tpi, io and tpo are defined by equations (13)-

(16) respectively.

By adding and subtracting from the variables ii, tpi,

io and tpo, we can keep track of the necessary informa-

tion to recalculate the mean intensities c1 and c2, without

having to iterate over the whole image I .

4.1 Evolving the Curve

Besides switch in(x) and switch out(x), two more

methods remove in(x) and remove out(x) need to be

defined, to explain in detail how the curve C is evolved.

The procedure remove in(x) is defined as:

1. if ∀y ∈ N4(x), φ(y) < 0, delete x from Lin and

set φ(x) = −3;

2. tpi −→ tpi + 1 and ii −→ ii + x,

and the procedure remove out(x) is defined as:

1. if ∀y ∈ N4(x), φ(y) > 0, delete x from Lout and

set φ(x) = 3;

2. tpi −→ tpo + 1 and io −→ io + x

The purpose of these methods is to remove redundant

points that may have been added to Lin or Lout, when the

level-set function φ was modified with the switch in(x)

and switch out(x) procedures.

An outline of the algorithm proposed by Shi and Karl,

that evolves the curve C, is listed in Algorithm 1. The

⊗ symbol denotes convolution, and G is a gaussian ker-

nel. The stopping condition is tested after the curve is

evolved according to both the internal force and external

force cycles. Some implementations check for the stop-

ping condition immediately after the external force evo-

lution cycle, and skip the internal force evolution cycle if

the stopping condition is satisfied. In Section 5, we in-

troduce an additional stopping condition to optimize the

gaussian regularization cycle.

4.2 Experimental Results on the Fast Mean Intensity

Calculation

We have reduced the time complexity of each iteration

of our algorithm by O(n), where n is the number of pix-

els in image I , by calculating c1 and c2 at each iteration

based on updated values of ii, tpi, io and tpo, instead of

calculating c1 and c2 by iterating over the entire image I .

To demonstrate the optimization, we ran our algo-

rithm on a large 1024×768 image taken from the Caltech

database (Griffin et al., 2007), using an Intel Core 2, 6420

@ 2.13 GHZ with 2 Gigabytes of RAM, and compared

it to the algorithm that calculates c1 and c2 by iterating

over the whole image. We evolved our curve according

to the external force Fext only. Refer to Figure 2.

5. OPTIMIZING THE REGULARIZATION

METHOD

By evolving a curve according to the external speed Fext

only, the curve often develops sharp boundaries due to

275

Figure 2: Comparison of Mean Intensity Calculation Methods in Time a) The dashed square represents the initial curve

boundary. b) Difference in computation time between our proposed method, and an implementation in which the mean

pixel intensities outside and inside the curve, are calculated by iterating over the entire image for each iteration of the

curve evolution. No regularization was used.

Algorithm 1 Algorithm for Curve Evolution in the Shi-

Karl Framework

1: Initialize the array φ, F , and the two lists Lin and

Lout.

2: repeat

3: for i = 0 to next do {Evolve according to external

speed for next iterations}

4: For each point x ∈ Lout, switch in(x), if

Fext > 0.

5: For each point x ∈ Lin, remove in(x).

6: For each point x ∈ Lin, switch out(x), if

Fext < 0.

7: For each point x ∈ Lout, remove out(x).

8: end for

9: for i = 0 to nint do {Evolve according to internal

speed (smoothness) for nint iterations}

10: For each point x ∈ Lout, switch in(x), if

(G ⊗ φ)(x) < 0.

11: For each point x ∈ Lin, remove in(x).

12: For each point x ∈ Lin, switch out(x), if

(G ⊗ φ)(x) > 0.

13: For each point x ∈ Lout, remove out(x).

14: end for

15: until equation (4) holds, or Na iterations have

elapsed.

noise. To smooth the curve and to make it less sus-

ceptible to noise, an internal speed Fint is usually in-

troduced into the model. In the traditional curve evolu-

tion methods which are based on partial differential equa-

tions, the internal speed is some regularization parame-

ter or function, that is introduced into an energy mini-

mization framework. However, in the Shi-Karl level-set

framework that does not solve partial differential equa-

tions, the most common approach to smooth the curve is

to perform a gaussian filtering on the level-set function φ.

We summarized the gaussian filter method in Section 2.

In this Section we discuss a further optimization to this

method and introduce an additional stopping criterion,

after demonstrating that performing a gaussian filtering

on the level-set function may in some cases prevent the

active contour from terminating.

5.1 Gaussian Filtering and Idempotent Active Con-

tours Without Edges

On certain images, the choices of the number of itera-

tions for the external force cycle Fext, and the internal

force cycle Fint, can cause idempotents. For example,

the curve C could be caught in a cycle where it expands

outwards due to the external force, and shrinks back to its

original shape because of the internal force. This usually

happens when the curve has almost reached its optimum

boundary, when evolving with the external force Fext,

and most pixels are stationary. Refer to Figure 3 for an

example of an active contour trapped in such a cycle.

Related work that uses the Shi-Karl fast level-set

framework (Shi and Karl, 2005b) and (Thida et al.,

2006), presents the stopping criteria a) and b) in equa-

tion (4), whereby the parameter Na is used to ensure the

termination of the algorithm for noisy images.

Specifying a pre-determined maximum number of it-

erations Na will ensure the termination of the algorithm,

but the choice of an appropriate value is difficult. If the

chosen value is too low, it can result in a premature ter-

mination, and if it is too high it will increase the compu-

tation time unnecessarily.

In (Shi and Karl, 2005b), the authors state that when

noise in an image is low, one can choose a small value

for nint , or increase the parameter next, to reduce the

percentage of computation allocated for smoothness reg-

ularization, thereby speeding up the algorithm (refer to

Algorithm 1). This may be true for certain images, but

Figure 3 clearly demonstrates that an evolving curve can

be trapped in a cycle, even when there is no noise in the

image.

We solve this problem by testing for idempotents and

stopping the evolution of the curve when a cycle is de-

tected.

276

After n iterations of evolving the curve according to

both the external and internal force cycles, the points

contained in the outer list Lout are defined as xn. By

evolving the curve C according to the external force (rep-

resented by function f ; f2
= f ◦ f is the composition of

f by itself, and fn
= f ◦ f ◦ . . . ◦ f

︸ ︷︷ ︸

n times

), we have

f
next(xn) = xnext

, (18)

where xnext
are the points contained in Lout, after the

external force evolution cycle. After evolving according

to the internal force (represented by function f̂), if we

have

f̂
nint(xnext

) = xn, (19)

then a cycle has been detected.

Unfortunately, this type of cycle detection involves

comparing each element in xn with each element in

xn−1, which is time consuming especially if the lists are

not sorted. To avoid making these comparisons, we in-

stead test to see if the number of points in xn is approx-

imately the same as the number of points in xn−1. In

other words, we detect a cycle if

|xn| = |xn−1| − ǫ, where ǫ ∈ Z. (20)

We choose ǫ to be a small integer, usually ǫ ∈

{−2,−1, 0, 1, 2}. This is necessary because sometimes

the difference between the two lists is only one or two

pixels, which have no real impact on the final segmen-

tation; without the ǫ a lot of computation is wasted on

insignificant pixels.

5.2 Removing Redundant Cycles During Regulariza-

tion

We have already mentioned that the number of iterations

for the external speed evolution cycle and the internal

speed evolution cycle, have to be chosen empirically.

Sometimes the number of iterations for the internal speed

evolution cycle (regularization) can be set too high, re-

sulting in wasted computation cycles. When the curve C

is evolved according to the internal force (represented by

function f̂), there may be a value of k such that

f̂
nint−k

(xnext
) = xn (21)

and

f̂
nint−k+1

(xnext
) = xn, (22)

where k ∈ N and nint is the empirically chosen number

of iterations for the internal speed evolution cycle. Us-

ing equations (21) and (22), we can exit the regulariza-

tion cycle when we detect that a cycle has not changed

xn, and avoid unnecessary computations. In practice, to

sidestep comparing each element in xn with each ele-

ment in xn−1, we instead exit the regularization cycle

when equation (20) is true for ǫ = 0.

5.3 Choosing Parameters

In (Shi and Karl, 2005a), the authors mention that the

choice of the parameter nint, should normally be set

to equal the size Nk of a gaussian kernel. The size of

the gaussian kernel (Nk), is geometrically related to the

elimination of small holes in the final segmentation; to

eliminate holes with a radius smaller than r, Nk = 2r.

However, in our experiments we found that when nint

is greater than the size of the gaussian kernel, segmenta-

tion results can sometimes be affected in a positive way

(refer to Figure 4 for an example). Hence, we prefer to

choose nint ≈ 3Nk, and allow our algorithm to remove

redundant regularization cycles. In this way, the amount

of smoothing can vary for each iteration.

The number of iterations devoted to external speed

evolution (next), is usually greater than nint, since it at-

tracts the curve to the regions of interest.

Finally, the choice of ǫ for the detection of idempo-

tents, is related to the size of the objects in the scene that

are to be segmented. For example, if one of the objects

is a needle, then it is possible that from one complete

curve evolution cycle to the next (using both the external

and internal force), the curve expands by only one pixel

and so we should choose ǫ > 1. If the objects are large,

than it is unlikely that the curve should expand by only

one pixel after one complete curve evolution cycle, and

so we set ǫ ≤ 1.

5.4 Experimental Results on the New Stopping and

Regularization Criteria

Figure 5 shows a comparison in running time of an ac-

tive contour on a test image, with and without our new

criteria. The test was conducted on a 640×480 image

taken from the Caltech database (Griffin et al., 2007), us-

ing an Intel Core 2, 6420 @ 2.13 GHZ with 2 Gigabytes

of RAM. The running time of our algorithm was consid-

erably less, because it removed redundant regularization

cycles and detected idempotents. The same method of

calculating the mean pixel intensities was used through-

out the experiment.

In Figure 6 we compare the running time on a large

1600×1600 image of Mars, also taken from the Caltech

database. Once again the running time of our algorithm

is less. In this image, the difference between the run-

ning time is not so great, because the active contour was

not trapped in an idempotent cycle, and only 5 iterations

were devoted to regularization per evolution cycle. This

means that there are at most only 5 redundant regular-

ization cycles, per evolution cycle. By increasing the

amount of iterations devoted to regularization, the dif-

ference in computation time becomes more noticeable.

Nonetheless, even fractions of a second are important in

real-time image processing.

277

Figure 3: Example of an Active Contour Trapped in an Idempotent Cycle a) The initial contour (0 Iterations). b) Region

inside the curve after 502 iterations. c) Region inside the curve after the external speed evolution cycle (522 iterations).

d) Region inside the curve after the regularization cycle (532 iterations). Notice that b) and d) are exactly the same. This

cycle could continue indefinitely. For example, iteration 562 will be the same as b) and d).

Figure 4: Difference in Regularization Quality a) Regularization, by choosing nint as suggested by Shi and Karl (nint

equals the size of the kernel). next = 12, nint = 5 and Na = 1000. A 5 × 5 discrete gaussian kernel was used for

regularization. b) Regularization, by choosing a large value for nint, and allowing our algorithm to remove redundant

regularization cycles. next = 12, nint = 10 and Na = 1000. A 5×5 discrete gaussian kernel was used for regularization.

The arrows point to parts of the curve that are smoother. The initial placement of the curve is overlayed with dashed lines

for clarity.

278

6. EXPERIMENTAL RESULTS ON THE COMBI-

NATION OF OUR PROPOSED ALGORITHMS

In Figure 7, we compare both the quality of segmenta-

tion and the running time, between an active contour us-

ing a standard regularization implementation and using

the baseline method of calculating the mean intensities

inside and outside the curve, against an active contour

using our proposed regularization method and our fast

mean intensity calculation scheme. We use a synthetic

image of size 512×512, so that a segmentation can be

unambiguously evaluated. Clearly, the segmentation re-

sult is the same for both methods, while the running time

of our method is less.

7. CONCLUSION

We have presented several optimizations for the Chan-

Vese Active Contours Without Edges, when the active

contours are implemented without solving partial differ-

ential equations. Using the Shi-Karl framework, we have

introduced a fast scheme for updating the mean pixel

intensity inside and outside the evolving curve, and we

have explained why we chose the baseline for our com-

parison as the calculation of the mean intensity, by iterat-

ing over the entire image for each iteration. Additionally,

we have shown that the choice of parameters for the ex-

ternal speed evolution loop and the regularization loop,

can trap the active contour in an idempotent cycle, and

we have developed a new stopping criterion to break out

of that cycle. Finally, we have optimized the regulariza-

tion loop by exiting the loop, when a further execution of

the regularization loop has no impact on the active con-

tour.

REFERENCES

Adalsteinsson, D. and Sethian, J. (1995). “A Fast Level Set

Method for Propagating Interfaces”. Journal of Computa-

tional Physics, No. 118(2), 269-277.

Chan, T. and Vese, L. (2001). “Active Contours Without

Edges”. IEEE Trans. Image Processing, No.14(10) (Feb.),

266–277.

Chan, T. and Vese, L. (2002). “A Multiphase Level Set

Framework for Image Segmentation Using the Mumford and

Shah Model”. International Journal of Computer Vision,

No.50(3), 271–293.

Griffin, G.; Holub, A. and Perona, P. (2007). “Caltech-256 Ob-

ject Category Dataset”. California Institute of Technology,

7694, http://authors.library.caltech.edu/7694

Kass, M.; Witkin, A.; and Terzopoulos, D. (1987). “Snakes -

Active Contour Models”. International Journal of Computer

Vision No. 1(4), 321-331.

Lakshmanan, A.; Thida, M.; Chan, K. L. and Zhou, J. (2006).

“Incorporation of Active Contour Without Edges in the Fast

Level Set Framework for Biomedical Image Segmentation”.

In International Conference on Biomedical and Pharmaceu-

tical Engineering (Singapore, Dec.), 296–300.

Pan, Y.; Birdwell, D. J. and Seddik D. M.(2006). “Efficient

Implementation of the Chan-Vese Models Without Solving

PDEs”. In Proceedings of International Workshop On Mul-

timedia Signal Processing (Victoria, BC, Canada, Oct. 03-

06), 350–353.

Pan, Y.; Birdwell, D. J.; and Seddik, D. M. (2006). “An Effi-

cient Bottom-up Image Segmentation Method Based on Re-

gion Growing, Region Competition and the Mumford Shah

Functional”. In Proceedings of International Workshop On

Multimedia Signal Processing (Victoria, BC, Canada, Oct.),

344–348.

Paragios, N. and Deriche, R. (2000). “Coupled Geodesic Active

Regions for Image Segmentation: A Level Set Approach”.

In Proceedings of ECCV (Dublin), 224-240.

Sethian, J. (1999). Level Set Methods and Fast Marching Meth-

ods. Cambridge Monograph on Applied and Computational

Mathematics. Cambridge University Press

Shi, Y. and Karl, W. (2005). “A Fast Level Set Method Without

Solving Pdes. In Proceedings of ICASSP (Philadelphia, PA,

USA, Mar.), 97–100.

Shi, Y. and Karl, W. (2005) “Real-time Tracking Using Level-

sets”. In Proceedings of CVPR (San Diego, CA, USA, June)

Vol. 2, 34–41.

Thida, M.; Chan, K. L. and Eng, H. L (2006) “An Improved

Real-time Contour Tracking Algorithm using Fast Level Set

Method”. In Proceedings of the First Pacific Rim Symposium

(Hsinchu, Taiwan, Dec.), 702–711.

AUTHOR BIOGRAPHIES

ZYGMUNT L. SZPAK is a Master’s student at

the School of Computer Science at the University

of KwaZulu-Natal, South Africa. His general re-

search interests include Artificial Intelligence, Image

Processing, Computer Vision and Pattern Recogni-

tion. Currently, the central theme of his research is

on real-time tracking and modelling of the behavior

of ships, in a maritime environment. His email is

zygmunt.szpak@gmail.com.

JULES R. TAPAMO is Associate Professor at the

School of Computer Science at the University of

KwaZulu-Natal, South Africa. He completed his

PhD degree from the University of Rouen (France)

in 1992. His research interests are in Image Pro-

cessing, Computer Vision, Machine Learning, Algo-

rithms and Biometrics. He is a member of the IEEE

Computer Society, IEEE Signal Processing Society

and the ACM. He maintains a Computer Vision, Im-

age Processing and Data Mining research webpage at

http://www.cs.ukzn.ac.za/cvdm. His email is

tapamoj@ukzn.ac.za.

279

Figure 5: Comparison of Regularization Methods in Time a) The dashed square represents the initial curve boundary.

b) Difference in computation time between our proposed optimized regularization method, and a standard regularization

implementation that does not remove redundant regularization cycles, and that does not check for idempotents. next =

10, nint = 5 and Na = 1000. A 5 × 5 discrete gaussian kernel was used for regularization.

Figure 6: Comparison of Regularization Methods in Time a) The dashed square represents the initial curve boundary.

b) Difference in computation time between our proposed optimized regularization method, and a standard regularization

implementation that does not remove redundant regularization cycles, and that does not check for idempotents. next =

10, nint = 5 and Na = 2000. A 5 × 5 discrete gaussian kernel was used for regularization.

Figure 7: Comparison of the Combination of our Proposed Optimizations against an Unoptimized Method in Time

and Quality a) Synthetic image corrupted by gaussian noise, with µ = 0 and σ = 80. The square represents the

initial curve boundary. b) Segmentation result of our proposed regularization methods, together with our fast mean

intensity calculation scheme. c) Segmentation result by calculating the mean intensities inside and outside the curve,

for each iteration, and using a standard regularization implementation that does not remove redundant cycles nor check

for idempotents. d) Difference in computation time between the combination of our proposed methods (b), and an

approach that calculates the mean intensities inside and outside the curve, for each iteration, and uses a standard (Shi-

Karl) regularization implementation, that does not remove redundant regularization cycles, and that does not check for

idempotents (c). next = 10, nint = 5 and Na = 1000. A 5 × 5 discrete gaussian kernel was used for regularization.

280

Workshop on Optimization Issues in Grid
and Parallel Computing Environments

(Optim’08)

281

282

ENERGY MINIMIZATION-BASED CROSS-LAYER DESIGN IN WIRELESS NETWORKS

Le Thi Hoai An, Nguyen Quang Thuan

Laboratory of Theoretical and Applied Computer Science,

Paul Verlaine Metz University, Metz, FRANCE,

Email: lethi, thuan@univ-metz.fr.

Phan Tran Khoa

Department of Electrical and Computer Engineering,

University of Alberta, Edmonton, AB, CANADA,

Email: khoa@ece.ualberta.ca.

Pham Dinh Tao

Laboratory of Modelling, Optimization & Operations Research,

National Institute of Applied Sciences, Rouen, FRANCE,

Email: pham@insa-rouen.fr.

KEYWORDS

Cross-layer optimization, TDMA, Difference of Convex

functions Algorithm (DCA)

ABSTRACT

In this paper, a cross-layer optimization framework is

proposed for multi-hop time division multiple access

(TDMA) networks. Particularly, given a set of quality-

of-service (QoS) constraints on the network flows, we

study a centralized controller that coordinates the rout-

ing process, link scheduling and power control to mini-

mize the energy consumption in the network. The afore-

mentioned design can be formulated as a mixed integer-

linear program (MILP) in which finding optimal solution

is well-known to have worst case exponential complex-

ity. Realizing this inherent difficulty in computational

complexity, our main contribution is to propose a novel

approach to solve the cross-layer design problem which

is based on a so-called Difference of Convex functions

Algorithm (DCA). The proposed approach is able to pro-

vide either optimal or near-optimal solutions with finite

convergence. The preliminary numerical results demon-

strate the effectiveness of the proposed design.

INTRODUCTION

Wireless networks, for example mesh, ad hoc or sensor

networks have recently emerged as essential means of

communications to provide reliable data communication

among many users. In such networks, wireless nodes

usually self-configure to exchange information without

the aid of any established infrastructure. However, due to

the random deployment and mobility of wireless nodes,

multi-hop transmission is necessary where nodes can

forward other nodes’ information. Due to interference

between links, in this research, time division multiple

access-based (TDMA) MAC is adopted to allocate com-

munication resources to links/nodes. Note that the prob-

lem of optimal scheduling in TDMA-based networks is

NP-complete (5) and is somehow similar to the vertex

coloring problem in graph theory (13). Furthermore, in

a multi-hop network, power allocation, link scheduling,

routing, and rate control interact with each other. Thus,

a cross-layer design across all layers (see, e.g., (3) for

an overview) is shown to outperform the method of de-

signing each layer by itself which is popular in wireline

networks. Recently, cross-layer optimization with differ-

ent design objectives and constraints has received much

attention from the academia (2), (4), (15), (16).

In this work, we consider a cross-layer design prob-

lem to allocate communication resources, i.e., time and

power to links in an interference-limited TDMA wire-

less network. Generally, nodes in a wireless network are

battery-powered devices and energy is consumed when a

node transmit or receive data to/from other nodes. More-

over, since nodes participate in the network operation

by either generating or relaying information that needs

to be communicated to a base station, we aim at mini-

mizing the energy consumption for all nodes. The pro-

posed design objective is helpful to estimate the energy

expenditure for optimal network operation. We show

that the proposed design can be formulated as a mixed

integer-linear program (MILP) which is well-known to

be computationally expensive. By employing the exact

penalty method theory, we are able equivalently recast

the proposed MILP as a concave minimization problem

with only continuous variables without losing optimality.

Next, we reformulate the concave minimization problem

in the form of a DC (Difference of Convex functions)

program that consists of minimizing a DC function on the

whole space. We propose a technique which combines

DC Algorithm (DCA) and the traditional branch and

bound (BnB) to solve the resulting DC problem. Gen-

erally, DCA has linear convergence and achieves near-

optimal solution. One of the powerful and distinct ad-

vantage of the DCA-BnB approach is its ability to solve

very large-scale problems.

SYSTEMS DESCRIPTION

Consider a multi-hop network with node set N . Uplink

transmission is assumed where there is one common traf-

fic destination (not included inN) for all the nodes. Each

node n ∈ N generates traffic at a rate rn which is a inte-

ger number of unit rate. Let L denote the set of unidirec-

tional links.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

283

TDMA-based MAC and Flow Conservation Model

In a multi-hop network, in general, all the links may not

be scheduled to transmit concurrently since they contend

and/or interfere with each other. In addition, due to pri-

mary interference, each node cannot transmit and receive

simultaneously, and thus, a node’s outgoing and incom-

ing links cannot be active at the same time. Further, we

assume unicast network in which a transmitter cannot

transmit data to more than one receivers. In addition, any

two simultaneous transmissions with a common receiver

are not allowed due to collision in packet reception.

In the considered TDMA network, time is partitioned

into fixed-length frames, and each frame is further di-

vided into J time slots with unit duration. Since the re-

source allocation is the same in all frames, we concen-

trate our design on a single frame. A node may need to

transmit in one or more slots for its own traffic and/or

relay traffic from other nodes. If a node transmits in a

slot, while its transmission power can be varied from [0,

Pmax], its transmission rate is fixed at a unit rate. In the

TDMA-based network, a channel is specified by two el-

ements (j, l), j ∈ J , l ∈ L, where J = {1, 2, ..., J}.

For the channel, the resource allocation is denoted by

(sl
j , P

l
j), where sl

j = 1 means link l is active at slot j

while sl
j = 0 otherwise, and P l

j > 0 denotes the trans-

mission power of link l at slot j if sl
j = 1, P l

j = 0 other-

wise.

At each node, the difference of its outgoing traffic and

its incoming traffic should be the traffic generated by it-

self, i.e.,

∑

l∈O(n)

J
∑

j=1

s
l
j −

∑

l∈I(n)

J
∑

j=1

s
l
j = rn, n ∈ N (1)

where O(n) and I(n) are the set of outgoing links and

incoming links at node n, respectively. The values of sn

for the non-source nodes are set to zero.

The energy consumption at node n can be written as

En =

∑

l∈O(n)

J
∑

j=1

P
l
j +

∑

l∈O(n)

J
∑

j=1

εls
l
j +

∑

l∈I(n)

J
∑

j=1

εls
l
j

(2)

where εl, εl denote the energy needed to transmit, receive

a unit of traffic over link l, respectively. Note that εl,

εl include the energy consumed by the signal processing

blocks at the link ends.

Interference Model

Interference relations among the nodes and/or links in

a wireless networks can be modeled in various ways,

for example by using contention-based model (15) or

the signal-to-interference-plus-noise-ratio (SINR)-based

model (11), (1). The latter model is adopted in this re-

search. Specifically, if the link l ∈ L is active at slot j

(i.e., s
l
j = 1), the following inequality should hold so as

to guarantee the transmission quality of the link

SINR
l
j =

P l
jhll

∑

k �=l P
k
j hkl + ηl

≥ γ
th (3)

where SINR
l
j is the SINR for link l at slot j, hkl is the

path gain from the transmitter of link k to the receiver of

link l, ηl is the noise power at receiver of link l, and γth

is the required SINR threshold for accurate information

transmission.

We assume that all wireless nodes are low-mobility

devices and/or the topology of the network is static or

changes slowly allowing enough time for computing the

new scheduler. An example of such networks is a wire-

less sensor network for environmental monitoring with

fixed sensor locations. In this case, the need for dis-

tributed implementation is not necessary.

PROBLEM FORMULATION

As discussed above, energy consumption is an important

design criterion for a multi-hop wireless network. From

the preceding discussions, the energy minimization-

based cross-layer design, i.e., joint rate control, routing,

link scheduling, and power allocation problem can be

mathematically posed as

min
rn,P l

j
, sl

j

∑

n∈N

En (4a)

subject to:

∑

l∈O(n)

J
∑

j=1

s
l
j −

∑

l∈I(n)

J
∑

j=1

s
l
j = rn, n ∈ N (4b)

rn ≥ r
min

n , n ∈ N (4c)

∑

l∈I(n̂)

J
∑

j=1

s
l
j =

∑

n∈N

rn (4d)

∑

l∈O(n)

s
l
j +

∑

l∈I(n)

s
l
j ≤ 1, ∀n ∈ {N ∪ n̂}, ∀j (4e)

hllP
l
j ≥ γ

th
∑

k �=l

P
k
j hkl + γ

th
ηl + D(s

l
j − 1),

∀l ∈ L, j = 1, . . . , J(4f)

0 ≤ P
l
j ≤ Pmaxs

l
j , ∀l ∈ L, j = 1, . . . , J (4g)

s
l
j ∈ {0, 1}, ∀l ∈ L, j = 1, . . . , J (4h)

where n̂ denotes the common sink node for all data gen-

erated in the network, D is a very large positive constant.

The objective function is the energy consumption in the

network. Constraints (4b) ensure that the data generated

by source nodes are routed properly. Constraints (4c)

guarantee that the rate for each node is no less than a min-

imum rate. The minimum rates are possibly different for

nodes and are usually determined by the network QoS.

Nodes which do not generate traffic have rn = rmin

n = 0.

Constraint (4d) is the flow conservation at the traffic des-

tination for all the sources. Constraints (4e) state that a

node can not receive and transmit simultaneously in one

284

particular time slot. Constraints (4f) make sure the SINR

requirement is met: if a link l is active in time slot j,

then the SINR at receiver of link l must be larger than

the given threshold γth which also depends on the sys-

tem implementation. Constraint (4f) is automatically sat-

isfied if link l is not scheduled in time slot j. Constraint

(4g) states that if a link l is scheduled for time slot j, i.e.,

sl
j = 1, then the corresponding power value P l

j must be

less than Pmax. Otherwise, P l
j obviously equals to zero.

We also impose binary integer constraints on sl
j .

It can be seen that the cross-layer optimization prob-

lem (4a)–(4h) belongs to a class of well-known mixed-

integer linear programs (MILPs). The combinatorial na-

ture of the optimization (4a)–(4h) is not surprising and

it has been shown in some previous works, albeit with

different objective functions and formulations (11), (13),

(1). Theoretically, MILPs are NP-hard which is clearly

inviable for practical scenarios when the dimension is

large. The following theorem is in order.

LEMMA 1: At optimality, the source rate constraints

(4c) must be met with equalities for all sources.

PROOF: It is clear that at one node, the transmit

power is an increasing function with respect to the node’s

transmission rate. Therefore, in order to minimize the

transmit power, nodes should transmit at their minimum

rate requirements or only relay data for other nodes. �

Since the proposed design aims at minimizing the total

energy consumption, it may cause some particular nodes

spending more energy than the other nodes, and thus,

running out of energy quicker. Therefore, equal energy

distribution among nodes is not optimal. In this context,

the proposed design can be performed, for example dur-

ing the stage of network planning. In such scenarios, the

network designer needs to assign each wireless node a

certain amount of energy (e.g., a number of AAA bat-

teries) according to the network topology and QoS con-

straints of the nodes. Therefore, the proposed design

helps to determine which nodes need to be equipped with

more and/or less energy than the others. Moreover, it

quantifies the minimum amount of energy needed in a

TDMA frame to satisfy the QoS demands. Obviously,

depending on a particular context, this energy value is

closely related to the network lifetime depending how the

network lifetime is defined.

As discussed, the routing algorithm resulted from the

proposed design may cause some nodes spending more

time than the others. Therefore, another design objective

which may help to prevent such situation is as follows

min
rn,P l

j
, sl

j

max
n∈N

En (5a)

subject to: The constraints (4b)–(4h) . (5b)

The optimization problem (5a)–(5b) aims at minimizing

the maximum energy consumed at nodes(s). As a result,

more nodes are likely to be involved in the routing algo-

rithm, i.e., relaying information for other nodes. Here-

after, for simplicity, we only consider the optimization

problem (4a)–(4h).

The cross-layer optimization problem (4a)–(4h) has

worst case exponential complexity when BnB methods

are used to compute the solution. Moreover, when mod-

eling practical networks and depending on the number

of links, nodes and time slots, problem with large sizes

may arise. As a result, it is extremely difficult to sched-

ule links optimally. Most research in literature is based

on heuristic at the cost of performance degradation, for

example, see (11), (13). Here, we propose a method to

solve the mixed 0-1 linear program (4a)–(4h) efficiently.

To this purpose, we first apply the theory of exact pe-

nalization in DC programming (7) to reformulate the

MILP as that of minimizing a DC function over a poly-

hedral convex set. The resulting problem is then han-

dled by DCA which was introduced and extensively de-

veloped over the last decades (6), (8), (9), (10). The men-

tioned approach has been applied successfully in several

large scale problems (see (6), (8), (9), (10) and reference

therein). The details are provided in the following sec-

tion.

AN EFFICIENT ALGORITHM FOR CROSS-

LAYER DESIGN IN TDMA NETWORKS

DC Reformulation via Exact Penalty Method

Using an exact penalty result, we can reformulate the

aforementioned MILP (4a)–(4h) in the form of a con-

cave minimization program. The exact penalty tech-

nique aims at transforming the original MILP into a

more tractable equivalent problem in the DC optimiza-

tion framework. Let S be the feasible set of the problem

MILP (4a)–(4h) which does not include the binary con-

straints. For notational simplicity, we group all the power

variables and link scheduling variables in column vectors

P = [P
1

1
. . . P J

1
P 1

2
. . . P J

L]
T , s = [s1

1
. . . sJ

1
s1

2
. . . sJ

L]
T

respectively where T denotes the transpose operator. We

denote a new set K := {(P, s) ∈ S : s ∈ [0, 1]
LJ
},

and assume that K is a nonempty, bounded polyhedral

convex set in R
LJ
× R

LJ . The cross-layer optimization

problem (4a)–(4h) can be expressed in the general form

(Popt, sopt) = arg min

{

e
T
P + η

T
s : (P, s) ∈ S,

s ∈ {0, 1}
LJ

}

. (6)

where e is the column vector with all elements being 1,

η = [η1

1
, . . . , ηJ

1
, η1

2
, . . . , ηJ

L], η
j
l = ε

j
l + ε

j
l . Let us con-

sider the function p(P, s) defined by

p(P, s) =

∑

l∈L, j∈J

min{s
l
j , 1− s

l
j}. (7)

It is clear that p is concave and finite on K, p(P, s) ≥ 0

for all (P, s) ∈ K, and
{

(P, s) ∈ S : s ∈ {0, 1}
LJ

}

=

{

(P, s) ∈ K : p ≤ 0

}

.

Hence problem (6) can be rewritten as

(Popt, sopt) = arg min

{

e
T
P + η

T
s : (P, s) ∈ K,

p(P, s) ≤ 0

}

. (8)

285

The following theorem is in order.

THEOREM 2: (Theorem 1, (7)) Let K be a nonempty

bounded polyhedral convex set, f be a finite concave

function on K and p be a finite nonnegative concave

function on K. Then there exists t̃0 ≥ 0 such that for

t̃ > t̃0 the following problems have the same optimal

value and the same solution set

(Pt) α(t) = min
{

f(x) + t̃p(x) : x ∈ K
}

(9)

(P) α = min
{

f(x) : x ∈ K, p(x) ≤ 0
}

. (10)

Furthermore

• If the vertex set of K, denoted by V (K), is con-

tained in x ∈ K : p(x) ≤ 0, then t̃0 = 0.

• If p(x) > 0 for some x in V (K), then t̃0 =

min

{

f(x)−α(0)

S0

: x ∈ K, p(x) ≤ 0

}

, where

S0 = min

{

p(x) : x ∈ V (K), p(x) > 0

}

> 0.

PROOF: The proof for the general case can be found

in (7). �

From Theorem 2 we get, for a sufficiently large num-

ber t̃ (t̃ > t̃0), the equivalent concave minimization prob-

lem to (8)

min :

{

e
T
P + η

T
s + t̃p(P, s) : (P, s) ∈ K

}

(11)

which is a DC program

min :

{

g(P, s)− h(P, s)

}

(12)

where

g(P, s) = XK(P, s)

h(P, s) = −e
T
P − η

T
s− t̃

∑

l∈L, j∈J

min{s
l
j , 1− s

l
j}

and XK(P, s) is 0 if (P, s) ∈ K, otherwise +∞ (the

indicator function of K).

We have successfully transform an optimization with

integer variables into its equivalent form with continuous

variables.

DCA for Solving (11)

In this section we investigate a DC programming ap-

proach for solving (11). In recent years, D.C. program-

ming has been developed extensively, becoming an at-

tractive topic of research in nonconvex programming. A

DC program has the following form

α := min

{

f(x) := g(x)− h(x) : x ∈ R
n
}

(13)

with g, h being lower semi-continuous proper convex

functions onRn, and its dual is defined as

α := min

{

h
∗

(y)− g
∗

(y) : y ∈ R
n
}

(14)

where g∗(y) := max{xT y − g(x) : x ∈ Rn
} is the

conjugate function of g.

Based on local optimality conditions and duality in DC

programming, the DCA consists in the construction of

two sequences {xk
} and {yk

}, candidates to be optimal

solutions of primal and dual programs respectively, in

such a way that {g(x
k
)−h(xk

)} and {h∗

(yk
)−g∗(yk

)}

are decreasing and their limits points satisfy the local op-

timality conditions. The idea of DCA is simple: each

iteration of DCA approximates the concave part −h by

its affine majorization (that corresponds to taking y
k
∈

∂h(xk
)) and minimizes the resulting convex function.

Generic DCA scheme:

Initialization Let x0
∈ R

n be a best guest, 0← k.

Repeat

• Calculate y
k
∈ ∂h(xk

)

• Calculate xk+1
∈ arg min{g(x) − h(xk

) − 〈x −

x
k, yk
〉 : x ∈ Rn

} (Pk)

• k + 1← k

Until convergence of x
k.

Convergence properties of DCA and its theoretical ba-

sis can be found in (8), (9), (10), for instance it is impor-

tant to mention that:

• DCA is a descent method (the sequences {g(xk
) −

h(xk
)} is decreasing) without linesearch.

• If the optimal value of problem (13) is finite and the

infinite sequence {xk
} is bounded then every limit

point x∗ of {xk
} is a critical point of g − h.

• DCA has a linear convergence for general DC pro-

grams.

• DCA has a finite convergence for polyhedral DC

programs ((13) is called polyhedral DC program if

either g or h is polyhedral convex).

We now describe the DCA applied to the DC program

(12). By the very first definition of h, a sub-gradient

(u, v) ∈ ∂h(P, s) can be chosen

(u, v) ∈ ∂h(P, s)← u
l
j = −1; (15)

v
l
j = η

l
j + t̃ if s

l
j ≥ 0.5, otherwise v

l
j = η

l
j − t̃.

Algorithm 1 (DCA applied to (11))

Let ε > 0 be small enough and (P 0, s0
). Set k = 0,

er = 1.

while er > ε do

• Compute (uk, vk
) ∈ ∂h(P k, sk

) via (16).

• Solve the linear program: min{−ukT
P − vkT

s :

(P, s) ∈ K} to obtain (P k+1, sk+1
).

• Set er = ‖(P k+1, sk+1
)− (P k, sk

)‖, k = k + 1.

286

endwhile

Regarding the complexity of the proposed DCA, be-

sides the computation of the sub-gradients which is triv-

ial, the algorithm requires one linear program at each iter-

ation and it has a finite convergence. The linear program

has polynomial complexity. The convergence of Algo-

rithm 1 can be summarized in the next theorem (9).

THEOREM 3:

i) Algorithm 1 generates a sequence {(P k, sk
)} con-

tained in V (K) such that the sequence {g(P k, sk
)−

h(P k, sk
)} is decreasing.

ii) If at iteration r we have sr
∈ {0, 1}LJ , then sk

∈

{0, 1}LJ and f(P k+1, sk+1
) ≤ f(P k, sk

) for all

k ≥ r.

iii) The sequence {(P k, sk
)} converges to

{(P ∗, s∗)} ∈ V (K) after a finite number of

iterations. The point {(P ∗, s∗)} is a critical point of

Problem (11). Moreover such an (P ∗, s∗) is almost

always a strict local minimum of (11).

PROOF: i) is a convergence property of general DC

programs (9), (10) while ii) and iii) can be deduced from

Proposition 2 in (6). �

Since DCA works on the continuous problem (11), its

solution may not be integer, i.e. not feasible to (MILP).

For obtaining an integer solution we combine DCA with

the branch and bound method in which a lower bound is

computed by solving the corresponding relaxed linear

problem. At each iteration we restart DCA from the

optimal solution of the relaxed problem. We stop the

combined algorithm when the solution furnished by

DCA is feasible to (MILP).

Algorithm 2: DCA with starting points obtained by

BnB

Set R0 := [0, 1]
LJ , k := 0.

Solve the linear relaxation problem of MILP to ob-

tain an optimal solution (P
0, s0

) and the optimal value

β(R0).

If (P 0, s0
) is feasible of MILP then STOP

else: solve (11) by DCA from the starting point

(P 0, s0
) to obtain (P , s).

If (P , s) is feasible of MILP, then STOP

else set � = {R0} and go to the iteration step.

While (stop = false) do

• Set k := k + 1 and select a rectangle Rk.

• Let j∗ be the index to be separated. Divide Rk in to

two rectangles Rk0
and Rk1

such that

Rki
= {s ∈ Rk : sj∗ = i, i = 0, 1}.

• For each i = 0, 1 solve the corresponding re-

laxed linear problem to obtain an optimal solution

(P ki , ski) and the optimal value β(Rki
).

• Launch DCA from (P ki , ski) to obtain (P ki , ski)).

Sink

Node

N1

N2

N3 N4

N5

Figure 1: The network model used in Section V

• If (P ki , ski) is feasible of MILP, then STOP else:

� ← � ∪ {Rki
; i = 0, 1} \Rk

endwhile

We adopted an adaptive procedure for the choice of

rectangle to be separated: choose the rectangle such as

the optimal solution of the corresponding linear relaxed

problem has one of the components sl
j , for the links l

connected to the sink node, is not integer; otherwise we

choose the rectangle corresponding to the smallest lower

bound.

COMPUTATIONAL EXPERIMENTS

In this section, we provide preliminary computational re-

sults of our approach. We have coded the Algorithm 2

in C++ programming language and tested the instances

using PC Pentium 4 3GHz, 1GB RAM. CPLEX 9.1 is

used to solve the linear programs. The small-size net-

work with 6 nodes and 10 links as in Figure 1 has been

tested. It is worth mentioning that most of currently de-

ployed wireless networks, for example sensor networks

are of small scale which centralized synchronous TDMA

is viable. Moreover, the implementation of centralized

large scaled networks are extremely difficult, if not im-

possible. If that is the case, one likely approach is to

partition the network into smaller clusters and our pro-

posed design can be applied for each cluster. The node

coordinates are showed in Table 1. The maximum trans-

mit power is taken to be equal to Pmax = 5. The noise

variance η = −20 dB. The SNR threshold γ
th equals

to 10 dB. Energy consumption for transmitting and re-

ceiving 1 unit data εl, εl is assumed to be 0.25. The

link gains are computed using the path loss model as

hij =
1

10
[
1

d
] for i �= j, and hii = [

1

d
] where d is the

Euclidean distance between nodes. The factor of 1

10
can

be viewed as the spreading gain in a CDMA system. We

have tested this network with the different number of

time slots J = 10, 15, 20, 25, 30.

In Table 2, we report the results of Algorithm 2 (the

number of iterations and the value of the objective func-

tion calculated by the algorithm). For evaluating the ef-

ficiency of Algorithm 2 we indicate in this table the

optimal value given by CPLEX 9.1 applied to (MILP).

The following notations are used: J : the number of time

slots; V arC: the number of continuous power variables

P
l
j , j = 1, . . . , J, l = 1, . . . , L; V arB: the number

of binary scheduling variables sl
j , j = 1, . . . , J, l =

1, . . . , L; Con: the number of constraints in the opti-

mization problem (4a)–(4h); V alue: the computing ob-

287

Table 1: Node coordinates
Node N1 N2 N3 N4 N5 Sink node

Coordinates (-20,20) (0,0) (0,40) (40,40) (40,0) (80,25)

Figure 2: Comparative results of objective values be-

tween DCA and CPLEX

jective value by Algorithm 2; iter: the number of iter-

ations of Algorithm 2. OptV al: the optimal value of

(MILP) and Gap =
V alue−OptV al

V alue
100%.

From Figure 2 and the column Gap in Table 2, it is

clear that the solutions given by DCA are close enough

to the optimal solutions. The ability to handle very

large-scale problems makes the proposed method imple-

mentable for practical networks.

RELATED RESEARCH

There are numerous existing results in the areas of cross-

layer design. Hereafter, we mention only the works

which are mostly related to the research in this paper.

In particular, we consider the system and interference

model as in (1), (11). (11) presents a joint link scheduling

and power control scheme for TDMA-based networks.

Moreover, routing is assumed to be fixed and the network

throughout, i.e., sum of links’ throughput is maximized.

A heuristic polynomial time algorithm to solve the pro-

posed MILP is proposed. Our proposed formulation can

be seen as an extension to the work in (11) where we also

incorporate rate control, routing with quality-of-service

(QoS) constraints on the end-to-end flows.

Routing algorithms have been designed to prolong the

network lifetime (1), (12). In (1), a cross-layer design

across physical, MAC and routing layers is proposed to

maximize the network lifetime which is defined as the

earliest time when the first node dies. Optimal TDMA

scheduling to maximize the average transmission rate

or to minimize the cross-link interference given fixed

link transmission powers is considered in (14). Unsur-

prisingly, the resulting formulation is also a MILP but

no efficient solution approaches are proposed. In (2),

the authors investigate the problem of joint routing, link

scheduling and power control in wireless multi-hop net-

works. The objective of the optimal policy is the min-

imization of the total average transmission power given

that each link attains the minimum average data rate. The

proposed approach via duality is applicable at low SINR

regions since the capacity is assumed to be a linear func-

tion of SINR.

CONCLUSION

In this paper, we have studied the cross-layer design

problem in an interference-limited TDMA wireless net-

work. Particularly, the problem of joint rate control, rout-

ing, link scheduling and power control has been consid-

ered to minimize the energy consumption. The proposed

design can be formulated as a mixed-integer linear pro-

gram which has worst case exponential complexity to

compute optimal solution. Our main contribution was

to propose a computationally efficient approach based on

DCA. The considered combinatorial optimization prob-

lem has been beforehand reformulated as a DC program

with a natural choice of DC decomposition, and the re-

sulting DCA then consists in solving a finite sequence of

linear programs. DCA is original because it gives an inte-

ger solution while it works in a continuous domain. Pre-

liminary numerical results were encouraging and demon-

strated the effectiveness of the proposed method. More-

over, notice that most problem formulations arising in

TDMA-based networks can be formulated as some sort

of MILP problems, our proposed approach seems attrac-

tive and needs more investigation.

REFERENCES

[1] R. Madan, S. Cui, S. Lall, and A. Goldsmith, “Cross-layer

design for lifetime maximization in interference-limited

wireless sensor networks,” IEEE Trans. Wireless Com-

mun., vol. 5, no. 11, pp. 3142-3152, Nov. 2006.

[2] R. L. Cruz, and A. V. Santhanam, “Optimal routing, link

scheduling and power control in multi-hop wireless net-

works,” in Proc. IEEE INFOCOM’03, pp. 702–711, San

Francisco, USA, Mar. 2003.

[3] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-

layer optimization in wireless networks,” IEEE Journal

on Selected Areas in Communications, vol. 24, no. 8, pp.

1452-1463, Aug. 2006.

[4] H. Jiang, W. Zhuang, and X. Shen, “Cross-layer design

for resource allocation in 3G wireless networks and be-

yond,” IEEE Communications Magazine, vol. 43, no. 12,

pp. 120-126, Dec. 2005.

288

Table 2: Computational results of Algorithm 2
J VarC VarB Con iter Value OptVal Gap(%)

10 100 100 266 9 49.5 41.57855 16.0

15 150 150 396 72 71.5 60.56757 15.3

20 200 200 526 205 93.5 79.55660 14.9

25 250 250 656 770 115.5 98.54560 14.7

30 300 300 786 369 126.5 108.53460 14.2

[5] S. Ramanathan, and E.L. Lloyd, “Scheduling algorithms

for multi-hop radio network,” IEEE ACM Trans. Network-

ing, vol. 1, no. 2, pp. 166-177, Apr. 1993.

[6] H. A. Le-Thi, T. Pham Dinh, “A continuous approach for

globally solving linearly constrained quadratic zero-one

programming problems,” Optimization, vol. 50, pp. 93-

120, 2001.

[7] H. A. Le-Thi, T. Pham Dinh, and M. Dung Le, “Exact

penalty in DC programming,” Vietnam Journal of Mathe-

matics, pp. 1216-1231, 1999.

[8] H. A. Le-Thi, and T. Pham Dinh, “The DC (Difference of

Convex functions) Programming and DCA revisited with

DC models of real world nonconvex optimization prob-

lem,” Annals of Operations Research, pp. 23-46, 2005.

[9] T. Pham Dinh, and H. A. Le-Thi, “Convex analysis ap-

proach to DC programming : Theory, Algorithms and

Applications,” Acta Mathematica Vietnamica, dedicated

to Professor Hoang Tuy on the occasion of his 70th birth-

day, pp. 289-355, 1997.

[10] T. Pham Dinh, and H.A. Le Thi, “DC optimization al-

gorithms for solving the trust region subproblem,” SIAM

Journal Optimization, vol. 8, pp. 476-505, Feb. 1998.

[11] J. Tang, G. Xue, C. Chandler, and W. Zhang, “Link

scheduling with power control for throughput enhance-

ment in multihop wireless networks,” IEEE Trans. Vehic-

ular Tech., vol. 55, no. 3, pp. 733-742, May 2006.

[12] J.-H. Chang, and L. Tassiulas, “Energy conserving rout-

ing in wireless ad-hoc networks,” in Proc. IEEE INFO-

COM’00, pp. 21-31, Tel-Aviv, Israel, Mar. 2000.

[13] C. W. Commander, and P. M. Pardalos, “A combinatorial

algorithm for the TDMA message scheduling problem,”

to appear Computational Optimization and Applications,

2008.

[14] R. Madan, S. Cui, S. Lall, and A. Goldsmith,

“Mixed integer-linear programming for link scheduling

in interference-limited networks,” Proc. of 1st workshop

on Resource Allocation in Wireless Networks, Italy, Apr.

2005.

[15] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-

layer congestion control, routing and scheduling design in

ad hoc wireless networks,” in Proc. IEEE INFOCOM’06,

pp. 1-13, Barcelona, Spain, Apr. 2006.

[16] K. T. Phan, H. Jiang, C. Tellambura, S. A. Vorobyov, and

R. Fan, “Joint medium access control, routing and energy

distribution in multi-hop wireless networks,” under revi-

sion, IEEE Trans. Wireless Commun..

AUTHOR BIOGRAPHIES

LE THI HOAI AN received her Ph D degree and Habili-

tation degree in 1994 and 1997, respectively in Modelling,

Optimization and Operations Research from University of

Rouen, France. Since 2003 she has been full professor in the

Department of Computer Science, University Paul Verlaine

- Metz, France. Professor Le Thi is the director of the

Laboratory of Theoretical and Applied Computer Science. Her

research interest is in the area of optimization and operations

research and their applications in data mining, bioinformatics,

image analysis, cryptology, finance, telecommunication,

transportation, supply chain and management.

NGUYEN QUANG THUAN received the BSc. and MSc.

degrees from Hanoi University of Technology, Vietnam in

2004 and Metz University, France in 2007, respectively. He is

currently working toward the Ph.D. degree at the Laboratory

of Theoretical and Applied Computer Science, Paul Verlaine

Metz University. France. His research interest is in the

broad areas of global optimization, for example large scale

combinatorial optimization, and its applications.

PHAN TRAN KHOA is currently a MSc. student at iCORE

Wireless Communications Lab, University of Alberta, Canada.

He will join California Institute of Technology (Caltech), USA

as a PhD student in September 2008. He obtained his BSc.

from the University of New South Wales, Australia in 2005.

He has been the recipient of numerous prestigious fellowships

including the Australian Development Scholarship, the Alberta

Ingenuity Fund Fellowship, and the iCORE Graduate Student

Award. His research interests include wireless communica-

tions, networking and optimization.

PHAM DINH TAO received the Doctor of Sciences degree in

Numerical Analysis and Optimization in 1981 from the Uni-

versity Joseph-Fourier, Grenoble, France. He held positions up

to 1989 as Associate Professor at the same University. Since

1989, he has been full professor with the Department of Math-

ematics Engineering at the National Institute of Applied Sci-

ences, Rouen, France. He is currently Director of Labora-

tory Modelling, Optimization and Operations Research. His

research interests include nonconvex programming: Local and

global approaches, theory, algorithms, and their applications in

transportation-logistics, finance, telecommunication, data min-

ing, computer vision, pattern recognition, cryptology, bioinfor-

matics, management science, structure mechanics.

289

Evaluation of Different Optimization Techniques in the Design of Ad
Hoc Injection Networks

Bernabé Dorronsoro, Grégoire Danoy, Pascal Bouvry, and Enrique Alba

Abstract—Injection networks arise as a way to deal with the
network partitioning problem in ad hoc networks. In this kind
of networks, it is assumed that devices might have other com-
munication interfaces rather than Wi-Fi and/or Bluetooth that
allow them to connect to remote devices, such as GSM/UMTS.
The problem considered in this work is to establish remote links
between devices (called bypass links) in order to maximize the
QoS of the network by optimizing its properties to make it small
world. Additionally, these bypass links are not free, so the number
of this kind of links in the network should be minimized as well.
We face the problem with six different GAs and compare their
behaviors. These alorithms are two panmictic algorithms, two
GAs with the population structured in islands and two cellular
GAs. One of the island GAs (a simple distributed GA with
steady-state GAs runing in the islands) and the two cellular
GAs were applied here for the first time to this problem. The
other island GA, a cooperative coevolutionary GA, is considered
the current state-of-the-art algorithm for this problem. As a
result, we conclude that the two cellular GAs outperform all the
compared algorithms, including the CCGA, for the three studied
network instances.

I. INTRODUCTION

Mobile multi-hop ad hoc networks most often face the
problem of network partitioning. In this work we consider
the problem of optimizing injection networks which consist in
adding long-range links (e.g., using GSM, UMTS or HSDPA
technologies) that are also called bypass links to interconnect
network partitions. To tackle this topology control problem,
we use small-world properties as indicators for the good
set of rules to maximize the bypass links efficiency. Small-
world networks [1] feature a high clustering coefficient (γ)
while still retaining a small characteristic path length (L).
On the one hand, a low characteristic path length is of
importance for effective routing mechanisms as well as for the
overall communication performance of the entire network. On
the other hand, a high clustering coefficient features a high
connectivity in the neighborhood of each node and thus a
high degree of information dissemination each single node can
achieve. This finally motivates the objective of evoking small-
world properties in such settings. In order to optimize those
parameters (maximizing γ, minimizing L) and to minimize
the number of required bypass links in the network, we relied
on Evolutionary Algorithms (EAs) and more specifically on
Genetic Algorithms (GAs) [2].
This optimization problem was first introduced in [3], where

it was solved with two panmictic GAs (generational and
steady-state) and a cooperative coevolutionary GA (CCGA),
this latter one reporting the best results. However, in that
study the CCGA was compared versus two simple panmictic

algorithms. In this work we extend this preliminar study by
proposing three aditional decentralized GAs, namely a GA
distributed in islands running a steady-state GA in each island,
and two cellular genetic algorithms: a canonical and a hier-
archical one. We consequently compare two panmictic GAs
and four decentralized GAs (two island and two cellular GAs,
the main kinds of structured GAs) on this complex problem.
One important contribution of this paper is the comparison we
perform among the CCGA versus other decentralized GAs.
As an additional contribution of this work, we found that the
two cellular GAs generally outperformed all the compared
algorithms, representing the new state of the art for the
problem.
The remainder of this paper is organized as follows. In

the next section we introduce the injection network problem.
Section III provides a brief description of the studied genetic
algorithms, as well as the representation used and the fitness
function we defined. Then, section IV presents the experiments
and discuss the results. The last section contains our conclu-
sions and perspectives.

II. PROBLEM OVERVIEW

The problem we study in this article consists in overcoming
partitioning in ad hoc networks by optimizing the placement
of long range links that we call bypass links.
Our initial motivation for the current investigation is based

on the assumption that technologies like Bluetooth and Wi-Fi
can be used to create ad hoc communication links within the
transmission range at no charge. Additional cellular network
links such as GSM/UMTS/HSDPA might be employed by
appropriately equipped devices to establish supplementary
communication links, that we call bypass links, between
two capable devices. These links will induce additional
costs, and they are typically used to connect distant (not in
range) devices that are either far away (there is a many-hops
communication between them) or not connected (belonging
to different clusters) in the network. Practically, a bypass link
can be built by using a cellular network as well as by using
access points. Nevertheless, in our model a bypass link is
counted as a single hop, thus simplifying the real topology
behind that bypass link. Devices used for establishing
bypass links are called injection points, and self-organizing
communication networks based on bypass links and injections
points as described here are called injection networks (see an
example injection network in Fig. 1).

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

290

Bypass Link

Injection Points

Fig. 1. Example of an Injection Network.

Injection points serve two different purposes: a point where
information dissemination starts and where services are being
placed (service placement, Herrmann et al. [4]). In the first
case, the injection point is of essential importance at the
moment of receiving information and passing this information
to the neighborhood. The injection point might represent a
bottleneck, depending on the amount of data passing through.
In addition, injection points become particularly attractive
when offering a service. In fact, information dissemination
can be seen as such a service that is usable by devices
in the injection points surrounding. Hence, the criterion for
determining the injection point might highly influence the
behavior of the network.
In order to optimize this kind of networks, we consider

small-world properties as indicators for the good set of
rules to maximize the bypass links efficiency. Small-World
networks [1] are a class of random graphs that exhibit a
small characteristic path length (L), indicating the degree
of separation between the nodes in the graph, and a high
clustering coefficient (γ), defining the extent to which nodes
in the graph tend to form closely-knit groups that have many
edges connecting each other in the group, but very few edges
leading out of the group. The challenging aspect in using
small-world properties is that small-world networks combine
the advantages of regular networks (high clustering coefficient)
with the advantages of random networks (low characteristic
path length). In order to study the small-world properties of
such hybrid networks, we had to rely on some ad hoc network
simulator. In our case we used Madhoc [5], an application-
level network simulator dedicated to the simulation of mobile
ad hoc networks. The main motivation for using Madhoc is
its ability to simulate hybrid networks, i.e., mixing different
technologies (e.g., bluetooth/Wi-Fi for local connections and
UMTS for long distance calls), and its graphical and batch
modes of visualization, which greatly help in understanding

the network design alternatives.

III. THE ALGORITHMS
We compare in this work several algorithms with different

population structures (panmictic, cellular, and islands) on the
complex problem of optimizing the design of injection ad
hoc networks. On the one hand, panmictic algorithms do not
consider any structure into the population; so any individual
can mate with any other one in the population. On the other
hand, in structured, or also called decentralized, populations
(e.g., cellular and distributed GAs) individuals can only inter-
act with a subset of the individuals in the whole population.
In cellular GAs, a distance measure is defined among all
the individuals in the population and only individuals that
are close each other can interact. In the case of island (or
distributed) GAs, the population is partitioned into several
smaller subpopulations that independently evolve, exchanging
some information among them during the run.
We present in this section the six algorithms evaluated in

this study. Specifically, they are two panmictic GAs, the gen-
erational (genGA) and steady-state GAs (ssGA), two cellular
ones, a canonical (cGA) and a hierarchical one (HcGA), and
two island GAs, a canonical one (dGA) and a coevolutionary
GA (CCGA). All these algorithms are briefly described in
sections III-A to III-C, while the problem representation and
the fitness function are presented in Section III-D.

A. Panmictic Genetic Algorithms
We present in this section the two GAs with centralized

population we study in this paper, namely the steady-state
(ssGA) and the generational (genGA) genetic algorithms. In
panmictic algorithms, any individual in the population can
mate with any other one during the breeding loop. These two
algorithms perform in a similar way: they iterate a process
in which two parents are selected from the whole population
with a given selection criterion, they are then recombined,
the obtained offsprings are mutated, and finally they are
evaluated and inserted back into the population following a
given criterion.
The difference between the ssGA and the genGA is the

way in which the population is being updated with the new
individuals generated during the evolution. In the case of the
ssGA, new individuals are directly inserted into the current
population (it is a (μ+1)-GA), while in the case of the genGA,
a new auxiliary population is built with the obtained offsprings
and then, once this auxiliary population is full, it completely
replaces the current population (it is a (μ, λ)-GA, with μ =

λ). Thus, in ssGAs the population is asynchronously being
updated with the newly generated individuals, while in the
case of genGAs all the new individuals are updated at the
same time, in a synchronous way.

B. Cellular Genetic Algorithms
Cellular genetic algorithms (cGAs) [6] are a kind of GA

with a structured population in which individuals are spread
in a two dimensional toroidal mesh, and they are only allowed

291

Fig. 2. Example 5 × 5 population of a cGA with C9 neighborhood

to interact with their neighbors. As an example, we show in
Fig. 2 the disposition of the individuals in the population of a
cGA, the neighborhood of the center individual (shadowed),
and of another individual far from the center, in the upper left
corner (dashed line).
A canonical cGA follows the pseudo-code included in

Algorithm 1. In this basic cGA, the population is usually
structured in a regular grid of d dimensions (d = 1, 2, 3),
and a neighborhood is defined on it. The algorithm iteratively
considers as current each individual in the grid (line 3), and
individuals may only interact with individuals belonging to
their neighborhood (line 4), so parents are chosen among
the neighbors (line 5) with a given criterion. Crossover and
mutation operators are applied to the individuals in lines 6
and 7, with probabilities Pc and Pm, respectively. Afterwards,
the algorithm computes the fitness value of the new offspring
individual (or individuals) (line 8), and inserts it (or one of
them) instead of the current individual in the population (line
9) following a given replacement policy. This loop is repeated
until a termination condition is met (line 2).

Algorithm 1 Pseudocode for a canonical cGA
1: proc Evolve(cga) //Algorithm parameters in ‘cga’
2: while ! StopCondition() do
3: for individual ← 1 to cga.popSize do
4: n list←Get Neighborhood(cga,position(individual));
5: parents←Selection(n list);
6: offspring←Recombination(cga.Pc,parents);
7: offspring←Mutation(cga.Pm,offspring);
8: Evaluation(offspring);
9: Add(position(individual),offspring,cga);
10: end for
11: end while
12: end proc Steps Up;

In addition to the previously described canonical cGA, we
also study in this paper a hierarchical version of the algorithm,
called hierarchical cGA (HcGA) [7]. HcGA is a simple
extension of canonical cGAs in which the population structure
is augmented with a hierarchy according to the current fitness
of the individuals. The basic idea is to put the best current
solutions all together in the same region of the population,
so that high quality solutions are exploited quickly, while
at the same time new solutions are provided by individuals
outside this region that keep exploring the search space. This
algorithmic variant is expected to increase the convergence

speed of the cGA algorithm and to maintain the diversity given
by the distributed layout. In [7], the HcGAs were proposed for
the first time and were validated in a theoretical and empirical
comparison versus an equivalent canonical cGA.

C. Distributed Genetic Algorithms
In addition to the cellular model, there is another common

way for structuring the population of GAs. It consists of
splitting the whole population into several subpopulations in
which isolated GAs are evolving, and these subpopulations
exchange some information among them during the run. We
study in this paper two algorithms following this model,
namely dGA, a simple distributed GA with an ssGA running
in every island, and CCGA, a cooperative coevolutionary GA
that represents current state of the art for this problem.
The main idea behind coevolutionary algorithms is to

consider the coevolution of subpopulations of individuals
representing specific parts of the global solution, instead of
considering a population of similar individuals representing
a global solution, like classical genetic algorithms do. The
quality of this kind of algorithms have been reported in a large
number of papers in the literature. As an example, two differ-
ent coevolutionary GAs were applied in [8] on a number of
test functions known in the area of evolutionary computation,
and they were demonstrated to clearly outperform a sequential
GA.
Cooperative (also called symbiotic) coevolutionary genetic

algorithms (CCGA) involve a number of independently evolv-
ing species which together form complex structures, well-
suited to solve a problem (see a pseudocode in Algorithm 2).
The fitness of an individual depends on its ability to col-
laborate with individuals from other species. In this way,
the evolutionary pressure stemming from the difficulty of
the problem favors the development of cooperative strategies
and individuals. The CCGA considered here is based in the
model proposed by Potter and DeJong [9], in which a number
of populations explore different decompositions of the prob-
lem. In this system, each species represents a subcomponent
of a potential solution. Complete solutions are obtained by
assembling representative members of each of the species
(populations). The fitness of each individual depends on the
quality of (some of) the complete solutions it participated in,

Algorithm 2 Pseudocode of the CCGA
1: gen = 0
2: for all speciess do
3: Pops(gen) = randomly initialized population
4: evaluate fitness of each individual in Pops(gen)
5: end for
6: while termination condition = false do
7: gen = gen + 1
8: for all speciess do
9: select Pops(gen) from Pops(gen− 1) based on fitness
10: apply genetic operators to Pops(gen)
11: evaluate fitness of each individual in Pops(gen)
12: end for
13: end while

292

thus measuring how well it cooperates to solve the problem.
The evolution of each species is controlled by a separate,
independent evolutionary algorithm. In the initial generation
(t=0) individuals from a given subpopulation are matched with
randomly chosen individuals from all other subpopulations. A
fitness for each individual is evaluated, and the best individual
in each subpopulation is found. The process of cooperative
coevolution starts form the next generation (t=1). For this
purpose, in each generation a cycle of operations is repeated
in a round-robin fashion. Only one current subpopulation is
active in a cycle, while the other subpopulations are frozen. All
individuals from the active subpopulation are matched with the
best values of frozen subpopulations. When the evolutionary
process is completed a composition of the best individuals
from each subpopulation represents a solution of a problem.

D. Problem Encoding and Fitness Functions
Solution encoding is a major issue in this kind of algorithms

since it will determine the choice of the genetic operators
applied for exploring the search space. We have used a binary
encoding of the solution in which each gene encodes an integer
on 15 bits, that corresponds to one possible bypass link in the
half-matrix of all possible links. For instance, if the maximum
number of bypass links fixed a priori for the network that
is optimized is 10, then a chromosome will have 10 genes
of 15 bits. Figure 3 shows the example of a chromosome
composed of 2 genes (thus the maximum number of created
bypass links is 2) on a network of 5 stations. The 5×5
half-matrix represents all the possible links in the network
including the already existing local links in the network (i.e.
the existing Wi-Fi connections). In the example showed in
Figure 3, the first gene (circled) with the integer value 2
stands for the connection between station 1 and station 3 in
the corresponding half-matrix (also circled).

Chromosome 2 7 9 16

000000000000011
Binary

Encoding

1

3

2

4

5

Network

Bypass Link1

1

2 3 4 5

2

3

4

5

2 3 4

6 7

8

First Station

S
e
c
o
n
d

S
ta

ti
o
n

9

1

5

10

Fig. 3. Solution encoding example

In order to assign a fitness value to the candidate solutions
(i.e. sets of possible bypass links) of our algorithms, we use a
unique cost function F which combines the two small world

measures (L and γ) and the number of created bypass links.
The calculation of the characteristic path length L imposes
that there exists a path between any given nodes a and b.
Consequently, the computation of the fitness function requires
that we first test if the network is partitioned.
If the optimized network is still partitioned (the bypass links
defined do not achieve to connect all the partitions), the fitness
value is assumed to be a weighted term of the number of
partitions in the network.
On the contrary, if the optimized network is no longer parti-
tioned, the fitness value is assumed to be a linear combination
of the clustering coefficient, of the characteristic path length,
and of the difference between the number of bypass links
defined and the maximum number allowed.
The aim of the optimization process is to maximize the clus-

tering coefficient, and to minimize both the characteristic path
length and the number of bypass links. By using this fitness
function we now face the maximization problem defined in
Algorithm 3.

Algorithm 3 Fitness Function
1: if Graph connected then
2: F = α * γ - β * (L - 1) - δ * (bl - blmax)
3: else
4: fitness = ξ * P
5: end if

With weights experimentally defined:
α = 1
β = 1 /(N -2)
δ = 2 / (N * (N-1)) - WifiConnections
ξ = 0.1

where bl is the number of bypass links created in the simulated
network by one solution, blmax (defined a priori) is the
maximum number of bypass links that can be created in the
network, P is the number of remaining partitions in the whole
network after the addition of bypass links and N is the number
of stations in the global network. Finally, WifiConnections is
the number of existing Wi-Fi connections in the network.

IV. EXPERIMENTS
This section presents the results obtained on the injection

network optimization problem using the different GAs pre-
sented in Section III. We first describe the parameters used for
the genetic algorithms. Next, the configuration of the network
simulator is introduced and, finally the results obtained using
the six GAs are analyzed and compared.

A. Parameterization
In Table I, we show the parameters used for all the proposed

algorithms. All of them have a single population of 100
individuals, except for the two distributed algorithms: CCGA
(10 populations of 50 individuals), and dGA (5 subpopulations
of 100 individuals), having both of them a total population of
500 individuals. The termination condition is achieving 50,000

293

TABLE I
PARAMETERS USED FOR THE STUDIED GAS

Number of Subpopulations 10 for CCGA
5 for dGA

(Sub)Population size 100 (genGA, ssGA, dGA)
10 × 10 (cGA, HcGA)
50 (CCGA)

Termination Condition 50,000 function evaluations
Selection Binary tournament (BT)

Current individual + BT in cGA and HcGA
Neighborhood C9 in cGA

C13 in HcGA
Crossover operator DPX, pc=0.8
Mutation operator bit flip, pm = 1/chrom length
Elitism 1 individual (not for ssGA)

Algorithm

Madhoc Simulator

Cluster 2
Cluster 3

Cluster 1

x

f(x)

Panmictic Model (genGA, ssGA)

Cellular Model (cGA, HcGA)

Islands Model (CCGA, dGA)

Fig. 4. Components of the experimental study

fitness function evaluations, common to all the algorithms, as
well as the recombination (the two points crossover –DPX–
) and mutation (bit-flip) operators, and their probabilities:
pc = 0.8 and pm = 1/chrom length, respectively.
The two parents are selected using a binary tournament,

except for the two cellular algorithms, for which one of them
is considered to be the current individual itself. A specific
parameter of these cellular models is the neighborhood. We
used C9 (9 closest individuals measured in Manhattan distance
–see Fig.2–) for cGA and C13 for HcGA. The reason of using
a different neighborhood for HcGA is that it maintains a higher
diversity in the population than the cGA, and thus we can use
a more exploitative neighborhood. Finally, all the algorithms
follow an elitist strategy, with the exception of ssGA.

B. Madhoc Configuration
As stated before, the Madhoc simulator was used for man-

aging the complex scenarios posed by this injection network
problem. Fig. 4 shows how the genetic algorithms interact with
Madhoc.
The parameters we have used in Madhoc for defining our

problem instances are shown in Table II. We have defined a
square simulation area of 0.2 km2 and tested three different

TABLE II
PARAMETERIZATION USED IN MADHOC

1 Cluster 3 Clusters 5 Clusters
Surface 0.2 km2 0.2 km2 0.2 km2

Node Density 350 nodes/km2 210 nodes/km2 150 nodes/km2

Number of Nodes 70 42 30
Partitions 1 3 5

Possible Links 2189 745 400

densities of 150, 210 and 350 devices per square kilometer.
Each device is equipped with both Wi-Fi (802.11b) and UMTS
technologies. The coverage radius of all mobile devices ranges
between 20 and 40 meters in case of Wi-Fi.
The studied networks, as presented in Fig. 5, here represent

a snapshot of mobile networks in the moment in which a single
set of users moved away from each other creating the clusters
of terminals, that were obtained using the graphical mode of
Madhoc. As an example, the network with 3 clusters (center
of Fig. 5) consists in 42 stations located in three partitions, the
first partition has 38 stations, the second one 3, and the third
one has a single station. The number of possible connections
in this 3-clusters network is N∗(N−1)

2
= 861. The number of

existing Wi-Fi connections in this network is 116, thus the
number of possible bypass links is 861-116 = 745. The clusters
are selected purposely to be different and thus challenging.

C. Results
In Table III we show the averaged results, the best ones,

and the total computational time for all 30 runs for each
algorithm. Additionally, we show the results of the statistical
tests in the comparison of the different algorithms for each
cluster instance in order to obtain concluding results from the
comparison made. For performing these statistical tests, we
first check whether the data follow a normal distribution or not
using the Shapiro-Wilks test. Then, if the data are normally
distributed we perform an ANOVA test. In the other case, we
use the Kruskal-Wallis test. This statistical study allows us to
assess if there are meaningful differences among the compared
algorithms with 95% probability or not.
Symbol ’+’ in Table III stands for existing statistical differ-

ences in the comparison of the algorithms. Grey background
means that the result is the best one with statistical confidence
(if there are more than one result with grey background
for the same problem it means that there are no statistical
difference between them, but they are better than the others
with statistical significance).
As we can see in Table III, the two cellular models and

the CCGA are clearly the three best compared algorithms.
The two panmictic GAs and dGA obtain the worst results
with statistical significance with respect to the best performing
algorithm for the three studied instances. If we now compare
the CCGA and the two cellular models, we can see that the
celullar alorithms outperform CCGA in the case of the 5
clusters instance with statistically significant differences. For
the other two instances (1 and 3 clusters), CCGA obtains better

294

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5
Cluster 2

Cluster 3

Cluster 1

Fig. 5. Studied Networks with 1, 3 and 5 clusters

TABLE III
RESULTS OF ALL EXPERIMENTS

Network GA Avg. Result Best Result Time (s) p-value

1 Cluster

genGA 0.6833 0.6920 8256

+

ssGA 0.6736 0.6855 8395
dGA 0.6760 0.6856 11311

CCGA 0.6911 0.6925 17784
cGA 0.6887 0.6924 10760

HcGA 0.6893 0.6926 10366

3 Clusters

genGA 0.6685 0.6782 4486

+

ssGA 0.6489 0.6651 3289
dGA 0.6555 0.6664 5703

CCGA 0.6739 0.6757 6793
cGA 0.6727 0.6757 3563
HcGA 0.6724 0.6754 2883

5 Clusters

genGA 0.5634 0.5848 1672

+

ssGA 0.5527 0.5809 1717
dGA 0.5576 0.5783 3563

CCGA 0.5652 0.5864 8674
cGA 0.5790 0.5923 1713

HcGA 0.5779 0.5931 1569

average results, but the differences with the cellular models
are not statistically significant. If we now pay attention to the
best solution found in the 30 runs, HcGA finds the best result
for instances of 1 and 5 clusters, while in the case of the 3
clusters problem, both the cGA and CCGA achieve the same
best value.
Regarding the computation time, the HcGA is the fastest

algorithm among the three best ones. Indeed it is the fastest
algorithm out of the six compared ones for instances of 3 and 5
clusters, being only improved by the two panmictic algorithms
(wich find much worse results) in the largest instance.
With the goal of better understanding the behavior of the

different compared algorithms, we now analyze the evolution
of the population during the run for all the alorithms. So, we
plot in figures 6 to 8 the evolution of the average of the best
fitness values during the execution in the 30 runs for the six
algorithms and the three studied problem instances. As it can
be seen, the behavior of the algorithms is similar for the three
problem instances.
As a general rule, all the algorithms experiment a high

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 0.695

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s V

alu
e

Function Evaluations

1 Cluster

genGA
ssGA

CCGA
dGA
cGA

HcGA

Fig. 6. Evolution of the average best fitness value (30 executions) during
the run. One cluster instance

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s V

alu
e

Function Evaluations

3 Clusters

genGA
ssGA

CCGA
dGA
cGA

HcGA

Fig. 7. Evolution of the average best fitness value (30 executions) during
the run. Three clusters instance

improvement of the fitness value during the first function
evaluations, but then they get stuck and the improvement of the
fitness is very low. The reason for this too slow evolution of
the fitness value is that the population (or populations) of the

295

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s V

alu
e

Function Evaluations

5 Clusters

genGA
ssGA

CCGA
dGA
cGA

HcGA

Fig. 8. Evolution of the average best fitness value (30 executions) during
the run. Five clusters instance

algorithms prematurely converged in the first steps of the run,
loosing the diversity of individuals, and thus making difficult
the improvement of the current individuals with the application
of the variation operators.
As an exception, the reader can see how the convergence of

the cellular GAs is slower from the beginning of the evolution,
and it does not get stuck as in the case of the other compared
algorithms. The reason is that the cellular model preserves the
diversity of the population for longer [6] with respect to the
other compared GAs. It thus makes possible to improve the
current solutions with the application of the variation operators
to the individuals in the population during the breeding loop.
We can clearly see this effect in Fig. 8: the fitness value is
continuously growing during the whole evolution for the two
cellular models, while the other algorithms hardly improve the
fitness value in the second half of the run.
The CCGA experiments a really fast convergence during

the first generations, but after that the convergence becomes
much slower, slightly improving the solution. The two cellular
models show a similar behavior in the three problem instances.
The convergence of these two algorithms is slower than for the
other ones, consequently they need more funtion evaluations
to achieve good results, but they maintain the diversity of the
population for longer avoiding local optimal solutions.
Finally, it can be seen how the island and the two panmictic

GAs prematurely converge to local optimal solutions, from
which they find difficulties to escape.

V. CONCLUSIONS AND FURTHER WORKS

We have compared in this paper six different GAs on the
problem of designing ad hoc injection networks. The compared
algorithms are two panmictic algorithms, the generational and
steady-state GAs, two algorithms with population structured in
islands, a distributed GA with steady-state GAs in the islands
and a coevolutionary GA, and two cellular GAs: the canonical
and the hierarchical cGA.
Our main conclusion from our comparison study is that the

cellular models outperform the other compared ones for the

three studied instance problems. The CCGA reports similar
average results than the cellular algorithms for the two largest
intances, but the cellular models are better in terms of the
best solution found and the computational time required. As
future works, we propose the study of more realistic instances
of the problem. This can be achieved by either considerably
increasing the size of the problems or by studying dynamic
networks varying with time.

REFERENCES
[1] D. J. Watts, Small Worlds – The Dynamics of Networks between Order

and Randomness. Princeton, New Jersey: Princeton University Press,
1999.

[2] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of Evolutionary
Computation. Oxford University Press, 1997.

[3] G. Danoy, E. Alba, P. Bouvry, and M. R. Brust, “Optimal design of ad
hoc injection networks by using genetic algorithms,” in GECCO ’07:
Proceedings of the 9th annual conference on Genetic and evolutionary
computation. New York, NY, USA: ACM, 2007, pp. 2256–2256.

[4] K. Herrmann and K. Geihs, “Self-Organization in Mobile Ad hoc
Networks based on the Dynamics of Interaction,” Erlangen, Germany,
2003, frühjahrstreffen der GI-Fachgruppe Betriebssysteme. [Online].
Available: http://www.kbs.cs.tu-berlin.de/publications/fulltext/gi0403.pdf

[5] L. Hogie, P. Bouvry, F. Guinand, G. Danoy, and E. Alba, “Simulating
Realistic Mobility Models for Large Heterogeneous MANETS,” in Demo
proceeding of the 9th ACM/IEEE International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWIM’06).
IEEE, October 2006.

[6] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms, ser. Operations
Research/Compuer Science Interfaces. Springer-Verlag Heidelberg,
2008.

[7] S. Janson, E. Alba, B. Dorronsoro, and M. Middendorf, “Hierarchical
cellular genetic algorithm,” in Evolutionary Computation in Combina-
torial Optimization (EvoCOP), ser. Lecture Notes in Computer Science
(LNCS), J. Gottlieb and G. Raidl, Eds., vol. 3906. Budapest, Hungary:
Springer-Verlag, Heidelberg, April 2006, pp. 111–122.

[8] F. Seredynski, A. Zomaya, and P. Bouvry, “Function optimization with
coevolutionary algorithms,” in Proc. of the International Intelligent In-
formation Processing and Web Mining Conference. Springer, 2003.

[9] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Parallel Problem Solving from Nature (PPSN
III). Springer, 1994, pp. 249–257.

296

BODYF – A Parameterless Broadcasting Protocol
Over Dynamic Forest

P. Ruiz, B. Dorronsoro, D. Khadraoui, P. Bouvry, L. Tardón.

Abstract—Mobile Ad hoc Networks (MANETs) are com-
posed of mobile devices which spontaneously communicate each
other without any previous existing infrastructure. Thus, the
resulting network is highly fluctuating and has a dynamically
changing topology. Dealing with ad hoc networks, broadcasting
is one of the main operations, since many other applications
use it very often. In order to avoid the broadcast storm
problem in wireless networks, many researchers work on the
design of efficient broadcasting algorithms. In this contribution,
we present BODYF, a broadcasting protocol that relys on a
tree-based topology. The behavior of this algorithm does not
depend on any parameter, what makes it challenging and
suitable for dealing with MANETs. We compare here our
proposal to DFCN, an efficient broadcasting neighbor topology
based protocol, and also to Simple Flooding, the most simple
broadcasting technique which does not require any knowledge.

I. INTRODUCTION

Broadcasting constitutes one of the fundamental low-level
network operations which serves as the basis of higher level
applications, such as routing, in mobile ad hoc networks
(MANETs). In MANETs, the limited radio range of the
nodes, as well as node mobility, cause the unreachability of
some nodes at a given time and a highly fluctuating topology.
This is the reason why some researchers are focusing on
optimizing the behavior of these algorithms, e.g., maximizing
the number of nodes reached, and minimizing both the time
required and the network overload [1].
Recently, there exists also a tendency in the ad hoc

networks field focused on the development of new mo-
bile networks composed of vehicles. In Vehicular Ad-hoc
Networks (VANETs), vehicles can communicate each other
(Car to Car communication) or with road-side units that
allow access to backend systems which provide warnings,
traffic information, etc. Vehicle communication is a major
research topic, covered by many national and international
research projects as CARLINK [2]. Applications promise to
make our driving safer, more efficient, and funnier. This
includes warning applications, e.g., cars are able to send
warning messages to other cars alerting them of a danger
ahead, weather and traffic conditions, etc. In VANETs, due
to the high speed of the devices (car PCs), the topology of

D. Khadraoui and P. Ruiz work at C.R.P. Henri Tudor, Luxembourg. B.
Dorronsoro and P. Bouvry work at the Faculty of Sciences, Technology
and Communications, University of Luxembourg. L. Tardón is with the
Department of Communication Engineering, University of Málaga, Spain.
(Email: {djamel.khadraoui, patricia.ruiz}@tudor.lu {bernabe.dorronsoro,
pascal.bouvry}@uni.lu, lorenzo@ic.uma.es).
D. Khadraoui and P. Ruiz acknowledge that this work was partially

supported by CELTIC CARLINK project financed by the Ministry of Lux-
embourg (CARLINK project website: http://carlink.lcc.uma.es)

the network is even more dynamic than in MANETs, what
difficulties the communication between them.
In MANETs, we can typically differentiate broadcasting

protocols into heuristic- and topology-based protocol. We
are interested in topology-based protocols which are sub-
categorized into neighbor topology based protocol, source-
tree based protocol and cluster-based protocol [3]. In this
paper, we propose a new source-tree based broadcasting algo-
rithm, called Broadcasting Over Dynamic Forest (BODYF).
We will compare BODYF to a neighbor topology based
protocol, Delayed Flooding with Cumulative Neighborhood
(DFCN). In contrast to BODYF, which requires a tree-
based topology established in the network, DFCN does not
exchange any message for stablishing its topology; it just
needs the one hop neighborhood knowledge obtained using
the beacons (hello messages that devices send for notifying
their presence). We will also compare BODYF to Simple
Flooding, a well known broadcasting technique which does
not require any knowledge about the neighborhood or the
topology, and either makes any attempt to reduce the number
of forwarded messages.
In addition to the comparison (in terms of coverage,

bandwidth and elapsed time) of the behavior of these so
different broadcasting protocols, which is already interesting
by itself, with this study we can also check, whether the
overload caused by the tree-based topology is worthy or not.
The rest of this paper is organized as follows: Section II

describes DAGRS, the model for creating topologies used for
the creation of our tree, and presents BODYF, the broadcast
algorithm over this tree. Section III introduces DFCN the
broadcast protocol with one hop neighborhood knowledge.
The mobility model and the simulator used are presented in
Section IV. After that, the results are shown in Section V
and finally, Section VI concludes the paper.

II. BROADCASTING OVER DYNAMIC FOREST, BODYF

In this section we present BODYF, a broadcasting protocol
over a dynamic forest. Although broadcasting using a tree
structure is a well known and widely used technique [4], it
is typically claimed to be inappropriate for ad hoc networks,
being the maintenance of the tree very sensitive to network
changes. In this work, we built the tree using DAGRS
(dynamicity aware graph relabeling systems) [5], a general
model for creating dynamic topologies, and developed the
broadcast algorithm on top of this topology.

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

297

A. Dynamicity Aware Graph Relabeling Systems, DAGRS
DAGRS is an extension of Graph Relabeling Systems,

GRS [6]. It is a high level abstraction model that can be
used to drastically improve the development of self-organized
systems. The model supports the design of algorithms in
which a computation step only involves direct neighbors and
where a device can react to the appearance/disappearance of
its neighbors [7]. The main advantage of DAGRS is that it
makes the description of algorithms easier to understand and
validate.
The network is represented as a graph, where the mobile

devices are the set of vertices (V), and the links between
them are the edges of the graph, (E). The dynamicity of the
network is represented by the fact that both V and E can
change at any time.
It is important to emphasize that DAGRS model does

not itself model services or applications, it just models the
mechanisms to handle with topology changes and interaction
between devices.
A spanning tree of a graph is a connected cycled-free

subgraph. In fact, in dynamic networks we should talk about
spanning forest, since the network is typically partitioned. In
this model we only use one-hop neighbor information, so it
is a localized algorithm.
Initially, all devices are labelled T, what means they are

tree themselves. The algorithm performs on the basis of four
rules described after and represented in Figure 1; where T
represents a node with token, N is a device without token,
and Any means it can be both of them. The numbers on the
edges are labels representing the route to the token.

Initially:

rule 1:

rule 2:

rule 3:

rule 4:

T

T

T

N

Any

off

1

off

2

Any

T

T

N

0 0

12

T N

12

N T

21

Fig. 1. DAGRS rules for creating spanning forest topologies.

Every tree has only one token, and the possible operations
of this token are: circulation, merging, and regeneration. As
explained before, every device is initially a tree itself, with
only one element. Only two nodes with token can merge.
When two nodes with token meet each other, rule 3 allows
merging the two trees, deleting one of the tokens (there only
can be one token in each tree). The circulation of the token
is represented by rule 4. In our implementation, the token
explores the tree in a depth-first manner. Both rules 1 and
2 deal with a broken link. In rule 1, the token must be
regenerated (label 1 represents the route to the token, so
if this link breaks the token is lost), meanwhile in rule 2,

the node has nothing to do with the maintainance of the
token (label 2 represents a different link from the route
to the token). Applying these easy rules to every device,
we can build a dynamic tree topology in the network, in a
decentralized way.
It is very important to remark that there is only one token

per tree in the forest, since it is the way for avoiding cycles.
Only two nodes with token can merge, so since there is only
one token in the tree, two nodes belonging to the same tree
are not able to merge never (it is impossible both of them
have the token at the same time).
As we explained above, we are using these simple rules of

DAGRS for creating and maintaining the tree, but as we are
dealing with high speed mobile environments and also with
distributed systems, we exchange some messages between
nodes for merging trees and also for circulating the token.
DAGRS do not specify how to implement a token. In our
protocol, the token is a message. For circulating the token,
a device sends this message to one of its neighbors. When
a device receives the token, it should check if there is any
neighbor with token in its neighborhood just to merge their
trees, but this behaviour leads in a high level number of
messages interchanged. So we take advantage of the high
mobility and use it: only when a change in the one hop
neighborhood is detected, the device with token checks if
there is any other device nearby with token.

B. The proposed broadcasting protocol, BODYF

BODYF is a broadcasting protocol specifically designed
for communication dynamic networks based on spanning tree
topologies. We suppose the tree-based topology is already
established in the network, maybe for routing or any other
necessity [8]. Once we have the tree (or the forest due
to the network partitioning), we use it for broadcasting.
Therefore, our main goal is not the tree itself, but the design
of a new broadcasting protocol that can achieve the best
possible coverage and broadcast time at a minimum cost,
using the information of the network provided by the tree-
based topology.

Fig. 2. Possible types of neighbors in a spanning forest algorithm.

Assuming we have the forest, we will distinguish between
logical neighbors, which are the ones belonging to the same
tree, and potential neighbors, which are those that do not
belong to my tree yet but are in communication range, as
it is shown in Figure 2. In this picture, devices in same
color belong to the same tree. The links between devices
are represented as a continuous line if the neighbors belong
to the same tree and are connected (logical neighbors), or as
a discontinuous line for neighbors either in communication

298

range but which do not belong to the tree (potential neigh-
bors) or belonging to the same tree but not connected in
order to avoid cycles.
A pseudocode of our proposed broadcasting algorithm is

given in Algorithm 1. We suppose that all the messages
have an unique identifier, and when a device receives the
same message more than once, it will directly discard it, no
processing is done.
When a device wants to spread a message, instead of doing

a multicast only to its logical neighbors (the neighbors in the
same tree), it will broadcast the information, what supposes
the same load for the network, allowing the potential neigh-
bors to also receive the message. When a device receives
the message from a logical neighbor, it will forward it if it
was not received before, otherwise it is dropped (lines 2-
4). But if it was not received from a logical neighbor (i.e.,
from its own tree), the device will wait until it receives the
token (line 5). Once the device receives the token, it will
forward the message if and only if, during the time it was
waiting for the token, it did not receive the same message
again from a neighbor belonging to its tree (lines 6-10). That
is the way the message can spread through different trees,
trying to avoid the dissemination of the same message more
than once in the same tree.

Algorithm 1 Pseudocode of BODYF.
Data: m: the incoming broadcast message.
Data: d: the node receiving broadcast message.
Data: s: the node which sent m.
1: if m is received for the first time then
2: if s and d belong to the same tree then
3: d → forward m;
4: else
5: wait until the token is received → d is token;
6: if d received m also from its tree then
7: d → discard m;
8: else
9: d → forward m;
10: end if
11: end if
12: else
13: drop m
14: end if

III. DELAYED FLOODING WITH CUMULATIVE
NEIGHBORHOOD, DFCN

DFCN [9], [10] is an efficient broadcasting protocol
specially designed for MANETs. It needs the information
about the one hop neighbors provided by the beacons. DFCN
requires to embed into the broadcast message a list of all the
neighbors of the sender nodes. This broadcasting algorithm
focuses on different goals:
1) Minimize network overhead.
2) Provide a protocol dealing with the network density.
More precisely, as illustrated in Figure 3, broadcasting

in a low density network is difficult because the pro-
tocol needs to make a very good use of the mobility
to achieve good coverage. When the density increases,
the connectivity gets better, although the network may
be partitioned. When the network is highly connected,
the broadcasting protocol must be bandwidth-efficient
in order to minimize the risk of packet collisions.

3) Provide a localized protocol which operates with 1-hop
neighborhood information. One challenge is to achieve
better performance by using less network information.

Fig. 3. Node density in MANETs. Picture on the left is a very sparse and
partitioned network. The one on the right shows a very dense network.

In this section we explain how DFCN works [9]. First of
all, we give a general idea of the problem and, after that, we
explain the problem in detail.
When the network is sparse, it is quite difficult to spread

a message, hence a node should forward the message as
soon as another device is met. This would lead to good
results since every re-emission proves to be useful because
of the reduced number of meeting points between stations.
However, in a dense environment, this strategy would lead to
catastrophic results. As a consequence, DFCN sets a random
delay (RAD) when a node receives a message for the first
time (before forwarding it). If the density is low it will
forward the message inmediately after a new neighbor is
met, but if the density is high, it will wait before resending
it (in order to avoid collisions). This perception of the density
corresponds directly to its neighborhood and, in DFCN, it is
managed with a threshold called densityThreshold.
DFCN attaches in the message a list with the neighbors of

the sender, T(m). The list T(m) is managed as follows: when
a node s sends a message m to its neighbors, it knows that
all of them will receive m (unless some collisions occur).
T(m) is set with the neighbors of s, N(s). DFCN uses this
list to decide whether the received message will be forwarded
or not, in terms of the neighbors that already received the
message which are in the one hop neighborhood. For that, we
set a threshold called minBenefit which is formally defined
on the benefit, computed as the ratio between the neighbors
of s which do not belong to T(m), and the total neighbors
of s, N(s), see Equation 1. The higher the benefit, the higher
the probability of re-emission.

benefit =
|N(s)-T(m)|

|N(s)| (1)

299

The behavior of DFCN is driven by the following three
events:

• the reception of a message, referred to as reactive
behavior;

• the expiration of the RAD of a message;
• and the detection of a new neighbor, referred to as
proactive behavior;

When one of these three events occurs, DFCN reacts by
behaving in a specific manner, as described below.
1) Message reception event: if a message m is received

for the first time, a RAD is then assigned to m. Otherwise the
message is dropped. This behavior corresponds to Algorithm
2. All messages are univocally identified. If a device already
received the message, it will be discarded. No processing is
done.

Algorithm 2 Behavior of DFCN upon message reception.
Data: m: the incoming broadcast message
Data: s: the node which recives m
1: if m is received for the first time then
2: rad(m)← random ∈ [0, maxRAD];
3: else
4: s drops m
5: end if

2) RAD expiration event: when the RAD of a message
expires, its hosting node computes the ratio of neighbors
that did not receive it yet. If the ratio is greater than the
threshold minBenefit, the message is forwarded, otherwise it
is dropped. If the message is emitted, then T(m) is set to
N(s). Algorithm 3 shows this behavior.

Algorithm 3 Behavior of DFCN when RAD expires.
Data: m: the message candidate to immediate emission
Data: s: the node that received m
1: benefit← |N(s)-T(m)|

|N(s)|
2: if benefit≥minBenefit then
3: T(m)← N(s);
4: s→ forward m
5: end if

3) New neighbor event: each time a node s detects a new
neighbor, the RAD for all messages is set to zero. Messages
are hence immediately candidate to re-emission. If N(s) is
higher than the threshold densityThreshold (our network is
dense), this behavior is disabled, see Algorithm 4.
DFCN behaves depending on several parameters (e.g.,

densityThreshold, minBenefit and RAD) which need to be
tuned for every different network. As an example, DFCN
was optimized in [11] for three particular scenarios: mall,
highway and metropolitan area, reporting very different pa-
rameter values. This optimization was made according to the
coverage, the usage of the network and the broadcasting time,
depending on the necessities of each application.

Algorithm 4 Behavior of DFCN when a new neighbor is
detected.
Data: M(s): the set of messages received
Data: s: node with a new neighbor
1: if |N(s)| < densityThreshold then
2: for m ∈M(s) do
3: rad(m)← 0;
4: end for
5: end if

IV. MOBILITY MODEL AND JANE SIMULATOR
In this work, we evaluate BODYF and compare it to DFCN

in a particular environment, Vehicular Ad hoc Networks
(VANETs). So, we consider every device is a car, with com-
munication capabilities. Our scenario for the simulations is
the city center of Luxembourg, see Figure 4. The simulation
area is 1323m x 1863m, what means 2.465 Km2. The speed
of cars oscillates between 30 and 75 km/h.
Many researchers are focusing on the realism of simu-

lations, and are hence, creating their own mobility models
to emulate how the protocols would behave in a real sce-
nario [12]. We did the same and developed a mobility model
where devices move along streets, stop at crossroads and also
overtake each other.

Fig. 4. Luxembourgian mobility model.

The devices move on a straight line with a constant speed
from one position to another. The mobility model uses a
directed graph given as XML file for device movement.
Vertices are crossroads and contain routing probabilities,
all possible destinies have the same probability of being
taken; the next route is chosen at random. Edges can have
an arbitrary width so that devices move on a lane and not
only on a strict line (allowing overtaking). To make a real
simulation we also have sense in the lanes, so the most
congested areas in Luxembourg city center are reflected in
our model. There are much more dense areas than others.

300

In this environment the diffusion process is more difficult
than in the case of using random waypoint, since movement
is more restricted, but for sure, the simulation is much more
realistic. Our main goal is to get results as close as possible
to a test on real devices moving along roads in a city center.
For simulating these scenarios we are using JANE sim-

ulator [13], [14]. The main feature of JANE is its three
steps development; it facilitates the evaluation and minimizes
the effort needed for software development in MANETs, so
that the evaluated code in the simulated environment can be
directly executed in real scenarios without modifications.

V. SIMULATION RESULTS

To compare these protocols we are simulating them with
the mobility model explained in section IV. We want to
compare several aspects of their behavior in a VANET. These
issues are:

• the broadcast coverage: that means, the number of
devices that finally receive the message;

• the message complexity: the number of broadcast and
unicast needed to spread the message in the network;

• the broadcast time: the time needed for the diffusion of
the message;

• the bandwidth used: the use of the network;
We are comparing the protocols in two scenarios: (1) the

first one is a dense network with 1000 devices, and (2) the
second one is not so dense, 500 devices (hereinafter sparse
network in our context).
As we explained before, the speed of the devices varies

between 30 and 75 km/h. As we are dealing with car PCs,
the coverage range of the devices is around 100 m.
In such scenarios we needed a training process for tuning

and adjusting DFCN parameters. We tried to maximize
the number of the devices reached when we tuned the
parameters. As a result, we are using minBenefit=0.4 and
RAD∈[0 6] seconds, for both scenarios, and the threshold
regarding the density is the only one changing between the
two cases: we set densityThreshold=15 for the dense network
and densityThreshold=12 for the sparse one.
We also include in the comparison the well known Simple

Flooding (SF) broadcasting protocol [15], [16]. It is the most
intuitive idea for disseminating a message in a network. It
does not try to reduce the number of re-emissions, so it does
not need any knowledge about the neighborhood. The strat-
egy of this algorithm is quite simple, when a device receives
a message, it will send it only once. This algorithm was
included in our comparison in order to show the validity of
the other compared protocols, since Simple Flooding reaches
in really short time all devices in a partition, but it is not
efficient at all regarding the bandwidth. Additionally, Simple
Flooding is not working properly in partitioned networks,
since it is not able to spread the message outside the partition
where the source node is.
In our experiments, we disseminated a message every 30

seconds during a period of 10 minutes (that means we made
20 broadcasting processes starting from the same device,

but from different positions since it was moving). This was
simulated in 30 different topologies to make sure our results
were realiable.
Table I presents the average of the results obtained regard-

ing the number of devices receiving the message, the number
of forwarded messages needed in each dissemination and the
ratio between them for the 30 different topologies.

TABLE I
RESULTS OBTAINED FOR BOTH DENSE AND SPARSE NETWORKS.

Devices Broadcasts sent Ratio

Dense BODYF 608.9 ± 30.31 312.13 ± 9.78 0.51
DFCN 395.23 ± 166.92 194.185± 86.29 0.49
SF 292.54 ± 115.86 292.59 ± 115.86 1

Sparse BODYF 134.81± 29.11 82.84 ± 15.90 0.62
DFCN 123.71 ± 55.58 68.29± 32.25 0.55
SF 72.44 ± 31.60 72.49 ± 31.60 1

As Table I shows, the area covered by BODYF (in terms
of devices receiving the message) is considerably higher
than the one achieved by DFCN or SF, in dense and sparse
networks. The number of forwarded messages in BODYF is
always higher, but also the devices reached, so we calculated
the ratio between forwarded messages and covered area
to make a fair comparison of the algorithms. The ratio is
calculated as the number of broadcast per device reached.
Simple Flooding is the one with less coverage and higher
ratio. We can see that the number of messages sent by
DFCN per device reached is slightly lower than in the case
of BODYF.

Coverage (%)

0

10

20

30

40

50

60

70

Dense Sparse

D
e
v
ic

e
s
 R

e
a
c
h
e
d
 (

%
)

BODYF

DFCN

SimpleFlooding

Fig. 5. Coverage percentage in both dense and sparse networks.

In Figure 5, we show the percentage of devices receiving
the message, what gives an idea of the total area covered.
As it can be seen, BODYF clearly outperforms DFCN and
Simple Flooding in the number of devices reached by the
broadcasting process.
This is an important feature for VANETs, since there are

many applications demanding large coverage of devices at a
reasonable cost, like emergency or traffic jam notifications.
One of the main reasons for minimizing the number of
forwarded messages in MANETs is the battery consumption
in processing and re-sending a message. In our work, we are

301

dealing with VANETs, where the optimization of the battery
use is not necessary so that all devices have power supply.
Additionally, the difference between DFCN and BODYF in
terms of this ratio is quite low, therefore we can say that
BODYF makes a reasonable use of the network resources.
We should also take into account the network overload in

our comparison. DFCN inserts all the neighbors of the device
which is forwarding the message. This list is composed
by addresses, each address is an IPv6 address, so it is 16
bytes. In our simulations, we obtained that the average of the
number of neighbors of each forwarding node was 28.70 and
15.92 in dense and sparse networks respectively. Therefore,
we were able to calculate the average of the overload related
to this list in all the broadcast process, for both dense and
also sparse networks:
1) Dense network

• The extra bandwith needed for sending the list of
neighbors in the message is 89.18 Kbytes (approx.
713.46 Kbits).

2) Sparse network
• The extra bandwith needed for sending the list of
neighbors in the message is 17.39 Kbytes (approx.
139.15 Kbits).

We can compare the total bandwidth the broadcast process
uses. For BODYF and Simple Flooding, as they do not add
any load to the message, we just need to calculate the number
of bytes of the broadcast messages sent (the header size is 40
bytes). DFCN includes the list of the neighbors the sender
node has, so, apart from the number of messages sent (with
headers), we need to sum the load this list adds. The results
are shown in Table II. As we can see, even needing more
forwarded messages to disseminate the information, BODYF
use less bandwidth than DFCN regarding the data of the
message. SF is the one with less bandwidth usage, but it is
because of the low rate of coverage. The difference between
Simple Flooding and BODYF in terms of overload is very
low, even when the coverage achieved of the latter is much
higher. Between the two protocols with higher coverage,
DFCN sends less forwarding messages than BODYF, but due
to the list of neighbors that DFCN includes in the message,
the total bandwidth used by BODYF is lower.

TABLE II
BANDWIDTH USED BY THE BROADCAST PROCESS.

BODYF DFCN Simple Flooding
Dense 12.49KBytes 96.95KBytes 11.70KBytes
Sparse 3.31KBytes 20.12KBytes 2.90KBytes

In BODYF, we do not need to add any extra load to the
broadcast message. Even though it is out of the scope of this
paper, since we suppose the tree-based topology is already
needed by the network, and not only for our broadcasting;
we here also calculate how expensive is, in terms of mes-
sages sent, the creation and maintenance of the tree, and
the circulation of the token. The messages exchanged for
building and maintaining the tree-based topology are similar

to ACKs, while we use a 40 bytes header for each exchanged
message in our estimations. We have measured the number
of broadcast and unicast needed for creating and maintaining
the network and also for circulating the token. We made this
simulation in both networks, and the results obtained were:
1) Dense network

• bandwidth used for the creation and maintenance
of the tree, and also for the circulation of the token:
48.72KBps (approx. 389.82 Kbits/second).

2) Sparse network
• bandwidth used for the creation and maintenance
of the tree, and also for the circulation of the token:
23.93 KBps (approx. 191.45 Kbits/second).

The amount of data used by the tree-based topology for a
high dense network of 1000 devices is 389.82 Kbits/second.
We can make the average per device also, and it would be
around 389.82 bits/second per device in dense networks or
382.9 bits/second for every device in sparse ones, what is
not a high overload, since the tree-based topology provides
many advantages.
Finally, we also compared the algorithms in terms of

broadcast time. For that, we did 30 simulations with different
topologies where only one broadcast was sent. In each
topology we let the network evolve for 60 seconds, and after
that spread the message, each time from a different point
of the network (different devices). For each topology we
start the broadcast from 10 different devices. We consider
the broadcast is finished if no more messages are fowarded
after 7 seconds. We chose 7 seconds since the delay set for
each device (in DFCN) oscilates between 0 and 6 seconds.
We did that for the three protocols with both network
densities. The results are shown in Table III, where we
specify the average time, the number of devices reached
in each broadcast process and the ratio between these two
values. Notice that, in this table we are testing 30 topologies
and starting the dissemination process from 10 different
devices for each topology, so the results in Table III are
the average values after 300 simulations. Regarding the

TABLE III
TIME NEEDED FOR DISSEMINATING A MESSAGE .

Time (s) Devices Ratio

Dense BODYF 90.43 ± 18.85 479.90± 107.78 5.30
DFCN 27.97 ± 6.45 93.83 ± 31.02 3.35
SF 8 ± 0 245.83 ± 125.98 30.73

Sparse BODYF 23.56 ± 5.68 37.01± 13.06 1.57
DFCN 17.19 ± 2.83 24.13 ± 6.56 1.40
SF 8 ± 0 34.31 ± 9.39 4.28

time needed for spreading a message, we must take into
account that BODYF takes longer, but the difference in
devices reached is important. We calculated the ratio between
the number of devices reached and the time the dissemination
took (devices/s), and in both networks, SF had a higher rate,
since it is extremely fast. DFCN has the worst ratio in both
densities. Simple Flooding is much faster than BODYF but
the coverage reached is much lower. BODYF nearly achieved
double size of devices than SF in dense networks.

302

One of the main problems of DFCN is the difficulty to tune
all its parameters. In our case, once we tuned the parameters,
if we changed something in the simulation, the number of
devices reached was highly reduced. This behavior is shown
in the average of devices in both tests, since there is a
really big difference between them (coverage and time tests)
being the scenario, topologies, speed, number of devices, and
thresholds the same in both experiments. So we can conclude
DFCN is highly dependent on the topology, while this is
clearly not the case of BODYF or SF.

VI. CONCLUSIONS
In this paper we present a broadcasting protocol over

a tree-based topology, BODYF, and we compare its per-
formance versus DFCN and Simple Flooding. DFCN is a
neighbor based topology protocol which is fast, designed to
minimize the resources required, and generally accepted by
the community [1], [10], [17]. Simple Flooding is one of the
bases of broadcasting protocols [15], [16].
In this work, we have compared these protocols in a

realistic scenario (a vehicular ad hoc network) with two dif-
ferent number of devices. Our results show that, the coverage
achieved by BODYF is much higher than DFCN or Simple
Flooding in both scenarios, sparse and dense. Although
the number of messages used for achieving this coverage
is higher, the difference between DFCN and BODYF in
terms of the ratio was very small, hence, we concluded that
BODYF makes reasonable use of the network resources.
The low level of coverage achieved by Simple Flooding,
is due to the network partitions. This protocol is not able
to disseminate the message outside the partition where the
source node is, while DFCN and BODYF are. Regarding
the broadcast time, we checked that Simple Flooding is the
fastest protocol, but the coverage is lower than BODYF.
BODYF also outperformed DFCN, achieving higher rate of
devices per second.
Finally, we can conclude that if the main goal of the

application is to maximize the covered area we should use
BODYF, but if the network resources are very limited or
having a high coverage is not really necessary (e.g., using
a hybrid network, we just want to spread a message up to
the closest hotspot), DFCN could be slightly more suitable.
However, in the VANET scenario considered here, network
resources are not as limited as in the case of MANETs, in
which devices have, for instance, a limited battery life.
As future work, we plan to compare BODYF to other

source-tree based and cluster-based protocols to really know
how good its behavior is versus other kind of approaches. We
would also like to run other algorithms on top of our tree-
based topology in such highly mobile networks, as it could
be to propagate a large document, even downloading parts
of this information from different devices if it is needed.

REFERENCES
[1] E. Alba, B. Dorronsoro, F. Luna, A. J. Nebro, P. Bouvry, and L. Hogie,

“A cellular multi-objective genetic algorithm for optimal broadcasting
strategy in metropolitan manets,” Computer Communications, vol. 30,
no. 4, pp. 685–697, 2007.

[2] “Carlink project website. http://carlink.lcc.uma.es.”
[3] Y. Yi, M. Gerla, and T. J. Kwon, “Efficient flooding in ad hoc

networks: a comparative performance study,” in IEEE International
Conference on Communications (ICC’03), 2003, pp. 1059–1063.

[4] A. Jüttner and A. Magi, “Tree based broadcast in ad hoc networks,”
Mobile Networks and Applications, vol. 10, no. 5, pp. 753–762, 2005.

[5] A. Casteis and S. Chamuette, “Dynamicity aware graph relabeling
system - a local computation model to describe manet algorithms,” in
Proceedings of the 17th IASTED International Conference on Parallel
and Distributed Computing and System, 2005, pp. 198–204.

[6] E. Sopena and Y. Metivier, “Graph relabeling systems: a general
overview,” Computers and Artificial Intelligence, vol. 16, no. 2, pp.
167–185, 1997.

[7] A. Casteis, “Model driven capabilities of the da-grs model,” in Intl.
Conf. on Autonomic and Autonomous Systems (ICAS’06). San Fran-
cisco. USA, 2006, p. 24.

[8] S. J. Yang, H. K. Oh, and S. H. Park, “Efficient multicast routing
protocol for mobile hosts in IPv6 based networks,” Electronic Letters,
vol. 38, no. 16, pp. 936–938, 2002.

[9] L. Hogie, P. Bouvry, F. Guinand, G. Danoy, and E. Alba, “A
Bandwidth-Efficient Broadcasting Protocol for Mobile Multi-hop Ad
hoc Networks,” in Demo proceeding of the 5th International Confer-
ence on Networking (ICN’06). IEEE, October 2006, p. 71.

[10] L. Hogie, F. Guinand, and P. Bouvry, “A heuristic for efficient
broadcasting in the metropolitan ad hoc network,” in 8th Int. Conf.
on Knowledge-Based Intelligent Information and Engineering Systems,
2004, pp. 727–733.

[11] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms, ser. OR/CS
Interfaces. Springer-Verlag, 2008.

[12] A. Andronache and S. Rothkugel, “Hytrace-backbone-assisted path
discovery in hybrid networks,” in The Seventh International Confer-
ence on Networking ICN, to appear.

[13] D. Gorgen, H. Frey, and C. Hiedels, “JANE–the Java Ad-hoc Network
Environment,” in Proceedings of the 40th Annual Simulation Sympo-
sium, 2007, pp. 163–176.

[14] “The Java Ad-hoc Network Environment (JANE). http://syssoft.uni-
trier.de/jane/index.php/JANE Basics.”

[15] B. Williams and T. Camp, “Comparison of broadcasting techniques for
mobile ad hoc networks,” in Proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MOBI-
HOC), 2002, pp. 194–205.

[16] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem
in a mobile ad hoc network,” in Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking (MO-
BICOM), 1999, p. 151162.

[17] L. Hogie, “Mobile ad hoc networks, modelling, simulation and
broadcast-based applications,” Ph.D. dissertation, University of Lux-
embourg, Luxembourg, 2007.

303

KEYWORDS

Mobile networks, clustering, distributed, collaborative
filtering.

ABSTRACT

Collaborative filtering mechanisms filter information by
using collaboration among multiple data sources,
typically involving large data sets. In this work we
optimize the communication and computational load of
a distributed collaborative filtering protocol designed to
augment the information exchange in mobile networks.

INTRODUCTION

Recommender systems using collaborative filtering
(CF) are a popular technique for information overload
reduction and desired data discovery on the Internet. To
achieve this, the user is provided by the collaborative
filtering system with recommendations or predictions on
data items based on the opinions of other like-minded
users (Sarwar et al. 2001). The opinions on the data
items can be obtained explicitly from users by rating or
implicitly by counting clicks, viewing time, and alike.
Considering the increase in popularity of mobile devices
like smart phones, PDAs and Tablet-PCs the problem of
information overload also emerges in mobile networks.
This devices are becoming faster in processing, gain
more memory capacities, are able to execute more and
more powerful applications and at the same time being
equipped with various wireless and/or cellular
communication capabilities.
In a previous work we introduced an ad hoc
collaborative filtering mechanism designed to augment
the information exchange in mobile hybrid networks
(Gratz et al. 2008). The introduced application was
designed for residents and tourists of big cities where
many people—potential mobile device users—meet at
train or metro stations, at universities and schools, in
shopping centers, restaurants, and pubs. In this scenario
the shopping centers of the city provide podcasts about
offers of the day that contain multimedia files showing
the products. The restaurants are podcasting the menu of
the day also containing multimedia about the food,
drinks and location. The podcasts of the theatres are
containing information about tonight’s shows and
highlights and the podcasts of the discotheques are

informing about events and party mottos presenting the
DJ’s and the music that will be played. The mobile
device users in the city can subscribe to the podcasts of
the favorite restaurants, theatres, shopping centers etc.,
thus being up to date about current offers and events.
They can subscribe and download the podcasts on
computers with broadband Internet connection and
download them onto their mobile device, which is the
current common procedure. In contrast to this, our
application aims to augment the podcast providing
mechanism by enabling the mobile devices to exchange
episodes of subscribed podcasts, to recommend similar,
well-rated podcasts and to subscribe to new ones in an
ad-hoc mobile environment. Additionally, devices with
a cellular network interface are able to pull new podcast
episodes from the Internet servers and share them
locally within ad-hoc networks.
Imagine a traveling user meeting other people in metros,
trains, shopping centers, pubs or restaurants. Some of
them might have recently downloaded new podcast
episodes either via cellular uplinks or by copying them
from desktop computers onto their mobile device. The
client on the traveler’s device will group up with the
subscribers of similar podcasts and exchange new or
missing episodes. Thus, the traveler will be able to
receive podcasts on the way without having to use an
Internet connection.
The application can be used for instance by a tourist
which arrives in a big city and does not have knowledge
about the local podcast providers. He will meet other
tourists and residents with mobile devices at the airport,
train or metro station, shopping centers, pubs and
restaurants. The client on the tourist’s mobile device
will search the ad-hoc network for podcasts and provide
the information to its user. Thus, the tourist is able to
choose among the local podcasts about restaurants that
offer the favorite food, locations and events he may like
or shopping offers that can be interesting for him. By
subscribing to the podcasts of interest found in the
mobile ad-hoc network, the tourist will receive up to
date information about offers and events in the city
during the stay.
The collaborative filtering mechanism introduced in
(Gratz et al. 2008) enables the user to get
recommendations about the local offers based on the
taste of other like-minded users in nearby mobile
environments. The ability to get recommendations from
the local ad-hoc network has the advantage that the

OPTIMIZING DISTRIBUTED COLLABORATIVE FILTERING IN
MOBILE NETWORKS

Patrick Gratz and Adrian Andronache
University of Luxembourg

Faculty of Science, Technology and Communication (FSTC)
L-1359 Luxembourg

E-mail:{patrick.gratz, adrian.andronache }@uni.lu

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

304

system can take into account new information without
to require a connection to a central repository on the
Internet. Thus, the mechanism provides updated
recommendations even if the user has no backbone
connection by a cellular network or access point.
Furthermore, all ratings made by a user on the way, e.g.
for the menu of the day in a restaurant will instantly
have an impact on the calculated recommendations for
like-minded users in the local vicinity.
In (Gratz et al. 2008) two algorithms to determine sets
of similar neighbors were introduced. The first one
called Hierarchical Cluster-based Neighborhood
Resolution (HCNR) uses a weighted cluster topology
generated by the Weighted Application Aware
Clustering Algorithm (WACA) presented in
(Andronache et al. 2006). The second algorithm—
Weighted Neighborhood Resolution Algorithm
(WNR)—is based on a simple peer-to-peer
communication pattern. In order to compare the
introduced algorithms for proper operation they have
been implemented and tested on top of the JANE
simulator by performing several experiments. As the
results of these experiments show, HCNR provides a
slightly better precision and scales distinctly better
concerning the number of sent unicasts if we increase
the network connectivity. However, WNR has the
advantage that the used bandwidth is very small
compared to HCNR.
In this paper we aim to optimize the communication and
computational load of the distributed, cluster-based
algorithm HCNR by using another, better suited
clustering protocol.
The remainder of the paper is structured like follows:
the next section presents related work. Section III
briefly introduces the Hierarchical Cluster-based
Neighborhood Resolution (HCNR) algorithm. In
Section IV the clustering algorithm is described which
is employed to optimize HCNR. Section V describes the
simulation setups and Section VI presents the results.
The paper concludes with future work in Section VII.

RELATED WORK

Recommender systems using collaborative filtering are
one of the most successful recommendation techniques
(Resnick et al. 1994; Shardanand and Maes 1995). In
this section we introduce some existing research work
about collaborative filtering in mobile environments.
In (Cöster and Svensson 2005) an incremental
collaborative filtering algorithm for applications, where
users are occasionally connected to a central server is
introduced. The general idea is to store a subset of
selected user profiles, together with a ranked list of
predictions. When the user is in offline mode, a service
on the local device can still recommend items based on
the predictions made the last time the user was
connected. Each time the user supplies new ratings, the
list of predictions will be recomputed, even if the user is
not connected to the server. In the case that a user
encounters another user, the authors suggest that they
exchange their profiles and recalculate their prediction

lists. The past influence of the other user should be
removed from all predictions and the new influences
should be added. At last this case is not evaluated or
considered any further in the paper and is a part of
future work.
A further portable recommender system along with five
peer-to-peer architectures for finding neighbors is
presented in (Miller et al. 2004). The authors introduce
a new collaborative filtering algorithm called
PocketLens that can run on connected servers, on
usually connected workstations or occasionally
connected portable devices.
The presented algorithm is a variant of the item-item
algorithm introduced in (Cöster and Svensson 2005)
with modifications for a peer-to-peer environment. To
reach the goal of portability a local similarity model is
created for the user. Thereby, the algorithm only needs
access to the ratings of the owner and one other user at a
time. In this manner, the model is created incrementally
in a distributed fashion.
In (Tveid 2001) an approach for making a scalable
recommendation system for mobile commerce using
P2P is considered. The main idea of the proposed
approach is to transform the problem of finding
recommendations using collaborative filtering, into a
search problem in scalable P2P systems like Freenet or
Gnutella. Thereby, a query (vector with votes on
products) is broadcasted from the querying node to all
neighbor peers. When a peer receives a query it
calculates the proximity with other cached queries. If
the proximity is higher than a threshold, the cached
voting vector is sent back otherwise the query is
broadcasted further. For sparse voting vectors the
authors propose a binary interpolative compression
algorithm. Furthermore, to improve the performance
and quality of recommendations they propose an
approach for clustering similar peers.
An approach to collaborative filtering in a mobile tourist
information system for visitors of a festival based on
spatio-temporal proximity in social contexts is proposed
in (Spindler et al. 2006). This new approach is based on
the idea that users who go to the same place at the same
time tend to have similar tastes. In order to keep track
about the visited places each user is equipped with a
portable computer coupled with a GPS unit.
Furthermore, a central server provides a database with
information about all the events, restaurants, venues and
bars at the festival (Belotti et al. 2005).
The proposed approach uses a user-based CF technique
and calculates similar users via a spatio-temporal
proximity measure, i.e. two users are considered as
similar if they consume the same items simultaneously.
The following exchange of rating information between
such similar users is done via an ad-hoc peer-to-peer
interaction. However, the defined similarity measure has
one drawback. Users consuming the same periodic
event at different times still share interests, but are not
considered as similar. In a future work, the authors
intend to investigate how their CF approach can be
extended in order to exchange ratings between users in

305

spatial but not temporal proximity. Furthermore, they
want to evaluate the introduced CF system at the
Edinburgh Fringe festival.
(Jacobsson et al. 2006) introduce an approach for a
mobile recommender system where media can find
people rather than the other way around. Whereas,
media files are autonomous, rule-following agents
capable of building their own identities from
interactions with other agents and users. The general
idea is that the interaction of large ensembles of those
interacting agents, distributed over mobile devices in
social networks can emerge a collaborative filtering-like
behavior.

HIERARCHICAL CLUSTER-BASED
NEIGHBORHOOD RESOLUTION (HCNR)

The collaborative filtering recommender process can be
roughly divided into three phases: determine similar
neighborhood, update the recommender model, and
calculate a prediction.
In order to deliver good recommendations a typical
collaborative filtering system depends on a critical mass
of users with commonly rated items. However, in our
application scenario it is very likely that a tourist who
visits a certain city for the first time has no commonly
rated podcasts with users in his nearby environment.
Nevertheless, this fact does not except that the tourist
has no similar taste with other users in the local
neighborhood. The tourist can have rated different
podcasts that are similar concerning the content of those
in the nearby neighborhood. For this purpose we
calculated the similarity between two users based on an
approach proposed by (Pazzani 1999) called
collaboration via content. The idea behind this approach
is to exploit a content-based profile for each user in
order to calculate the similarity between two users via
their content-based profiles instead of their commonly
rated items. In the context of our application scenario
the content-based profile is represented by a list of
weighted keywords. For this purpose we presume that
each podcast feed contains a set of keywords describing
its content. Given the corresponding rating values
for all podcasts rated by a specified user together
with the appropriate set of keywords describing these
podcasts, a weight for each keyword can be
calculated as follows:

∑

 ,

The function returns the number of podcasts
containing keyword . Thus, for each user a vector
of weighted keywords , , … , ,
can be calculated, that represent his preferences. Given
these content based profiles we can define the similarity
between two users , via the cosine between the
corresponding weighted keyword vectors:

,
∑

∑ ∑
,

The HCNR algorithm uses a weighted cluster topology
generated by Weighted Application Aware Clustering
Algorithm (WACA) (Andronache et al. 2006). WACA
creates clusters in a hierarchical fashion. Each device
elects exactly one device as its clusterhead, i.e. the
neighbor with the highest weight. This clusterhead also
investigates its one-hop neighborhood, similarly
electing the device with the highest weight as its
clusterhead. This process terminates in case of a device
electing itself as its own clusterhead, due to the fact of
having the highest weight among all its neighbors. We
call all intermediary devices along such clusterhead
chains sub-heads. Each device on top of a chain is
called a full clusterhead, or, in short, clusterhead (Figure
1).

Figure 1: Topology built by WACA

Based on the WACA topology, the algorithm works as
follows. At first, in order to determine a set of similar
neighbors, each slave sends its own profile to the
currently elected clusterhead. To keep the message
complexity low, each device maintains a list of cluster-
heads that have already received the current profile. As
soon as the own profile changes this list will be cleared.
After receiving the profiles from its slaves, the
clusterhead and all sub-heads calculate a similarity
matrix via the received profiles. Subsequent to this
calculation, the sub-head sends the calculated similarity
matrix and the list of received profiles to the cluster-
head. The cluster-head stores this profile list together
with the corresponding similarity values and calculates
the similarity values for all missing pairs in order to
complete the similarity matrix. Figure 2 shows how the
algorithm is using the cluster topology to exchange the
information.

Figure 2: HCNR similarity matrix calculation and similar neighbor
discovery

10

8

72

9
3

6

4

Sub-head Clusterhead

Profile Profile

Similar devices Similar devicesSimilarity matrix

Similarity matrix

306

By doing so, the matrix on the clusterhead stores the
similarities between all users connected to the current
cluster. Finally, in order to determine the similar
neighborhood for all slaves that are not directly
connected with the clusterhead a copy of this similarity
matrix is replicated to each sub-head in the cluster. The
cluster-heads and the sub-heads provide a list of similar
neighbors to each slave in the current cluster.

HCNR OPTIMIZATION

A drawback of WACA is the fact that the algorithm
provides no mechanism to avoid the re-organization of
two crossing clusters. One can imagine a group of
mobile device users traveling by bus. The applications
on the mobile devices use WACA to build clusters. On
the way, the clusters may meet other clusters build for
instance by devices in another bus waiting at the same
traffic light. In this scenario WACA re-organizes the
crossing clusters, which is needless since the devices
build the initial clusters after the busses pass each other.
The HCNR algorithm works on top of a clustered
mobile network, thus the robustness of the topology has
a crucial impact on the communication and
computational complexity of the collaborative filtering
protocol.
In (Andronache et al. 2008) the Node and Link
Weighted Clustering Algorithm—NLWCA—was
introduced. The algorithm is designed to protect stable
clusters from re-organization in order to avoid needless
network communication.
Unlike WACA, which uses only the weight of the nodes
to elect a local clusterheads, NLWCA also assigns
weights to the links between the own node and the
network neighbor nodes. This weight is used to keep
track of the connection stability to the one-hop network
neighbors. The algorithm increases the weight of the
links to neighbors that are for a longer time in
communication range. When a link weight reaches a
given stability threshold the link is considered stable
and the device is called stable neighbor device. The
clusterhead is elected only from the set of stable
neighbors which avoids the re-organization of the
topology when two clusters are crossing for a short
period of time (Figure 3).

Figure 3. The low weight of the links avoids superfluous re-
organization of the topology when for instance two clusters are cross

in mobile networks.

The simulation results in Figure 4 and 5 show that
NLWCA outperforms WACA in terms of number of re-
elections independent of the used speed and node
number. More simulation results and detailed results can
be found in (Andronache et al. 2008).
Motivated by the good results in terms of topology
stability obtained by the NLWCA, the algorithm was
employed to optimize the communication of the HCNR
protocol.

SIMULATIONS SETUP

In order to observe if the network and computational
load of the HCNR protocol is improved on top of the
cluster topology build by NLWCA, we performed
several simulation runs using the JANE simulator
(Görgen et al. 2007).
For our experiments, we used the MovieLens Data Set
(available at: http://www.grouplens.org) that consists of
100,000 ratings for 1682 movies by 943 users, where
each user has at least rated 20 movies.

Figure 4: Results for 100 mobile device moving with 1m/s during 5
minutes on an area of 300x300m with sending range of 40m. NLWCA
outperforms WACA in terms of re-elections number independent from

the used stability threshold.

Figure 5: Results for 300 mobile devices using the same settings as
above. Also in the dense networks, NLWCA outperforms WACA in

terms of re-affiliation of nodes to new clusterheads.

100

100

100

100

100

100100

100

100

100
0

0

0

0 10 20 30 40 50 60 70 80 90 100
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Topology

R
e-

A
ffi

lia
tio

ns
Number of devices: 100, Speed: 1

NLWCA, threshold: 2
NLWCA, threshold: 7
NLWCA, threshold: 12
WACA

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Topology

R
e-

A
ffi

lia
tio

ns

Number of devices: 300, Speed: 1

NLWCA, threshold: 2
NLWCA, threshold: 7
NLWCA, threshold: 12
WACA

307

Figure 6: JANE simulating HCNR on top of NLWCA running on
100 devices. The mobile devices move on the streets of the

Luxembourg City map. The devices move with a speed of 0.5 – 1.5
m/s (1,8 – 5,4 km/h)

We generated 5 different training sets containing 15
votes that are considered as the observed votes for each
user and 5 different test sets containing the remaining
votes. After each simulation run we compare the
predicted votes with the corresponding votes in the test
set and calculated the Mean Absolute Error (MAE),
which has been used to measure prediction performance
in several cases (Shardandand and Maes 1995; Breese et
al. 1998; Herlocker et al. 1999). If a predicted item did
not have an adequate entry in the test set it was
eliminated from the evaluation. Note that we used the
MAE only to compare how accurately our algorithms
predict a randomly selected item rather than evaluating
the user experience of generated recommendations.
For each experiment we used the Restricted Random
Way Point mobility model (Blazevic et al. 2002),
whereby the devices move along defined streets on the
map of Luxembourg city for 5 minutes and 30 seconds
(Figure 6). For each device the speed was randomly
varied between [0.5;1.5] units/s in a first run and
[11;16] units/s in a second run. While, every time a
device reaches a crossroad, it randomly selects a street
to turn in at next.
At startup, the devices are positioned at random selected
crossroads and initialized with 15 selected votes in order
to calculate an initial user profile. In order to avoid a
data exchange at this point, where the devices are
already strongly clustered at the crossroads, we delay
the startup of our HCNR algorithm via a timeout of 30
seconds. After this timeout the devices begin to
exchange their profiles in order to determine the k-most
similar neighbors. For all experiments we simulated
with 5 different training sets and 5 different topologies
per training set. Furthermore, we selected for NLWCA a
stability threshold of 2 for speed [0.5;1.5] and 12 for
speed [11;16]. All results are shown with 95%
confidence intervals.

RESULTS

Figure 7 shows the overall computed similarities after 5
minutes of simulation. As the figure shows, using
NLWCA distinctly reduces the number of computed
similarities in dense network settings. In particular, if
the devices move with a speed between 11 and 16
units/s WACA produces nearly 3 times more similarity
calculations as NLWCA. Due to the fact, that NLWCA
produces provable lesser re-elections than WACA this
result was expected. Since, each time a new cluster-head
is elected this cluster-head potentially has to calculate
similarities again.

In Figure 8, we illustrate the number of sent unicasts
during the simulation. Again the use of NLWCA
reduces overhead. Thus, for each setting HCNR using
NLWCA needs constantly lesser unicasts than using
WACA. However, more considerable is the diversity of
the used bandwidth. As shown in Figure 9, in dense
network settings WACA used nearly up to 2 times more
bandwidth at a device speed between 0.5 – 1.5 units/s
and about 7 times more bandwidth if the device move
with a speed between 11 – 16 units/s.
However, all these communication and computational
optimization comes at a cost.

Figure 7: Overall computed similarities

Figure 8: Number of sent messages

50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of devices

C
om

pu
te

d
si

m
ila

rit
iti

es

NLWCA, speed: 0.5-1.5 units/s
WACA, speed: 0.5-1.5 units/s
NLWCA, speed: 11-16 units/s
WACA, speed: 11-16 units/s

50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of devices

N
um

be
r o

f U
ni

ca
st

s

NLWCA, speed: 0.5-1.5 units/s
WACA, speed: 0.5-1.5 units/s
NLWCA, speed: 11-16 units/s
WACA, speed: 11-16 units/s

308

Figure 9: Bandwidth usage

As Figure 10 shows, the MAE of the calculated
predictions, with 300 mobile devices is about 1.8%
respectively 6.4 % better when using WACA
concerning the two different speed intervals. Again, this
result was expected due to the fact, that NLWCA allows
only communication between devices building stable
clusters based on a defined stability threshold.

Figure 10: Mean absolute error of calculated predictions

Thus, crossing devices, which are only in the
communication range for a short period of time, will be
not part of the cluster and hence, do not participate on a
profile exchange. Since, the precision of calculated
predictions also depends on the number of discovered
similar neighbors, it was expected that the precision of
the calculated predictions will be inferior when using
NLWCA. Nevertheless, using NLWCA instead of
WACA significantly reduces the overhead concerning
communication and computational load at the cost of a
relatively small loss in precision.

CONCLUSION AND FUTURE WORK

In this work we optimized HCNR in order to reduce the
communication and computational overhead of the
collaborative filtering based recommender system,
which was designed to overcome the potential problem
of information overload in mobile ad hoc networks.

To achieve this goal we employed a network link
stability aware clustering protocol, which provides
HCNR with a better suited topology than the previous
used mechanism WACA.
Several simulations were done using the JANE
simulator and the results show that the new mechanism
significant improves the communication and
computational load on the network nodes. However, the
prediction precision is slightly lowered since the devices
communicate only with the set of neighbors that are
considered to be stable connected.
In order to improve the prediction precision, in future
work we will employ an inter-cluster communication
protocol, thus enabling an inter-cluster similarity matrix
exchange.

REFERENCES
Andronache, A., M.R. Brust and S. Rothkugel. 2006.

“Multimedia Content Distribution in Hybrid Wireless
Networks using Weighted Clustering”. In Proceedings of
the 2nd ACM Workshop on Wireless Multimedia
Networking and Performance Modeling (WMuNeP’06),
Torromolinos, Spain, 1-19.

Andronache, A., M.R. Brust and S. Rothkugel. 2008.
“NLWCA—Node and Link Weighted Clustering
Algorithm for Backbone-assisted Mobile Ad Hoc
Networks”. The Seventh International Conference on
Networking (ICN), Cancun, Mexico, 460-467.

Belotti, R., C. Decurtins, M.C. Norrie, B. Signer, and L.
Vukelja. 2005. “Experimental Platform for Mobile
Information Systems”. In Proceedings of the 11th Annual
International Conference on Mobile Computing and
Networking (MobiCom 2005), Cologne, Germany, 258-
269.

Blazevic, L., S. Giordano, J. Y. Le Boudec. 2002. “Self
Organized Terminode Routing”. In Cluster Computing
Vol.5, No. 2, Springer Netherlands, 205-218.

Breese, J.S., D. Heckerman and C. Kadie. 1998. “Empirical
analysis of predictive algorithms for collaborative
filtering”. In Proceedings of the 14th Conference on
Uncertainty in Artifical Intelligence (UAI-98), 43-52.

Cöster, R. and M. Svensson. 2005. “Incremental Collaborative
Filtering for Mobile Devices”. In Proceedings of the 2005
ACM symposium on Applied Computing (SAC’05), Santa
Fe, New Mexico, USA, 1102-1106.

Görgen, D., H. Frey and C. Hiedels. 2007. “JANE-The Java
Ad Hoc Network Development Environment”. In 40th
Annual Simulation Symposium (ANSS’07), 163-176.

Gratz, P., A. Andronache and S. Rothkugel. 2008. “Ad Hoc
Collaborative Filtering for Mobile Networks”. The Second
IEEE International Workshop on Ad Hoc and Ubiquitous
Computing (AHUC), Taichung, Taiwan.

Herlocker, J. L., J.A. Konstan, A. Borchers, and J. Riedl.
1999. “An algorithmic framework for performing
collaborative filtering”. In Proceedings of the 22nd
International Conference on Research and Development
in Information Retrieval (SIGIR’99), 230-237.

Jacobsson, M., M. Rost and L.E. Holmquist. 2006. “When
Media Gets Wise: Collaborative Filtering with Mobile
Media Agents”. In Proceedings of the 11th International
Conference on Intelligent User Interfaces (IUI’06),
Sydney, Australia, 291-293.

Miller, B.N., J. A. Konstan, and J. Riedl. 2004. “PocketLens:
Toward a Personal Recommender System”. In ACM

50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Number of devices

K
by

te
s

se
nt

NLWCA, speed: 0.5-1.5 units/s
WACA, speed: 0.5-1.5 units/s
NLWCA, speed: 11-16 units/s
WACA, speed: 11-16 units/s

50 100 150 200 250 300 350
1.05

1.1

1.15

1.2

1.25

1.3

Number of devices

M
ea

n
A

bs
ol

ut
e

E
rro

r

NLWCA, speed: 0.5-1.5 units/s
WACA, speed: 0.5-1.5 units/s
NLWCA, speed: 11-16 units/s
WACA, speed: 11-16 units/s

309

Transactions on Information Systems, Vol. 22, No. 3, 437-
476.

Pazzani, M.J. 1999. “A Framework for Collaborative,
Content-Based and Demographic Filtering”. In Artificial
Intelligence Review, 393-408.

Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and
J.Riedl. 1994. “Grouplens: An open architecture for
collaborative filtering of netnews”. In Proceedings of
ACM 1994 Conference on Computer Supported
Cooperative Work, Chapel Hill, North Carolina: ACM,
175-186.

Sarwar, B., G. Karypis, J. Konstan and J. Riedl. 2001. “Item-
based Collaborative Filtering Recommendation
Algorithms”. In Proceedings of the 10th International
World Wide Web Conference (WWW10), Hong Kong,
Hong Kong, 285-295.

Shardanand, U. and P. Maes. 1995. “Social information
filtering: Algorithms for automating “word of mouth”“. In
Proceedings of ACM CHI’95 Conference on Human
Factors in Computing Systems, vol. 1, 210-217.

Spindler, de A., M.C. Norie, M. Grossniklaus and B. Signer.
2006. “Spatio-Temporal Proximity as a Basis for
Collaborative Filtering in Mobile Environments”. In
Workshop on Ubiquitous Mobile Information and
Collaboration Systems (UMICS 2006), Luxembourg,
Grand Duchy of Luxembourg.

Tveid, A. 2001. “Peer-to-peer based Recommendations for
Mobile Commerce”. In Proceedings of the 1st
International Workshop on Mobile Commerce (WMC 01,
Rome, Italy, 26-29.

310

Building a Practical Event-Scheduler for a

Multi-Processor Architecture
S. Rooney, D. Bauer, L. Garcés-Erice

IBM Zurich Research Laboratory

CH-8803 Rüschlikon - Switzerland

{sro, dnb, lga}@zurich.ibm.com

Abstract— We describe a scheduler that processes a high
number of typed events per second while enabling certain event
types to be allocated more resources than others in a work-
conserving fashion. The scheduler is the core of a high volume
messaging system, it uses a lock-free approach allowing it to scale
with increasing number of processors. The scheduler threads
coordinate using a lock-free concurrent priority queue. As far
as we know, no formal analysis of this lock-free data structure
has been given so far in the literature. We analyze the expected
behavior of the scheduler and report on its actual performance
on a multiprocessor machine.

Index Terms— Scheduling, Event System, Lock-Free, Middle-
ware

I. INTRODUCTION

Queued event systems detach the production of an event

from its handling. Structuring applications through the use

of such abstractions allows a looser form of coupling than

via function calls. When the queues themselves are lock-

free then there is no synchronization at all between event

producers and handlers. In a multiprocessor environment this

helps in proving the correctness of the program and allows

better parallelization. As the operational semantics of placing

an event in a remote queue are the same as that of placing

it in a local one, they do not suffer the same impedance as

remote procedure calls where the distributed system attempts

to give the illusion that a remote network invocation has the

same semantic as pushing a new frame onto the stack [1].

For these reasons we expect a queued event approach to

become the unifying abstraction for communication within

distributed middleware, whether the communication is intra

or inter machine.

Events are typed by the function used to handle them. As

distinct event types may be of different importance to the

application it is advantageous if the relative importance of the

events can be expressed to the dispatching mechanism such

that it can be taken into account when allocating resources

to them. The entity that dispatches events in the typed event

queues is a task scheduler in which the tasks comprise the

event queue and the associated function to execute. The

scheduler chooses the next task to schedule based on the

importance assigned to the corresponding event type.

We shall use a distributed messaging system built in Java

as the context in which we describe the rest of our work. In a

messaging system, messages on a named topic are carried from

one or more publishers to one or more subscribers. Messages

can either be out-going from local applications or in-coming

from the network. In the first case, the associated task transmits

them over the network; in the latter, it executes the associated

application-specific callback.

The selection of the scheduling mechanism is determined by

the needs of this messaging system. The arrival distribution

of events and their dispatch time are not in general known

a priori. As a messaging system may be used by different

applications in different contexts, the means by which impor-

tance is attached to topics should be as general as possible.

The scheduler must be work-conserving and parallelizable,

allowing it to make best use of the available resources and to

scale with increasing numbers of processors. We don’t assume

any particular support from the underlying OS and assume that

thread scheduling is non-preemptive.

In the next section we motivate our choice of a time-based

credit scheduler for the messaging system and compare it

with other alternatives. We then describe the implementation

of the system showing how coordination between scheduling

threads can be achieved using an appropriate lock-free data

structure. We give the invariant for this data structure and

explain why this invariant is strong enough for use within

the messaging system. We describe what fairness means for

a work-conserving scheduler on a multiprocessor system.

Finally, we investigate various aspects of the overall system

in particular in relation to throughput, delay, scalability with

processors and performance isolation.

II. DESCRIPTION OF THE SCHEDULER

At a first glance the scheduling of message queues has

strong similarities with algorithms used for giving different

service rates to flows within network routers. For example,

the Weighted Fair Share (WFS) queuing discipline [2] allows

different service rates to be allocated to different queues

according to some requested share. WFS was developed in the

context of packet-switched networks to protect one network

flow from another. It belongs to a set of virtual-time-based

algorithms that provide fairness and/or delay bounds. Message

scheduling is distinct from packet scheduling in that the time

a message takes to be serviced cannot be easily estimated; in

a packet scheduler it is a simple function of the packet length.

This means that the guarantees given by the message scheduler

are by nature less precise.

Our proposal is to use time-based credit-scheduling within

the message scheduler, in which resources are partitioned

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

311

amongst tasks by the allocation of credits. The total credits

allocated to a task is a fraction (defined by the share given to

the task) of the time period T. The scheduler always chooses

to schedule the task with the highest number of remaining

credits that has a non-empty queue, i.e. the scheduler is

work-conserving. Each time a task is scheduled, the scheduler

measures how long it runs before it completes. This amount is

deducted from the total number of credits for that task. We now

describe the guarantees that this time-based credit scheduler

gives with respect to throughput.

Assume that 0 ≤ vi ≤ 1 is the share allocated to task i

and that si is the number of messages arriving at the task

queue per second. The question we wish to address is how

many messages ri will actually be serviced for task i. It is

important to realize that due to the work-conserving nature

of the scheduler, no one task can be viewed completely in

isolation, i.e. the amount of messages serviced for any given

task share depends on the messages arriving for other tasks

at other queues. The number of messages serviced for a task

can be viewed as containing two components: that which is

guaranteed by the share and any spare capacity that a task can

take advantage of. We denote the total maximum achievable

rate by Rmax. Rmax is a function of the system settings, but

for the moment we consider it as a constant.

For example, suppose we have three tasks T0, T1 and T2

with shares v0 = 0.5, v1 = 0.3 and v2 = 0.2, suppose further

that we know that Rmax
= 10,000. We would like to know

what values are received for the three tasks if s0 = 4,000,

s1 = 6,000 and s2 = 5,000. It is clear that r0 is 4,000 because

task T0 is sending less than its share. That leaves 6,000 to

be shared among T1 and T2 . Both T1 and T2 will get their

guaranteed share (3,000 and 2,000 respectively) plus some

fraction of the spare capacity (1,000) that T0 has reserved but

is not using. The unreserved capacity is shared proportionally

to the shares v1 and v2, so T1 gets 60% and T2 gets 40%,

meaning that r1 = 3,600 and r2 = 2,400.

We now give the general formula for calculating ri for

an arbitrary resource allocation between a set of tasks and

an arbitrary attempted sending rate on those tasks on a

single processor. We consider the effect of multiprocessors

in Section III-E. We define ui to be the fraction of resources

that a task is attempting to consume and we define xi to be

the ratio of vi to ui.

ui =
si

∑

j sj

xi =
vi

ui

An xi value of 1 means that a task is attempting to use

exactly what it has reserved. A value greater than 1 means

that it has unused capacity and a value less than 1 means that

it is trying to use more than its has reserved, i.e. it is trying

to take advantage of any unused capacity. For a given setting

of vj , sj and Rmax the expected receive rate ri is:

ri = Min(si, vi.
Rmax

−

∑

xj>xi
rj

1 −

∑

xj>xi
vj

)

This states that the share that a task will get is its adjusted

share of what is left over after tasks with higher xi have been

allocated. The amount of additional unused capacity available

to a task is that which is left over by tasks which are less

speculative than itself. This is equivalent to the Weighted Max-

Min fairness allocation developed for the Available Bit Rate

(ABR) service within ATM [3] where ui corresponding to the

demand or rate and vi to the normalized weight.

III. IMPLEMENTING THE SCHEDULER ON A MULTI-CORE

ARCHITECTURE

Scheduling threads executing tasks

6

4

13

2

14

5

17

8

9

Priority Queue of Schedulable Tasks

(a) Scheduler overview

Thread SchedulingThread

1: while true do

2: t ← SchedulableTasks.get()

3: if t.credit = 0 then

4: resetAllTaskCredits()

/∗ the Task with the most credits has 0. Period T is
over. ∗/

5: continue while

6: end if

7: e ← t.eventQueue.get()

8: To ← getT ime()

9: t.processEvent(e)

10: t.credit ← t.credit− (getT ime()− To)

11: if --t.queueSize > 0 then

12: SchedulableTasks.put(t)

/∗ Task t has more events, so it is put back for
scheduling ∗/

13: end if

14: end while

(b) Scheduling thread

Fig. 1. Scheduler using multiple scheduling threads.

A task t contains a queue t.eventQueue into which mes-

sages or timer events are placed. In addition, it contains control

information such as the allocated share and the amount of

outstanding credits t.credit. A task is ready to run when it

has credit and its queue contains at least one event. Tasks

are passive data structures; the scheduler employs a number

of scheduling threads to execute tasks. Figure 1(b) shows

the basic operation of a scheduling thread. The core of the

scheduler is a priority queue containing the set of schedulable

tasks. Figure 1(a) shows the schema of the interaction in which

tasks are ordered by their number of threads in the queue

(shown as a binary heap) and scheduling threads add and

remove elements from this queue concurrently.

312

We refer to this priority queue as SchedulableTasks. The task

with the most credit has the highest priority and is therefore

at the head of the priority queue, from where it is removed

by a scheduling thread for execution (see Figure 1(b)). Once

invoked, the task processes exactly one event. The scheduling

thread measures the execution time and uses this to decrease

the credit of the task, thus changing its priority. If the highest

priority task is out of credit, then no task has credit left

and the scheduling thread resets the credits of all tasks, i.e.

the scheduler is work-conserving. This situation occurs at the

latest when the scheduling period T expires; but may occur

earlier if some of the tasks had less work than their allocated

share.

Using multiple scheduling threads allows the scheduler to

run on multiple CPU cores. For efficient operation, it is

important that a scheduling thread is not blocked by another.

Two contention points exist, the event queue used by each task

(see Section III-A) and the priority queue used at the core of

the scheduler (see Section III-B).

A. Coordination between writer threads and scheduling

threads

The event queue of tasks is implemented as a Michael–

Scott [4] lock-free FIFO queue. This queue allows scheduling

threads (the readers) and input threads or application threads

(the writers) to concurrently access the same queue without the

need for locking. Whereas in [4] the size of the queue is not

limited, we trivially extend the algorithm such that a writer

blocks if the queue reaches its capacity and then is woken

up by the next reader. All the information about the credits

a task has is maintained within the task itself, and because

it is only updated by the scheduler thread that took the task

out of SchedulableTasks, this information does not need to be

thread-safe.

Writer threads and scheduling threads coordinate in decid-

ing whether a task is schedulable or not. A writer thread that

adds a new event to a task that is currently not scheduled will

add it to SchedulableTasks. Likewise, a scheduling thread that

finds the event queue of a task empty will remove the task

from the set.

Figure 2 shows how this coordination takes place. In Fig-

ure 2(a) the writer thread recognizes that a task is not in the

schedulable task set and adds it; simultaneously, a scheduler

thread accesses the same data structure and removes the tasks

with the most credits. In Figure 2(b) the task is scheduled,

the writer thread adds events to the event queue while the

scheduler thread removes the first one. In Figure 2(c) the

scheduler thread puts the task back into the schedulable task

set after updating its credits, while the writer thread continues

to write. In Figure 2(d) the scheduler thread has emptied the

queue and does not return the task to the set; the next time

the writer writes it will notice this and perform the action

described in Figure 2(a) again.

The scheduler thread removes the task from Schedulable-

Tasks and returns it if there is still work to do (i.e., an event is

in the task’s queue). If the scheduler thread detects that there

it is no more work to do for a task, it is not returned to the

queue. It is the responsibility of the writer thread to put the

task back into SchedulableTasks when the task has again events

in its queue. This coordination is achieved without locking by

using an atomic counter t.queueSize for the number of events

in the task’s event queue. The writer increments t.queueSize

after having written an event, whereas the scheduler thread

decrements it after reading an event. The scheduler thread will

only return the task to the set if the value is non-zero. A writer

recognizes that a scheduler thread did not return a task if the

value before it succeeded in incrementing the atomic counter

was zero.

B. Lock-free access to the concurrent priority queue

The priority queue that implements SchedulableTasks is

accessed concurrently by writer threads and scheduler threads.

Because of their importance in scheduling on multiprocessor

operating systems, much work has been done on algorithms

for concurrent priority queues. This work covers both block-

ing [5], [6], [7] and non-blocking approaches [7], [8]. While in

the event-system different tasks can have an arbitrary number

of time credits, meaning that in theory we need to use an

algorithm that supports arbitrary priorities, in practice there is

little to be achieved by distinguishing between tasks that have a

number of credits which are within some range of each other.

This observation allows us to quantize the credits such that

there is a fixed number of priority levels.

A blocking quantizing priority queue algorithm has been

described in [7]. The range of priorities is divided such that

every valid priority falls into one of N buckets. Elements in

the same bucket are retrieved according to their arrival order.

Shavit et al. call this a SimpleLinear priority queue and report

through the use of simulation that its performance compared

with a range of other approaches is best for small numbers

of processors (fewer than 16). They propose the use of a

funneling mechanism, whereby processes accessing the same

bucket can recognize and avoid contention by having only one

of them perform the required operations.

Our implementation follows the same idea as SimpleLinear,

but unlike SimpleLinear, it is non-blocking. Each bucket is

associated with a lock-free FIFO queue. These buckets are

placed in an array such that the highest priority (most credits)

bucket is at the extreme left and the priority reduces as we

move to the right. The scheduler thread starts at the highest

priority bucket and moves to the right until it finds a bucket

with a non-empty queue. It then attempts to take the highest

priority task in this queue. If the scheduler thread succeeds,

it dispatches this task, if not it moves to the right again. If it

reaches the end of the structure without finding work it returns

a null value. Figure 3 shows the lock-free priority queue. The

precision of the share can be traded off against the efficiency of

the system by increasing or decreasing the number of buckets.

The total number of operations required to identify into

which bucket to add a task is constant, but the number to find

the first non-empty bucket increases linearly with the number

of buckets, N . The thread determines whether a bucket is non-

empty by checking an atomic counter. For a given number of

buckets the worse case removal time is constant, i.e. when the

element is found in the least priority bucket.

313

...

Writer Thread
Scheduler

Thread

put task in
schedulable set

get task with
most credit from
schedulable set

decreasing credits

Task 1 Task 2 Task 3

per task
event queue

start
writing
Events

(a) Events arrive for an unscheduled task.

...

Writer Thread
Scheduler

Thread

decreasing credits

Task 1

Task 2 Task 3

Write Event Read Event

(b) Writer thread writes to the task’s event queue and scheduler
reads from it.

...

Writer Thread
Scheduler

Thread

decreasing credits

Task 1Task 2 Task 3

Write Event Events in the queue:
put back into

schedulable set

(c) Remaining events in the queue: Scheduler thread puts the task
back.

...

Writer Thread
Scheduler

Thread

decreasing credits

Task 1

Task 2 Task 3

No more Events:
don´t put back in
schedulable set

(d) No more events in the task’s queue.

Fig. 2. Coordination between writer and scheduler threads.

1 2 3 N

...

Michael-Scott

Lock Free

FIFO queue

Array of N Buckets

for each of the Priority Levels

Task

Fig. 3. Simple lock-free priority queue.

If no task overruns its alloted time slice then we can

guarantee that no task goes unscheduled for longer than 10 ms

by setting the value T over which the share is respected to

10 ms. Now assume we wish to be able to distinguish tasks

at a time granularity of 100 µs then we need 100 buckets.

This in turn requires on average 50 integer comparisons each

time we schedule a task. To reduce this overhead we group

buckets into bucket groups of size M . An additional atomic

counter is kept for the entire bucket group as well as for

the individual buckets. The average number of comparisons

is then Y = M/2 + N/(2M). The optimal value of M for

fixed N is now the value at which the derivative of Y with

respect to M is zero, which is given by M =

√

N . The

expected number of operations is
√

N and the worst case

2

√

N , i.e. for 100 buckets we expect to have 10 additional

integer comparisons for removing a task and in the worst case

we have 20. The same technique can be performed at multiple

different levels, i.e. by creating groups of bucket groups etc. In

practice trying to distinguish between messages at very fine

granularities makes little sense as the variance in other factors

beyond the messaging system’s control dominate, e.g. network

delay. We find that for time granularities that make sense in

a messaging system running over a LAN (in the 100-1000 µs

range) one level of bucket groups is adequate.

When no schedulable task has work to do, the scheduler

resets the credits allocated to all tasks in the SchedulableTasks

set. The scheduler recognizes that this has occurred when the

task returned from the SchedulableTasks set has zero or less

credit. The scheduler removes all the tasks from the set, resets

their credit as described in Section III, and returns them to

the set. Multiple scheduler threads can identify the need for

credit resetting and perform this operation in parallel. This is a

consequence of the fact that a task can be read by exactly one

scheduler thread from the set and that all credit information

about the task is contained within it.

It may be the case that one or more tasks with credit are

314

currently being serviced by other scheduler threads when a

given scheduler thread identifies that no current task in the

SchedulableTasks has work. A thread that was servicing a task

while the credits were being reset by another thread needs to

recognize that this has occurred and update this task’s credit

before putting it back into SchedulableTasks. This is achieved

using an atomic counter that is incremented after each reset.

Each thread keeps the value of this counter before getting a

task and checks whether it has changed before it puts the task

back.

C. Linearizability and the concurrent priority queue

Herlihy’s linearizability condition [9] can be stated infor-

mally as follows. A data structure is linearizable if and only

if:

• all possible histories over that data structure have a legal

sequential equivalent;

• the order of operations that do not execute concurrently

are respected within the sequentially equivalent history.

If a concurrent data structure is linearizable we can then

reason about it using its sequential equivalent. Paper [7]

claims that the algorithm described in the preceding section

is linearizable, however this is not the case. We show that it

is not by the means of a counter example. As for any lock-

free concurrent priority queue, because elements are being

simultaneously added and removed, the get operation may not

retrieve the task with the highest priority in the queue at the

moment the operation completes. In our implementation, it

is possible that another thread adds a task to a bucket that

the reading thread has already passed over. The following

describes a valid sequence of operations in our implementation

using the notation of [9], where x is a task with higher priority

than task y:

Get()A; Put(x)B; Ok()B; Put(y)B;

Ok()B; Ok(y)A; Get()C; Ok(x)C;

Each operation consists of a start of invocation and its com-

pletion. For example, Put(x) A stands for the start of the

put invocation of task x into the priority queue by thread A,

and Ok() A corresponds to its completion. The history is not

linearizable when the priority of x is higher than the priority

of y as no legal sequential history can respect the fact that

the addition of x completed before the addition of y but was

removed after.

The practical consequence of this is that thread A retrieves a

lower priority task than thread C, even though the get operation

of thread A precedes the get of thread C and task x was put in

before task y. Figure 4 illustrates this inversion of priorities.

The advantage of linearizability is that linearizable data

structures can be composed such that the resulting combined

history is also linearizable. Showing that a data structure is

linearizable allows it to be used in many different contexts.

We are interested in the use of the concurrent priority queue

specifically in the context of the credit scheduler. Therefore we

must demonstrate that the priority queue behaves appropriately

Get() A started at t1

1 2 3 4 5 6

Put(x) B started after t1, Ok () completed before t2

Situation at time t2

x

Get() A started at t1

1 2 3 4 5 6

Put(y) B started after t2, Ok () completed before t3

Situation at time t3

x y

Ok(y) A

1 2 3 4 5 6

Situation at time t4

x

Fig. 4. The interleaving of get and put operations (t4 > t3 > t2 > t1).

in that context. We now give the invariant of the concurrent

priority queue and show that it is adequate for our purposes.

D. The concurrent priority queue invariant

Let a put operation be defined as follows:

PUT ::= [e : Element, start : Time, end : Time]

where start and end are the times that the operation started

and completed at and e is the element added with priority

e.prio. Let a get operation be defined as:

GET ::= [p : PUT, start : Time, end : Time, e : Element]

where start and end are the times that the operation started

and completed at and p is the put operation whose element

the get operation retrieves. It must be the case that an element

is retrieved only after it has been added, i.e.:

∀g : GET , g.end > g.p.start

We define a history of the observed get operations ordered

by their time of completion, i.e.:

H : SEQ of GET , ∀i < j H[i].end ≤ H[j].end

Then the following must hold ∀i, j i < j:

H[i].e.prio < H[j].e.prio => H[i].start < H[j].p.end

This simply states that if an element e was removed from

the queue with a higher priority than one removed before it,

then the operation that placed said element e in the queue

must have completed after the preceding removal had already

started. This is sequentially consistent according to Lamport’s

definition in [10], i.e. an equivalent sequential history can

always be produced, but because that sequential history would

involve inverting the order of certain put and get operations,

it is not linearizable.

Although the data structure is not linearizable and hence

does not have the same behavior as a sequential priority queue,

this does not exclude its use within the scheduler. In the

specific context of the scheduler, a given scheduling process

always gets a task from the queue and then puts it back. A

given process history is therefore an interleaved series of get’s

and put’s that are always sequential with respect to each other

315

in the complete history. This means that, while it is possible

that the data structure occasionally does not behave like a

sequential priority queue, the duration of this discrepancy

is bounded: the process that placed the task Ta that suffers

from the priority inversion will immediately attempt to get the

current highest-priority task. If no other task has been added,

Ta will be chosen; if a higher priority Tb has been added then

Tb will be chosen and the process that added Tb will in turn

attempt to get the current highest-priority task and so on. It

follows that even allowing for occasional priority inversions

the overall share that a task receives over a given time period

will be respected.

E. Fair shares on a multi-core machine

The scheduler guarantees that when a scheduler threads

executes it will choose the available task that best fits the

schedule. Suppose we have a one CPU machine in which the

scheduler thread is the only thread that runs, then all tasks

will always be available and the share allocated to the task

will simply be a fraction of the CPU.

In a real system there are many other threads running.

Within the messaging system alone, we have timer threads,

threads monitoring the I/O, and threads supporting the control

part of the messaging protocol. The JVM itself typically runs

several daemon threads, e.g. for garbage collecting, and then

there is everything else that runs on the machine, e.g. the

application. In short, in reality the scheduler threads are not

always running, and the share allocated to a task on a single

processor machine is a share of the fraction of the time the

scheduler runs.

The situation is more complicated on a multi-core machine

because when a scheduler thread is serving a task, that task

is unavailable to other scheduler threads. This is simply a

consequence of the fact that a task is allocated to at most

one scheduler thread at any given moment.

Assume that the probability that a scheduler thread is

scheduled by the OS is independent and denoted by P and that

there are N processors and N scheduler threads in the system.

If P = 1, then no task can ever get more than 1/N of the total

time the scheduler’s threads run. So for example if N = 1 the

maximum share that a task can receive is 100%, if N = 2 the

maximum is 50%, etc. More generally, the probability of there

being k scheduler threads running simultaneously is given by

the binomial distribution whose expected value is N · P .

Hence we expect the number of processors on which

scheduler threads run in parallel to simply be the product

of the number of processors and their probability of getting

scheduled. The maximum percentage of total scheduling time

that any task can get is then given by

100%

Max(1,N · P)

For fixed N this approaches 100% as P gets smaller, and

for fixed P it approaches 1/N as N gets bigger.

Note that the scheduler is not fair in the sense used in

WFQ [2], i.e. it is possible for a task to get more than

it requested while another gets less than it requested. To

make the scheduler both fair and work-conserving, it would

be necessary to allow multiple scheduler threads to dispatch

events from the same event queue simultaneously. This would

not only complicate the scheduler, but, more importantly,

would mean that FIFO delivery of messages within a given

topic is no longer guaranteed by the scheduler.

IV. PERFORMANCE EVALUATION

In all of the tests the following configuration has been used

unless otherwise stated. The time period over which the shares

are valid is set to 10 ms. The number of buckets used in the

priority queue is set to 100. We use a number of scheduler

threads equal to the number of cores on the machines. The

communication between machines is always Gigabit Ethernet,

and we use TCP for the transport layer with the socket size set

to 128 kbytes. The message size is 128 bytes. All machines

are running a 2.6 Linux Kernel with Java 6. The machine on

which the subscribers run has 2 × 2.3 GHz 4-core processors,

i.e. 8 cores in total. All publishing machines have 2 × 3.0 GHz

HyperThreading processors.

A. Bandwidth/delay for one publisher to one subscriber

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

R
e

c
e

iv
e

 R
a

te
 (

k
m

s
g

/s
)

Transmit Rate (kmsg/s)

measured
optimal

(a) Effective throughput

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140

D
e

la
y
 (

m
s
)

Transmit Rate (kmsg/s)

mean
max

(b) Delay as a function of the throughput

Fig. 5. Bandwidth/delay for one publisher to one subscriber.

We measure the maximum number of messages per second

we can send between a single publisher and a single subscriber.

We also measure the effect on the average delay of increasing

the sending rate. To avoid having to synchronize clocks

on distinct machines, the end-to-end delay is measured by

316

marking some random sample of the sent messages at the

publishing application and having the subscribing application

echo these packets back to the publisher over UDP. This

method over-estimates the end-to-end delay for low-sending

rates (fewer than 1,000 msg/s) as the additional network

latency is a significant fraction of the total delay, but is a good

approximation for higher rates where the network latency plays

a lesser role.

Figure 5 shows the evolution of the effective throughput and

the end-to-end delay as a function of the publishing rate. The

system sustains a rate of 120,000 msg/s. The average end-to-

end delay rises from below 1 ms for 1,000 msg/s to slightly

above 10 ms at 120,000 msg/s. Above this figure the system is

no longer sustainable, and the average delay rises dramatically.

B. Scalability with increasing number of topics

We measure how the messaging system behaves with

increasing number of topics. We run a set of subscribers

within a single JVM. Each subscriber subscribes to a distinct

topic. We run each publisher on a different machine. Each

publisher attempts to send at the same fixed message rate.

Figure 6(a) shows how the cumulative throughput at the

subscribers evolves as the number of publishers increases for a

per-publisher sending rate of 70,000 msg/s. We find an almost

linear scaling with increasing number of topics up to the

number of cores on the machine, demonstrating that topics

can be serviced in parallel. The average delay for the sets

of topics behaves similarly to that reported in Section IV-A,

with an average delay of less than 50 ms for a cumulative

throughput of 500,000 msg/s.

An interesting effect is observed when we increase the

fixed sending rate to 80,000 msg/s (see Figure 6(b)) and

90,000 msg/s (see Figure 6(c)). The cumulative through-

put initially increases linearly and then collapses, meaning

for example that the total throughput for 8 publishers at

90,000 msg/s is significantly less than at 70,000 msg/s. We

currently assume that this is an artifact of the Linux kernel

when subjected to high interrupt rates, but have not yet been

able to verify this.

The promising performance in Figure 6(a) shows that our

design is able to take advantage of a multi-core architecture.

The reader may better grasp the importance of these results

by comparing them with Figure 7: there we perform exactly

the same experiment as before, but we replace the lock-

free SchedulableTasks in the scheduler with a simple queue

accessed using a lock. The lock is necessary to avoid having

the queue corrupted by threads manipulating the data structure

concurrently. Figure 7 shows that the traditional approach does

not scale. Using more than one scheduler thread improves

performance slightly, but for increasing number of threads

this effect is offset by the increased contention on the lock (8

scheduler threads perform worse than 2, even if the machine

has 8 cores).

C. Task shares

Section II described the mathematical model of the sched-

uler for a single scheduling thread. Section III-E described how

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8

R
e

c
e

iv
e

 r
a

te
 (

k
m

s
g

s
/s

)

Number of simultaneous Publishers/Topics

Theoretical bound
Actual throughput 1 thread

Actual throughput 2 threads
Actual throughput 4 threads
Actual throughput 8 threads

Fig. 7. Using a locked queue in the scheduler: scalability at 70,000 msg/s
per topic with increasing number of topics.

the actual share allocated to a task is influenced by the number

of processors over which the messaging system runs and by

the probability of scheduler threads being able to execute on

those processors.

We test the actual measured received rates when ten topics

are allocated distinct shares on a two-processor machine

running either one or two scheduler threads. The system

is pushed to saturation by attempting to send an aggregate

sending rate twice that of the maximum measured achieved

rate for the configuration. The share allocated to a topic and

the fraction of the aggregated total it attempts to send at,

are independent random variables from two distinct Poisson

distributions. Thus, it can occur that a topic attempts to send

at a very high rate with a very low share. The test is run until

new results do not significantly change the average. The test

was repeated 500 times, each time with a different randomly

chosen configuration. We then measure the actual aggregate

throughput Rmax achieved at a given setting and used it to

calculate the predicted received rates of the individual topics

at those setting according to the model in Section II. Finally,

we calculate the error as the distance between the vector of

predictions and the vector of measured values. The relative

error is defined as that error divided by the magnitude of the

vector of measured values.

The CCDF (Complementary Cumulative Distribution Func-

tion) of the relative errors is given in Figure 8. For one

scheduler thread, 85% of all runs have an error smaller than

10%; for two scheduler threads, the same is achieved for

80% of the configurations. The results in Figure 8(a) show

the performance of the scheduler at saturation for randomly

chosen settings. When the system is not at saturation the

fidelity of the scheduler with respect to the model is almost

exact (see Figure 8(b) for 100,000 msg/s total sending rate).

V. CONCLUSION

We have shown how a messaging system supporting differ-

ent qualities of service for different topics can be built using

a event dispatching model. We have motivated our choice

of time-based credit scheduling within the messaging system

and given a statement of the guarantees that it provides. We

have described how the scheduler is parallelizable allowing

it to scale on a multi-processor system through the use of

317

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8

R
e
c
e
iv

e
 r

a
te

 (
k
m

s
g
s
/s

)

Number of simultaneous Publishers/Topics

Theoretical bound
Actual throughput

(a) Scalability at 70,000 msg/s per topic

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8

R
e
c
e
iv

e
 r

a
te

 (
k
m

s
g
s
/s

)

Number of simultaneous Publishers/Topics

Theoretical bound
Actual throughput

(b) Scalability at 80,000 msg/s per topic

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8

R
e
c
e
iv

e
 r

a
te

 (
k
m

s
g
s
/s

)

Number of simultaneous Publishers/Topics

Theoretical bound
Actual throughput

(c) Scalability at 90,000 msg/s per topic

Fig. 6. Throughput scalability with increasing number of topics.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

C
C

D
F

 (
%

)

relative error (%)

CCDF of the resource allocation relative error for 10 topics

2 scheduler threads
1 scheduler thread

(a) Share allocation accuracy on a saturated system.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
C

D
F

 (
%

)

relative error (%)

CCDF of the resource allocation relative error for 10 topics

2 scheduler threads

(b) Share allocation accuracy on a non-saturated system.

Fig. 8. Difference between requested and measured shares.

a lock-free approach and given a formal invariant for the

concurrent priority queue used. We have motivated our use

of this data structure proving that it is not linearizable but that

in the context used, its invariant is strong enough to allow

the required scheduling behavior. We have reported on the

performance of the messaging system showing that on a real

multi-core architecture the throughput scales with number of

cores, we have also described the measured delay and the

consequences for topic isolation on running the scheduler on

a multiprocessor machine.

REFERENCES

[1] A. Tenenbaum and R. van Renesse, “A critique of the remote procedure
call paradigm,” in In proceedings of Euteco, 1988.

[2] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in SIGCOMM ’89: Symposium Proceedings

on Communications Architectures & Protocols. New York, NY, USA:
ACM Press, 1989, pp. 1–12.

[3] N. Yin, “Max-Min Fairness vs MCR Guarentee on Bandwidth Allocation
for ABR,” in IEEE Proc ATM’96, workshop San Franciso, CA, 1996.

[4] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” Proceedings of

the 15th ACM Symposium on Principles of Distributed Computing, pp.
267–275, 1996.

[5] Q. Huang, “An evaluation of concurrent priority queue algorithms,”
Massachusetts Institute of Technology, MIT Cambridge, MA, USA,
Tech. Rep., 1991.

[6] G. C. Hunt, M. M. Michael, S. Parthasarathy, and M. L. Scott, “An
efficient algorithm for concurrent priority queue heaps,” University of
Rochester, Rochester, NY, Tech. Rep. TR560, Dec. 1994. [Online].
Available: citeseer.ist.psu.edu/hunt96efficient.html

[7] N. Shavit and A. Zemach, “Scalable concurrent priority queue algo-
rithms,” in PODC ’99: Proceedings of the Eighteenth Annual ACM

Symposium on Principles of Distributed Computing. New York, NY,
USA: ACM Press, 1999, pp. 113–122.

[8] H. Sundell and P. Tsigas, “Fast and lock-free concurrent priority queues
for multi-thread systems,” in Proceedings of the 17th International

Parallel and Distributed Processing Symposium. IEEE press, 2003.
[Online]. Available: citeseer.ist.psu.edu/sundell03fast.html

[9] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Transactions on Programming Languages

and Systems, vol. 12, no. 3, pp. 463–492, Jul. 1990.
[10] L. Lamport., “How to make a multiprocessor computer that correctly

executes multiprocess programs,” IEEE Transactions on Computers,
vol. 28, no. 9, pp. 690–691, Sep. 1979.

318

DETECTING PROTOCOL ERRORS USING PARTICLE SWARM OPTIMIZATION WITH
JAVA PATHFINDER

Marco Ferreira
Escola Superior de Tecnologia

e Gestão de Leiria
Instituto Politécnico de Leiria
Email: mpmf@estg.ipleiria.pt

Francisco Chicano and Enrique Alba
Dpto. Lenguajes y Ciencias

de la Computación
University of Málaga

Email: {chicano,eat}@lcc.uma.es

Juan A. Gomez-Pulido
Dep. of Technologies of Computers

and Communications
University of Extremadura
Email: jangomez@unex.es

KEYWORDS

Validation, testing, protocols, model checking, Java
PathFinder, Particle Swarm Optimization

ABSTRACT

Network protocols are critical software that must be ver-
ified in order to ensure that they fulfil the requirements.
This verification can be performed using model check-
ing, which is a fully automatic technique for checking
concurrent software properties in which the states of a
concurrent system are explored in an explicit or implicit
way. However, the state explosion problem limits the size
of the models that are possible to check. Particle Swarm
Optimization (PSO) is a metaheuristic technique that has
obtained good results in optimization problems in which
exhaustive techniques fail due to the size of the search
space. Unlike exact techniques, metaheuristic techniques
can not be used to verify that a program satisfies a given
property, but they can find errors on the software using
a lower amount of resources than exact techniques. In
this paper, we propose the application of PSO to solve
the problem of finding safety errors in network proto-
cols. We implemented our ideas in the Java Pathfinder
(JPF) model checker to validate them and present our re-
sults. To the best of our knowledge, this is the first time
that PSO is used to find errors in concurrent systems. The
results show that PSO is able to find errors in protocols in
which some traditional exhaustive techniques fail due to
memory constraints. In addition, the lengths of the error
trails obtained by PSO are shorter (better quality) than
the ones obtained by the exhaustive algorithms.

1 Introduction

One of the most important phases in protocol design is
the testing phase. Unlike other less critical software (like
a videogame or a graphical design program), network
protocols might be verified in order to prove that they
fulfil the requirements. An error discovered after the de-
ployment of a network protocol in a grid computing en-
vironment can entail the loss of an important amount of
money due to repair and maintenance costs.

Model checking (Clarke et al., 2000) is a well-known
and fully automatic formal method for verifying that a

given hardware or software system fulfils a property.
This verification is performed by analyzing all the possi-
ble system states (in an explicit or implicit way) in order
to prove (or refute) that the system satisfies the property.
Examples of properties are the absence of deadlocks, the
absence of violated assertions, and the fulfilment of an
invariant. It is possible also to specify more complex
properties using temporal logics like Linear Temporal
Logic (LTL) (Clarke and Emerson, 1982) or Computa-
tion Tree Logic (CTL) (Clarke et al., 1986). One of the
best known explicit model checkers is SPIN (Holzmann,
2004), which takes a software model codified in Promela
and a property specified in LTL as inputs. Promela is
not a programming language used for real programs, it is
just a language for modelling concurrent systems in gen-
eral, and protocols in particular. This drawback is cur-
rently solved by the use of translations tools or the model
checker Java PathFinder (Groce and Visser, 2004), which
in its last versions directly works on bytecodes of multi-
threaded Java programs.

The amount of states of a given concurrent system is
very high even in the case of small systems, and it in-
creases exponentially with the size of the model. This
fact is known as the state explosion problem (Valmari,
1998) and limits the size of the model that an explicit
state model checker can verify. This limit is reached
when it is not able to explore more states due to the ab-
sence of free memory. Several techniques exist to alle-
viate this problem. They reduce the amount of memory
required for the search by following different approaches.
On one hand, there are techniques which reduce the num-
ber of states to explore, such as partial order reduc-
tion (Clarke et al., 1999) or symmetry reduction (La-
fuente, 2003). On the other hand, we find techniques that
reduce the memory required for storing one state, such as
state compression, minimal automaton representation of
reachable states, and bitstate hashing (Holzmann, 2004).
Symbolic model checking (Burch et al., 1994) is another
very popular alternative to explicit state model checking
that can reduce the amount of memory required for the
verification. In this case, a set of states is represented
by a finite propositional formula. However, exhaustive
search techniques are always handicapped in real con-
current programs because most of these programs are too
complex even for the most advanced techniques. There-

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

319

fore, techniques of bounded (low) complexity as meta-
heuristics will be needed for medium/large size programs
working in real world scenarios.

In this work we propose the use of Particle Swarm Op-
timization (PSO) (Kennedy and Eberhart, 1995) for find-
ing errors in concurrent systems. This is the first time (to
the best of our knowledge) that PSO has been applied to
this problem. We have included our PSO algorithm in-
side the Java Pathfinder (JPF) model checker. This way
we can find errors in protocols written in Java, which al-
lows us to check real implementations instead of models.

The paper is organized as follows. The next section
presents the required foundations on model checking and
previous work on which ours is based. Section 3 presents
a formal description of the problem while in Section 4
our algorithmic proposal is detailed. Finally, the results
are presented and commented in Section 5 and the con-
clusions and future work depicted in Section 6.

2 Background

Explicit state model checkers work by searching for a
counterexample of the property in the model. They ex-
plore the synchronous product (also called Büchi au-
tomaton) of the transition system of the model and the
negation of the property and they search for a cycle of
states containing an accepting state reachable from the
initial state. If such a cycle is found, then there exists at
least one execution of the system not fulfilling the prop-
erty (see (Holzmann, 2004) for more details). If such
kind of cycle does not exist then the system fulfils the
property and the verification ends with success. This
search is usually performed with the Nested Depth First
Search (NDFS) algorithm (Holzmann et al., 1996).

Safety properties can be checked by searching for a
single accepting state in the Büchi automaton. That is,
when safety properties are checked, it is not required to
find an additional cycle containing the accepting state.
This means that safety property verification can be trans-
formed into the search for one objective node (one ac-
cepting state) in a graph (Büchi automaton) and gen-
eral graph exploration algorithms like Depth First Search
(DFS) and Breadth First Search (BFS) can be applied to
the problem. Furthermore, in (Edelkamp et al., 2004)
the authors utilize heuristic information for guiding the
search. They assign a heuristic value to each state that
depends on the safety property to verify. After that, they
utilize classical algorithms for graph exploration such as
A∗, Weighted A∗ (WA∗), Iterative Deepening A∗ (IDA∗),
and Best First Search (BF). The results show that, by us-
ing heuristic search, the length of the counterexamples
can be shortened (they can find optimal error trails using
A∗ and BFS) and the amount of memory required to ob-
tain an error trail is reduced, allowing the exploration of
larger models.

The utilization of heuristic information for guiding the
search for errors in model checking is known as heuristic
or directed model checking. The heuristics are designed

to lead the exploration first to the region of the state space
in which an error is likely to be found. This way, the time
and memory required to find an error in faulty concurrent
systems is reduced in average. However, no benefit from
heuristics is obtained when the goal is to verify that a
given program fulfils a given property. In this case, all
the state space must be exhaustively explored.

When the search for short error trails with a low
amount of computational resources (memory and time)
is a priority (for example, in the first stages of the im-
plementation of a program), non-exhaustive algorithms
using heuristic information can be used. Non-exhaustive
algorithms can find short error trails in programs using
less computational resources than optimal exhaustive al-
gorithms (as we will see in this paper), but they can-
not be used for verifying a property: when no error is
found using a non-exhaustive algorithm we still cannot
ensure that no error exists. Due to this fact we can es-
tablish some similarities between heuristic model check-
ing using non-exhaustive algorithms and software test-
ing (Michael et al., 2001). In both cases, a large region
of the state space of the program is explored in order to
discover errors; but the absence of errors does not im-
ply the correctness of the program. This relationship be-
tween model checking and software testing has been used
in the past for generating test cases using model check-
ers (Ammann et al., 1998).

A well-known class of non-exhaustive algorithms for
solving complex problems is the class of metaheuristic
algorithms (Blum and Roli, 2003). They are search algo-
rithms used in optimization problems that can find good
quality solutions in a reasonable time. The search for ac-
cepting states in the Büchi automaton can be translated
into an optimization problem and, thus, metaheuristic al-
gorithms can be applied to the search for safety errors.
In fact, Genetic Algorithms (GAs) (Godefroid and Khur-
shid, 2004) and Ant Colony Optimization (ACO) (Alba
and Chicano, 2007) have been applied in the past.

3 Problem Formalization

The problem of searching for safety property violations
can be translated into the search of a path in a graph (the
Büchi automaton) starting in the initial state and ending
in an objective node (accepting state). We are also inter-
ested in minimizing the length of the error trail obtained.
We formalize here the problem as follows.

Let G = (S, T) be a directed graph where S is the
set of nodes and T ⊆ S × S is the set of arcs. Let q ∈
S be the initial node of the graph and F ⊆ S a set of
distinguished nodes that we call final nodes. We denote
with T (s) the successors of node s. A finite path over
the graph is a sequence of nodes π = s1s2 . . . sn where
si ∈ S for i = 1, 2, . . . , n. We denote with πi the ith
node of the sequence and we use |π| to refer to the length
of the path, that is, the number of nodes of π. We say
that a path π is a starting path if the first node of the path
is the initial node of the graph, that is, π1 = q. We will

320

use π∗ to refer to the last node of the sequence π, that is,
π∗ = π|π|.

Given a directed graph G the problem at hands consists
in finding a starting path π ending in a final node with
minimum |π|. That is, minimize |π| subject to π1 = q ∧
π∗ ∈ F .

The graph G used in the problem is derived from the
synchronous product B of the model and the negation of
the LTL formula of the property. The set of nodes S in
G is the set of states in B, the set of arcs T in G is the
set of transitions in B, the initial node q in G is the initial
state in B, and the set of final nodes F in G is the set of
accepting states in B. In the following, we will also use
the words state, transition, and accepting state to refer to
the elements in S, T , and F , respectively.

4 Algorithmic Proposal

In this section we describe our proposal for searching for
safety errors in concurrent systems in general, and net-
work protocols in particular. We will start by describing
the PSO algorithm, then we will show how the particles
represent execution paths of the concurrent systems, and
finally we will describe the fitness function used to eval-
uate the particles (execution paths).

4.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-
based metaheuristic search algorithm developed by
Kennedy and Eberhart in 1995 (Kennedy and Eberhart,
1995). It works in the same way as genetic algorithms
and other evolutionary algorithms in the sense that they
all update a set of solutions (called swarm in the context
of PSO) applying some operators and using the fitness
information to guide the set of solutions to better regions
of the search space. PSO differs from these algorithms
by simulating the social behaviour of a swarm and by not
employing a survival of the fittest model.

In PSO, a particle is a point in the search space, that is,
it represents a possible solution. Each particle, besides its
position, has a velocity and knowledge about its own ex-
perience and about its neighbours’ experience. Although
several topologies (or social networks) can be found in
the literature, in the original PSO every particle has ex-
perience information of the all swarm, that is, every parti-
cle in the swarm is considered a neighbour of every other
particle. This topology is sometimes referred as gBest
and is the one used in our experiences. The basic algo-
rithm of the PSO we used can be found in Algorithm 1.

The algorithm starts by creating an initial population.
Then it evaluates the fitness of each particle and updates,
if necessary, its own experience (pBest) and the swarm
experience (gBest). The fitness value of each individual
is calculated by a fitness function that is dependent on
the problem. A particle’s pBest variable is updated when
the fitness function returns a better value (larger if we are
maximizing, smaller otherwise) than the current one for

Algorithm 1 Pseudocode of a PSO
1: P = generateInitialPopulation();
2: while not stoppingCondition() do
3: evaluate(P);
4: calculateNewVelocityVectors(P);
5: move(P);
6: end while
7: return the best found solution

the particle. The gBest variable is also updated if that fit-
ness value is also better than the previous gBest fitness
value. Using pBest and gBest, the velocity and position
of each particle is updated according to the following ex-
pressions:

vi = w · vi + c1 · rand1 · (pBesti − xi)
+c2 · rand2 · (gBesti − xi) , (1)

xi = xi + vi , (2)

where vi represents the particle velocity, w represents the
inertia factor, c1 and c2 are learning factors, rand1 and
rand2 are two random values in the range [0, 1], and xi

represents the particle position. The algorithm continues
to move the particles until a stopping criterion, usually a
maximum number of iterations, is met.

In our implementation of the algorithm the inertia fac-
tor changes during the search, as suggested in (Shi and
Eberhart, 1998). At the beginning w is high in order to
perform an explorative search. The inertia factor is de-
creased during the search in order to switch to a more
exploitative search. The idea behind this mechanism is
to search first a promising region in the search space and
then to exploit that promising region. To avoid falling
into local optima, we have added a perturbation opera-
tor to the basic PSO algorithm. When the best fitness
value (the one of gBest) does not improve for a number
of iterations, defined as itupert (ITerations Until PER-
Turbation), the particles are randomly moved to another
position with the hope that, using that new starting point,
they can find a better solution. When that happens, the
inertia factor is also reset to its maximum value so that
PSO tends to search globally, instead of locally.

We have also implemented a cache feature to our PSO.
Since we are looking for paths in large graphs, we want
to avoid having to evaluate twice the same path (or par-
tial path). We avoid that evaluation by storing in mem-
ory all the visited states and their associated fitness val-
ues. When the PSO needs to evaluate a new path, it uses
this memory for all the states already visited, avoiding
the costly job of expanding and evaluating the same state
again. This is not needed to find an error, being just a
performance improvement, and as soon as more memory
is needed, our PSO frees this cache memory.

321

4.2 Representation of the Execution Paths

We are trying to find paths that lead to an error state in a
protocol. A path can be described as the sequence of tran-
sitions that occurred from an initial state to a final state.
Figure 1 shows an example of a state graph evidencing
the path described by transitions 0, 1, 1. The number of
transitions available varies from state to state.

Figure 1: Example graph showing the states of a program
and the variable number of transitions in each state.

The number of transitions needed to reach a goal state
(the path size) is usually unknown beforehand, that is,
we do not know what is the length of the shortest path
from the initial state to a goal state. If the particles were
composed of a fixed length sequence of transitions, the
algorithm could always fail in finding a goal state. This
leaves two problems to be solved by the solution repre-
sentation: which transition to select in each state of the
path and how long the path is.

One way to select a transition would be to simply use
an integer value representing the number of transition as
shown in Figure 1. Two problems arise from this ap-
proach: what would be the range of that value and how
to deal with discrete values in the PSO. While discrete
values could be handled specially adapting the algorithm,
the range of the integer value would be more difficult to
determine. Instead, we solved this problem by using a
floating-point value in the range [0, 1). We can discover
which transition to follow from a given state simply by
multiplying that value by the number of transitions avail-
able, truncating the result to the nearest smaller integer.

To allow for different solution lengths in the popula-
tion, we used another floating-point value, this time in
the range [1, maxLen] where maxLen is a parameter
for the algorithm. This value indicates how many transi-
tions the path will have. Every particle is thus composed
of a vector of maxLen + 1 floating-point values, or di-
mensions, where the first value indicates the path size and
the remaining values indicate which transition to select at
that point of the path.

4.3 Fitness Function

JPF can search for two different kinds of safety property
violations: deadlocks and assertion violations. In our ex-
periments we searched for deadlocks because the imple-
mentations of the protocols we use in the experimental
section are intentionally seeded with errors that lead to a
deadlock situation. Also, shorter paths are preferred to

longer paths and so, our fitness function f(x) is defined
as follows:

f(x) = DL ∗ deadlockfound + numblocked +
1

1 + plen
, (3)

where the constant DL represents the value given if a
deadlock is found and numblocked represents the per-
centage (in the [0, 100] range) of blocked threads at the
end of the path. The variables deadlockfound indicates
if a deadlock has been found (value 1) or not (value 0)
and plen represents the number of transitions in the path.
The PSO will try to maximize f(x). We used 10000 for
DL which will give a large preference to a path leading
to a deadlock.

5 Experiments

We have implemented our algorithmic proposal in JPF
and report, in this section, the results of the experiments
comparing the performance of PSO against three exhaus-
tive algorithms. To evaluate the efficacy of PSO to find
errors in protocols implemented in Java we selected two
fairly complex and well known protocols: the Group
Address Registration Protocol (GARP) and the General
Inter-ORB Protocol (GIOP). We based our implemen-
tation of these protocols on previously studied Promela
implementations found in (Nakatani, 1997) and (Kamel
and Leue, 1998). GARP was proved correct in (Nakatani,
1997), but several implementation restrictions introduced
both assertion violations and deadlocks in it. GIOP also
has a known deadlock (Kamel and Leue, 1998). The im-
plementation of GIOP we use is composed of two users
(clients) and one server. Since these two protocol im-
plementations have faults, and due to their fairly com-
plex nature, they provide a good benchmark to compare
the efficacy of PSO against the traditional exact search
methods.

5.1 Algorithms and Parameters

For the experiments we use three exhaustive techniques
in addition to the PSO: Depth First Search, Breadth First
Search, and Random Depth First Search (RandomDFS).
The latter is a variation of DFS in which the transition
choice order is randomized when a state is expanded.
Using this functionality allows DFS to behave slightly
differently than standard. Usually, DFS follows the first
transition in each state. When that transition is fully ex-
plored, DFS advances to the next transition and repeats
the process. With the option to randomize the transition
choice order turned on, JPF first randomizes the transi-
tions order before presenting them to DFS, obtaining a
stochastic exhaustive algorithm. While DFS still thinks
it is using the first transition, in reality it may be using
any other transition. This option may allow DFS to find
errors in situations where it normally would not find any
due to memory constraints.

322

There are several parameters that must be defined for
PSO to work correctly. Being so, we used the common
value of 2 for both c1 and c2. We have also used a linear
decreasing inertia factor (w) from 1.2 to 0.6. The lin-
ear decreasing inertia choice has been previously studied
with (Shi and Eberhart, 1998) suggesting it improves the
PSO performance. We have also used 300 as maxLen,
thus limiting the paths to a maximum of 300 transitions.
To avoid falling into local optima, we defined itupert as
5 iterations without improvement until a perturbation is
made. As stopping criterion, we have used 30 iterations,
that is, the PSO will move each particle 30 times. We
used 20 particles in the PSO swarm. Table 1 summarizes
these parameters.

Table 1: Parameters of PSO
Parameter Value

w
Linearly decreasing from
1.2 to 0.6

c1 2
c2 2
maxLen 300
itupert 5
Stopping Criterion 30 iterations
Number of Particles 20

For each of the protocols we have executed PSO and
RandomDFS 50 times to get a high statistical confidence
since they are stochastic algorithms. We report the av-
erage (avg), the standard deviation (std), the minimum
(min), and the maximum (max) of the different mea-
surements collected. BFS and DFS were only executed
once, since they are deterministic algorithms. These ex-
periments were executed in a Pentium Core 2 Duo at
2.14 GHz using Windows XP Service Pack 2 and the Sun
JRE 1.6.0 02 limited to 512 MB of RAM.

5.2 Results

In Table 2 we show the results on the GARP protocol.
We present the hit rate (number of executions that found
an error against the total number of executions), the time
taken until an error was found (first error time) measured
in seconds, the total time taken by the execution of the
search, the depth of the first error found (first error depth)
measured as the error trail length, the smallest error trail
found, and the total memory used in the execution of the
algorithms measured in megabytes.

In this first protocol, DFS and BFS fail to find an error,
running out of memory before the error is found. Using
RandomDFS, randomizing the search order, the error is
found on only 9 of the 50 runs. PSO is able to find an er-
ror in every run. Furthermore, although we only show the
path length to the first error found and the length of the
shortest path leading to an error, PSO finds multiple er-
rors, both deadlocks and assertion violations, in each run.

Analyzing the total time spent by each of successful
runs, we can observe that RandomDFS has a faster exe-

Table 2: Results of the algorithms with GARP
Measure Statistics BFS DFS RandomDFS PSO
Hit rate prop 0/1 0/1 9/50 50/50

First error time (s)

avg − − 5.89 6.40
std − − 8.52 6.67
min − − 1 0
max − − 29 31

Total time (s)

avg − − 5.89 91.64
std − − 8.52 19.81
min − − 1 48
max − − 29 137

First error depth

avg − − 4621.44 178.62
std − − 4848.39 38.92
min − − 555 121
max − − 16922 288

Smallest error depth

avg − − 4621.44 133.86
std − − 4848.39 11.53
min − − 555 120
max − − 16922 173

Memory used (MB)

avg − − 97.67 412.12
std − − 130.31 1.85
min − − 31 408
max − − 457 416

cution time. That is explained by the fact that PSO con-
tinues to try to improve the error trail (making it shorter)
while RandomDFS stops as soon as an error is found. If
we look at the first error time, which is the elapsed time
until any error is found, then we can see that the differ-
ence between RandomDFS and PSO is small (in fact, a
statistical test not shown reveals that the difference is not
statistically significant).

With respect to the first error depth, PSO shows a clear
advantage by having an error trail with approximately
179 transitions while RandomDFS obtains an error trail
of approximately 4621 transitions (using the same time).
PSO continues to improve that error trail size, reduc-
ing the size of that first error trail by approximately 45
transitions.

Regarding the memory consumed by both algorithms,
we can see that RandomDFS has huge variations, rang-
ing from a small amount of memory (31 MB) up to run-
ning out of memory (when no error is found). PSO uses
about 412 MB of memory, with little variation. That is
explained by the fact that PSO does not require to save
visited states to perform the search. However, if mem-
ory is available, our PSO will save those states in a cache
to improve the speed of operation. That means that PSO
will use all the available memory just to improve perfor-
mance. If there is no more memory available, perfor-
mance is degraded, but the search continues. This con-
trasts with the behaviour of DFS and BFS that cannot find
an error in the GARP protocol using 512 MB.

Now we turn to the GIOP protocol. Table 3 shows the
results. In this protocol, BFS is again unable to find an
error due to memory constraints, but DFS finds one error
successfully. RandomDFS and PSO are also able to find
errors in all the runs.

As expected, PSO requires again more processing time
than the exact algorithms. DFS and RandomDFS find an
error very quickly while PSO requires about 19 seconds
to find an error. This may be due to the size limit of 300
transitions we impose to PSO. The first error found by

323

Table 3: Results of the algorithms with GIOP
Measure Statistics BFS DFS RandomDFS PSO
Hit rate prop 0/1 1/1 50/50 50/50

First error time (s)

avg − 4 1.26 19.10
std − 0 0.44 15.76
min − 4 1 1
max − 4 2 71

Total time (s)

avg − 4 1.26 149.52
std − 0 0.44 29.25
min − 4 1 74
max − 4 2 181

First error depth

avg − 2120 1293.16 291.32
std − 0 282.51 4.25
min − 2120 907 280
max − 2120 2301 300

Smallest error depth

avg − 2120 1293.16 280.52
std − 0 282.51 3.00
min − 2120 907 272
max − 2120 2301 287

Memory used (MB)

avg − 38 32.68 414.84
std − 0 2.51 1.88
min − 38 31 408
max − 38 42 418

Figure 2: Convergence of PSO on GARP and GIOP

PSO is very near this limit and very near the smallest er-
ror found. In this protocol, PSO is not able to improve
the error trail as much as with GARP. DFS finds an er-
ror with length of 2120 transitions, while RandomDFS
requires, on average, about 1293 transitions to reach an
error. The error trail given by PSO is, again, better for
helping the protocol developers to debug it, with only 280
transitions. Regarding the memory required, we can see
that DFS and RandomDFS require much less memory
than PSO that, as explained before, uses all the available
memory as cache.

Before concluding this section we are going to present
the evolution of the swarm of PSO during the search. In
Figure 2 we plot the fitness value of the best particle in
each iteration. The horizontal axis represents the itera-
tions, with the first one in the left and the last one in the
right. The vertical axis represents the fitness value. For
each iteration we take the gBest fitness values at that it-
eration in each of the 50 runs and plot their average. We
want to illustrate with this analysis how the convergence
of PSO takes place in both protocols.

We can observe in this graph that PSO converged faster
on GARP and an error has been always found after 25
iterations (in all the executions). In the GIOP proto-

col the curve is not as steep as in the GARP problem,
which is in accordance with the results we observed in
Table 3, where the time to the first error is larger than in
GARP (Table 2). In any of the protocols we can observe
that PSO is guided towards the error, either maintain-
ing the previous result or improving it in each iteration.
In the last iterations, we can see that the fitness value
has surpassed the 10000 value. According to (3) and
the constant values we used for DL, whenever a dead-
lock is found the fitness value is larger than 10000, since
for a deadlock to occur all the existing threads must be
blocked, increasing the fitness value. The fact that the
average of the 50 runs at the last iterations is larger than
10000 also shows that every run had found an error.

In conclusion, we can say that the results presented
in this section show that while BFS should give the opti-
mum (shortest) error trail, it cannot be used with complex
protocols, since it requires too much memory. DFS also
has memory constraints with complex protocols, espe-
cially if the error cannot be found in the first transitions,
as observed for the GARP. While randomizing the transi-
tion order may help DFS, the error trails returned by that
search method are still very large and therefore difficult
to use for debugging. These experiments show that PSO
promises to find good, if not optimum, error trails with a
small or no time penalty comparing to DFS. Also, PSO
can be used with complex programs without running out
of memory, as it does not need to store the previously
visited states. Storing them can improve performance,
which means we can use the available memory for the
algorithm’s benefit.

6 Conclusions and Future Work

We have presented here a novel application of the PSO
algorithm to find safety errors in network protocols us-
ing a model checking based approach. We have imple-
mented and used it with JPF, a model-checker that allows
the checking of concurrent programs written in Java, a
known language to most developers. To the best of our
knowledge, this is the first time that PSO has been ap-
plied to find errors in concurrent systems, using either
JPF or any other model checker.

As future work, we believe it would be interesting to
study the influence on the results of some techniques for
reducing the amount of memory required in the PSO al-
gorithm, such as partial order reduction or symmetry re-
duction. It would be interesting to investigate if the re-
sults of PSO can be improved using some more recent
changes to the basic PSO algorithm, like Fuzzy Adap-
tive PSO (Shi et al., 2001) or different topologies of the
PSO particle neighbourhood against the gBest topology
we used in our implementation. It would be also interest-
ing to compare PSO against other metaheuristic searches
in the protocol validation problem, like Genetic Algo-
rithms. Finally, some other heuristics could be used in
the fitness function of the PSO to check if the error trail
or the processing time could be improved.

324

7 Acknowledgments

This work has been partially funded by the Spanish Min-
istry of Education and Science and FEDER under con-
tract TIN2005-08818-C04-01 (the OPLINK project), and
also by European CELTIC through the Spanish Ministry
of Industry funds from FIT-330225-2007-1 (the CAR-
LINK project).

REFERENCES

Alba, E. and Chicano, F. (2007). Finding safety errors with
ACO. In Genetic and Evolutionary Computation Confer-
ence, pages 1066–1073, London, UK. ACM Press.

Ammann, P., Black, P., and Majurski, W. (1998). Using model
checking to generate tests from specifications. In Proceed-
ings of the 2nd IEEE International Conference on Formal
Engineering Methods, pages 46–54, Brisbane, Australia.
IEEE Computer Society Press.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial
optimization: Overview and conceptual comparison. ACM
Computing Surveys, 35(3):268–308.

Burch, J. R., Clarke, E. M., Long, D. E., McMillan, K. L., and
Dill, D. L. (1994). Symbolic model checking for sequential
circuit verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(4).

Clarke, E., Grumberg, O., Minea, M., and Peled, D. (1999).
State space reduction using partial order techniques. Inter-
national Journal on Software Tools for Technology Transfer
(STTT), 2(3):279–287.

Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis
of synchronization skeletons using branching-time temporal
logic. In Logic of Programs, Workshop, pages 52–71, Lon-
don, UK. Springer-Verlag.

Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Au-
tomatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans. Program. Lang.
Syst., 8(2):244–263.

Clarke, E. M., Grumberg, O., and Peled, D. A. (2000). Model
Checking. The MIT Press.

Edelkamp, S., Leue, S., and Lluch-Lafuente, A. (2004). Di-
rected explicit-state model checking in the validation of
communication protocols. International Journal of Software
Tools for Technology Transfer, 5:247–267.

Godefroid, P. and Khurshid, S. (2004). Exploring very large
state spaces using genetic algorithms. International Journal
on Software Tools for Technology Transfer, 6(2):117–127.

Groce, A. and Visser, W. (2004). Heuristics for model checking
Java programs. International Journal on Software Tools for
Technology Transfer (STTT), 6(4):260–276.

Holzmann, G. J. (2004). The SPIN Model Checker. Addison-
Wesley.

Holzmann, G. J., Peled, D., and Yannakakis, M. (1996). On
nested depth first search. In Proceedings of the Second SPIN
Workshop, pages 23–32. American Mathematical Society.

Kamel, M. and Leue, S. (1998). Validation of the general inter-
orb protocol (giop) using the spin model-checker. Technical
report, Department of Electrical and Computer Engineering
University of Waterloo.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimiza-
tion. In IEEE International Conference on Neural Networks,
volume 4.

Lafuente, A. L. (2003). Symmetry Reduction and Heuristic
Search for Error Detection in Model Checking. In Workshop
on Model Checking and Artificial Intelligence.

Michael, C. C., McGraw, G., and Schatz, M. A. (2001). Gener-
ating software test data by evolution. IEEE Transactions on
Software Engineering, 27(12):1085–1110.

Nakatani, T. (1997). Verification of a group address registration
protocol using promela and spin.

Shi, Y. and Eberhart, R. (1998). Parameter selection in parti-
cle swarm optimization. Evolutionary Programming, 7:611–
616.

Shi, Y., Eberhart, R., Team, E., and Kokomo, I. (2001). Fuzzy
adaptive particle swarm optimization. In Congress on Evo-
lutionary Computation, volume 1.

Valmari, A. (1998). Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science, chapter
The state explosion problem, pages 429–528. Springer.

AUTHOR BIOGRAPHIES
MARCO FERREIRA is professor in the Escola Supe-
rior de Tecnologia e Gestão de Leiria, Portugal. Nowa-
days he is a PhD student in the University of Ex-
tremadura. His main research interests is the application
of metaheuristic algorithms to model checking.
FRANCISCO CHICANO is assistant professor in the
University of Málaga, Spain. He received the PhD
degree in Computer Science from the same univer-
sity in 2007. His main research lines include the
application of metaheuristic algorithms to optimiza-
tion problems and, in particular, to Software Engi-
neering problems. His Web-page can be found at
neo.lcc.uma.es/staff/francis.
ENRIQUE ALBA is tenure in the University of Málaga,
Spain. He received the PhD degree in Computer Science
from the same university in 1999. His main research lines
focus on metaheuristic algorithms in general. His Web-
page can be found at www.lcc.uma.es/˜eat.
JUAN A. GOMEZ-PULIDO is professor in the Uni-
versity of Extremadura, Spain. He received the PhD
degree in Computer Science from the Complutense
University of Madrid in 1993. His main research
interests are applications of reconfigurable hardware
to accelerate evolutionary algorithms used in opti-
mization problems. His Web-page can be found at
arco.unex.es/jangomez.

325

AN ALGORITHM AND SOME NUMERICAL EXPERIMENTS FOR THE

SCHEDULING OF TASKS WITH FAULT-TOLERANCY CONSTRAINTS ON

HETEROGENEOUS SYSTEMS

Moustafa NAKECHBANDI

Jean-Yves COLIN

LITIS, Le Havre University,

5, rue Philippe Lebon, BP 540, 76058, Le Havre cedex, France.

{moustafa.nakechbandi, jean-yves.colin}@univ-lehavre.fr

KEYWORDS

DAG, Scheduling with communication, Fault tolerant,

Heterogeneous systems.

ABSTRACT

In this paper, we propose an efficient scheduling algorithm for

problems in which tasks with precedence constraints and

communication delays have to be scheduled on an heterogeneous

distributed system with an one fault hypothesis. Based on an

extension of the Critical-Path Method CPM/PERT, our algorithm

combines an optimal schedule with some additional tasks

duplication, to provide fault-tolerance. Backup copies are not

established for tasks that have already more than one original

copy. The result is a schedule in polynomial time that is optimal

when there is no failure, and is a good resilient schedule in the

case of one server failure. We finally compare the optimal

solutions with the resilient solutions found by this algorithm on

several semi-random DAGs.

I. INTRODUCTION

 Heterogeneous distributed systems have been

increasingly used for scientific and commercial

applications. Recent examples of such applications include

Automated Document Factories (ADF) in banking

environments where several hundred thousands documents

are produced each day on networks of several

multiprocessors servers. Or high performance Data Mining

(DM) systems (Palmerini 2004) that need to process very

large data collections using very time-consuming

algorithms. Or Grid Computing systems (Ruffner et al.

2003, Venugopal et al. 2004) such as Computational

Grids which focus primarily on very computationally-

intensive operations, or Data Grids which control the

sharing and management of large amounts of distributed

data.

 However, efficiently using these heterogeneous

systems is a hard problem, because the general problem of

optimally scheduling tasks is NP-complete, even when

there are no communication delays (Kwok and Ahmad

1999, Garey and Johnson 1979). When the application

tasks can be represented by Directed Acyclic Graphs

(DAGs), many dynamic scheduling algorithms have been

devised. For some examples, see (Maheswaran and Siegel

1998, Iverson and Özgüner 1998, Chen, and Maheswaran

2002). Also, several static algorithms for scheduling DAGs

in meta-computing systems are described in (Colin and

Chrétienne 1991, Topcuoglu et al. 1999, Alhusaini, et al.

1999, Kwok and Ahmad 1999). Most of them suppose that

tasks compete for limited processor resources, and thus

these algorithms are mostly heuristics. Problems with fault

tolerant aspects are less studied. Reliable execution of a set

of tasks is usually achieved by task duplication and backup

copies (Qin and Jiang 2006, Randell 1975, Chen and

Avizienis 1978, Girault, et al. 2004).

 A very classical and useful tool to study static

scheduling problems with DAG is the Critical Path Method

(also known as CPM, or PERT method, or CPM/PERT)

(Maheswaran and Siegel 1998). Using a relaxation of the

constraint on the number of available processors, this

method gives results such as a lower bound on the

execution time (or makespan) of the application and lower

bounds on the execution dates of all tasks of the DAG.

Because of the relaxation, tasks can be executed as soon as

possible. Improvements and limits of this method to

distributed systems with communications delays may be

found in (Colin and Chrétienne 1991, Colin et al. 1999,

Nakechbandi et al. 2002), for example. In (Colin et al.

2005), we studied the problem of scheduling the tasks of a

DAG on the servers of an heterogeneous system. There,

the relaxation used in CPM/PERT was replaced by the dual

relaxation that each server has no constraint on the number

of tasks it can simultaneously process. That is, each server

can simultaneously process a non limited number of tasks

without loss of performances. Our goal was to compute a

lower bound on the execution time of a realistic solution,

and compute lower bounds on the execution dates of all

tasks of the DAG. In (Nakechbandi et al. 2007), we further

supposed that one server (and at most one) could suffer

from a crash fault. The algorithm presented there improved

on the one presented in (Colin et al. 2005) by adding

backup copies to the optimal solution build.

 The solution we propose now is simpler than the one

presented in (Nakechbandi et al. 2007). Additionally, we

present some numerical experiments and simulation

results. This rest of this paper is divided into four main

parts. In the first one, we present the problem, and in the

second one, we present a solution to the problem. In the

third part, we make some numerical experiments using

randomly generated tasks graphs, comparing the optimal

solutions with the resilient solutions found by this

algorithm. Finally, in the fourth part, we discuss the

advantages and disadvantages of the proposed solution.

II. THE CENTRAL PROBLEM

2.1 The Distributed Servers System

 We call Distributed Servers System (DSS) a virtual set

of geographically distributed, multi-users, heterogeneous

or not, servers. Therefore, a DSS has the following

properties: first, the processing time of a task on a DSS

may vary from a server to another. The processing time of

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

326

each task on each server is supposed known. Second,

although it may be possible that some servers of a DSS are

potentially able to execute all the tasks of an application, it

may also be possible in some applications that some tasks

may not be executed by all servers. In a DSS problem, we

suppose that the needs of each task of an application are

known, and that at least one server of the DSS may

process it.

 The classical CPM/PERT relaxation of the number of

processors, is replaced in the DSS problem with the dual

relaxation that each server has no constraint on the number

of tasks it can simultaneously process. Thus we suppose

that the concurrent executions of some tasks of the

application on a server have a negligible effect on the

processing time of any other task of the application on the

same server.

 The transmission delay of a result between two tasks

depends on the tasks and on their respective sites. The

communication delay between two tasks executed on the

same server is supposed equal to 0.

Fig. 1: Example of Distributed Servers System with the list of the

executable services for each server.

2.2 Directed Acyclic Graph

 An application is decomposed into a set of indivisible

tasks that have to be processed. A task may need data or

results from other tasks to fulfil its function and then send

its results to other tasks. The transfers of data between the

tasks introduce dependencies between them. The resulting

dependencies form a Directed Acyclic Graph. Because the

servers are not necessarily identical, the processing time of

a given task can vary from one server to the next.

Furthermore, the duration of the transfer of a result on the

network cannot be ignored. This communication delay is

function of the size of the data to be transferred and of the

transmission speed that the network can provide between

the involved servers. Note that if two dependent tasks are

processed themselves on the same server, this

communication delay is considered to be 0.

 The central scheduling problem P on a Distributed

Server System, is represented therefore by the following

parameters:

• a set of servers, noted Σ = {σ1, ..., σs}, interconnected

by a network,

• a set of the tasks of the application, noted I = {1,..., n},

to be executed on Σ. The execution of task i, i ∈ I, on

server σr, σr ∈ Σ, is noted i/σr. The subset of the

servers able to process task i is noted Σi, and may be

different from Σ,

• the processing times of each task i on a server σr is a

positive value noted
ri σπ / . The set of processing

times of a given task i on all servers of Σ is noted

Πi(Σ).
ri σπ / = ∞ means that the task i cannot be

executed by the server σr.

• a set of the transmissions between the tasks of the

application, noted U. The transmission of a result of an

task i, i ∈ I, toward a task j, j ∈ I, is noted (i, j). It is

supposed in the following that the tasks are numbered

so that if (i, j) ∈ U, then i < j,

• the communication delays of the transmission of the

result (i, j) for a task i processed by server σr toward a

task j processed by server σp is a positive value noted

pr jic σσ /, / . The set of all possible communication

delays of the transmission of the result of task i,

toward task j is noted ∆i,j(Σ). Note that a zero in ∆i,j(Σ)

mean that i and j are on the same server, i.e.

pr jic σσ /, / = 0 ⇒ σr = σp. And
pr jic σσ /, / = ∞ means

that either task i cannot be executed by server σr, or

task j cannot be executed by server σp, or both.

 Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all processing

times of the tasks of P on Σ.

 Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be the set of all

communication delays of transmissions (i, j) on Σ.

 The central scheduling problem P on a distributed

servers system DSS can be modelled by a multi-valued

DAG G = {I, U, Π(Σ), ∆(Σ)}. In this case we note P={G,

Σ}.

Example 1 : Figure 2 presents an example of DAG.

Fig. 2. Example of DAG : the Πi vector on a node is the vector of the

processing time of task i on the various servers, and ∆i,j on an arc is the

communication delays matrix between the two tasks depending on the

servers that process them.

 On this example, if we have 4 servers {σ1, σ2, σ3, σ4 }

and if Π1 = (3333, ∞, 2, ∞), then 1 /1 σπ =3. And 2 /1 σπ = ∞ ,

meaning that server σ2 cannot execute task 2 etc.

 On the same example, communications from task 1 to

task 2 are given by matrix ∆1,2 in Fig.3.

 σ1 σσσσ2222 σ3 σ4

σ1 0 3 2 ∞

σ2 ∞ ∞ ∞ ∞

σσσσ3333 2 3333 0 ∞

σ4 ∞ ∞ ∞ ∞

Fig. 3. Example of communication delays matrix ∆1,2

between task 1 and task 2.

Possible Tasks

task 1
task 2
task 4
task 5

SERVER σ1 SERVER σ2

 Possible Tasks

task 2
task 3
task 5

Possible Tasks

task 1
task 2
task 3
task 5
task 6

SERVER σ3 SERVER σ4

Possible Tasks

task 3
task 4
task 5
task 6

Network

2

3

1

Π3

Π2

Π1

∆2,4
4

5

6

Π6

Π4

Π5
∆5,6

∆4,6

∆3,5

∆1,2

∆1,3
∆2,5

∆3,4

327

 In the matrix of Fig. 3, one can see that if task 1 is

processed on server σ3 and task 2 is processed on server

σ2 , then c1/σ3, 2/σ2 = 3.

2.3. Definition of a feasible solution

We note PRED(i), the set of the predecessors of task i in

G: { }),(et /)PRED(UikIkki ∈∈=

 And we note SUCC(i), the set of the successors of task

i in G: { }),(et /)SUCC(UjiIjji ∈∈=

 A feasible solution S for the problem P is a subset of

executions { i/σr , i∈I } with the following properties:

• each task i of the application is executed at least once

on at least one server σr of Σi,

• to each task i of the application executed by a server σr

of Σi, is associated one positive execution date
rit σ/ ,

• for each execution of a task i on a server σr, such that

PRED(i) ≠ ∅, there is at least an execution of a task k,

k ∈PRED(i), on a server σp, σp ∈ Σκ, that can transmit

its result to server σr before the execution date
rit σ/ .

 The last condition, also known as the Generalized

Precedence Constraint (GPC) (Colin et al. 1999), can be

expressed more formally as:

++≥Σ∈∃∈∀

≥
∈∀

rpppr

r

ikkkikp

i

r
cttik

t
Si

σσσσσ

σ

πσ
σ

 /, / / //

/

/),PRED(

0
/

else

)PRED(if ∅=i

 It means that if a communication must be done between

two scheduled tasks, there is at least one execution of the

first task on a server with enough delay between the end of

this task and the beginning of the second one for the

communication to take place. A feasible solution S for the

problem P is therefore a set of executions i/σr of all i tasks,

i ∈ I, scheduled at their dates
rit σ/ , and verifying the

Generalised Precedence Constraints GPC. Note that, in a

feasible solution, several servers may simultaneously or

not execute the same task. This may be useful to generate

less communications. All the executed tasks in this

feasible solution, however, must respect the Generalized

Dependence Constraints.

2.4. Optimality Condition

 Let T be the total processing time of an application

(also known as the makespan of the application) in a

feasible solution S, with T defined as:

)(max // rr

r

ii
Si/

tT σσ
σ

π+=
∈

 A feasible solution S* of the problem P modelled by a

DAG G = {I, U, Π(Σ), ∆(Σ)} is optimal if its total

processing time T* is minimal. That is, it does not exist

any feasible solution S with a total processing time T such

that T < T*.

III. THE DSS_1FAULT ALGORITHM

 The algorithm proposed here, named DSS_1FAULT,

has two phases: the first one is for the scheduling of

original copies where we use the DSS-OPT algorithm

(Colin et al. 2005) and the second one is for adding and

scheduling additional backups copies when necessary.

3.1. Scheduling the original copies

 We schedule original copies of tasks in our algorithm

with the DSS-OPT algorithm (Colin et al. 2005). The

DSS-OPT algorithm is an extension of CPM/PERT

algorithms type to the distributed servers problem. In its

first phase, it computes the earliest feasible execution date

of each task on every server, and in its second phase it

builds a feasible solution (without server fault) starting

from the end of the graph with the help of the earliest dates

computed in the first phase.

 Let P be a DSS scheduling problem, and let G = {I, U,

Π(Σ), ∆(Σ)} be its DAG.

 One can first note that there is an optimal trivial

solution to this DSS scheduling problem. In this trivial

solution, all possible tasks are executed on all possible

servers, as soon as possible, and their results are then

broadcasted to all others servers. This is an obvious waste

of processing power and communication resources,

however, and something as optimal, but less wasteful in

terms of used resources, is usually needed.

 The first phase of the DSS_OPT routine, DSS_LWB(),

goes from the initial tasks to the final ones, computing

along the way the earliest feasible execution dates

r / ib σ and earliest end date r / ir σ , for all possible

executions i/σr of each task i of problem P.

 The second phase of the DSS_OPT routine determines,

for every task i that does not have any successor in G, i.e.

task i is a “leaf” or final task, the execution i/σr ending at

the earliest possible date r / ir σ . If several executions of

task i end at the same smallest date
r / ib σ , one is chosen,

arbitrarily or using other criteria of convenience, and kept

in the solution. Then, for each kept execution i/σr that has

at least one predecessor in the application, the subset Li of

the executions of its predecessors that satisfy GPC(i/σr) is

established. This subset of executions of predecessors of i

contains at least an execution of each of its predecessors in

G. One execution k/σp of every predecessor task k of task i

is chosen in the subset, arbitrarily or using other criteria of

convenience, and kept in the solution. It is executed at its

earliest possible date
p / kb σ . The examination of the

predecessors is pursued in a recursive manner until the

studied tasks do not present any predecessors in G.

3.2. Adding backup copies

 The ADD_BACKUP_COPIES routine starts from tasks

without any predecessors, similarly to DSS_LWB(), and

proceed from there to the end of the DAG. First, if there is

currently only one copy of a given task, it determines what

is the worst possible delay it may encounter if a failure

occurs on another server, while satisfying its GPC. It also

determines the fastest server (not considering the server

executing the only current copy of this task in the current

solution) able to execute this task, and adds a backup copy

on this server to the solution, again considering the worst

possible delay resulting from this failure, while satisfying

the GPC of this copy. Else the task has already several

328

copies in the optimal solution, and the routine determines

for each original copy of this task, what is the worst

possible delay it may encounter if a failure occurs on

another server, while satisfying its GPC.

 The complete DSS_1FAULT algorithm is the

following:

Input: G = {I, U, Π(Σ), ∆(Σ)}

Output: A feasible solution with backup copies

DSS_1FAULT ()
 DSS_OPT() // first phase

 ADD_BACKUP_COPIES() // second phase

end DSS_1FAULT

DSS_OPT()

 DSS_LWB ()

)(minmax /
)(SUCC/ r

ir

i
ii

rT σ
σ Σ∈∀∅=∀

=

 for all tasks i such that SUCC(i) = ∅ do

 iL ← { i/σr / σr ∈ Σι and Tr
ri ≤σ/ }

 i/σr ← keepOnefrom(iL)

 schedule (i/σr)
 end for

end DSS_OPT

DSS_LWB()

 for each task i where PRED(i) = ∅ do

 for each server σr such that σr ∈ Σi do

 0/ ←
rib σ

rr iir σ/ / πσ ←

 end for

 mark (i)

 end for
 while there is a non marked task i such that

 all its predecessors k in G are marked do

 for each server σr such that σr ∈ Σi do

))(min(max /,///
)(PRED

/ rppp

kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

rrr iii br σσσ π /// +←

 end for
 mark (i)

 end while

end DSS_LWB

schedule(i/σσσσr)

 execute the task i at the date
rib σ/ on the server σr

 if PRED(i) ≠ ∅ then

 for each task k such that k ∈ PRED(i) do

 ri

kL
σ/

← { k/σq / σp ∈ Σκ and

rrppp iikkk bcb σσσσσ π //,/// ≤++ }

 k/σq ← keepOneFrom(ri

kL
σ/

)

 schedule (k/σq)
 end for

 end if

end schedule

keepOneFrom(Li)

 return an execution i/σr of task i in the list of the

 executions Li.

end keepOneFrom.

ADD_BACKUP_COPIES()

 for each task i such that PRED(i) = ∅ do

 if i has only one copy scheduled then

 //compute one backup on the fastest server left, if

 // failure is on server of this copy

 Let σ r ≠ σi be the fastest server able to execute i
 Execute a new backup copy of i on σ r at date 0

 end if
 mark (i)

 end for
 while there is a non marked task i such that all its

 predecessors k in G are marked do

 if i has only one copy scheduled then

 Let σi be the server executing the copy of i

 // First compute the delayed execution date of

 // task i on this server, if the failure is on an

 // another server

 find the delayed execution date of the copy of i

 on σ i taking only into account the delayed

 execution dates of the copies and backups of

 each predecessor of i to verify the GPC

 // Second compute one backup copy on the

 // fastest server left, if failure is on server of

 // primary

 Let σ r ≠ σi be the fastest server able to execute i

 Execute a backup copy of i on σ r taking only

 into account the delayed execution dates of the

 copies and backups of each predecessor of i to

 verify the GPC

 else // i has at least two copies scheduled, on

 // separate servers, of course

 // compute the delayed execution date of the

 // copy of task i on each server, if the failure is

 // on an another server

 for each server σ i executing a copy of i do

 Find the delayed execution date of the copy of

 i on σ i taking only into account the delayed

 execution dates of the copies and backups of

 each predecessor of i to verify the GPC

 end do

 end if
 mark (i)

 end while

end ADD_BACKUP_COPIES

Example 2 : If we consider the graph of the example 1,

and using 4 servers the DSS_OPT gives the following

optimal scheduling (Fig. 4.) :

Fig. 4. Gantt chart given by DSS_OPT. The fact that task 3 is executed at

the same time that task 2 on server σ3 comes from the CPM/PERT

relaxation.

By adding backup copies using ADD_BACKUP_COPIES

we get the following fault-tolerance scheduling (Fig. 5.):

server

s s

time

Task 3

duplicated and

executed

on server σ4

Task 3 executed

on server σ3

329

Fig. 5. Gantt chart given by DSS_1FAULT

 Because the computed execution time of each task on

each server is its earliest execution time on this server, and

because only the copy with the earliest ending time, of

each task without any successor, is used in the solution

calculated by DSS_OPT() , and finally because all other

copies are used only if they ensure that the final copies

receives their data in time else they are not used, it follows

that the feasible solution computed by DSS_OPT is

optimal in execution time for the problem without server

failure.

Lemma 1: The feasible solution calculated by the DSS_OPT

algorithm is optimal if there is no server failure.

 Because the copies in the DSS_1FAULT solution

coming from the DSS_OPT solution will not be delayed if

there is no server failure, and because additional backup

will not be used in this case, then we have:

Theorem 1: The solution calculated by DSS_1FAULT is

optimal if there is no server failure.

 Also, in the final solution computed by

DSS_1FAULT(), each task of the DAG has at least two

copies (coming from the DSS_OPT() routine), or one copy

(coming from the DSS_OPT() routine) and one backup

copy (build by the ADD_BACKUP_COPY() routine) ,

always executed on different servers.

 Furthermore, the execution date of each backup copy

and the delayed execution date of each original copy

coming from DSS_OPT is always evaluated by

ADD_BACKUP_COPIES() taking into account the

delayed execution dates of the copies and the execution

dates of the backups copies of each predecessor, using the

worst possible case of failure of a predecessor, we have:

Theorem 2: The solution calculated by DSS_1FAULT is

feasible if there is at most one server failure.

 The most computationally intensive part of DSS_OPT()

is the first part DSS_LWB(). In this part, for each task i,

for each server executing i, for each predecessor j of i, for

each server executing j, a small computation is done. Thus

the complexity of DSS_LWB() is Ο(n
2
s

2
), where n is the

number of tasks in P, and s is the number of servers in

DSS. Thus, the complexity of the DSS_OPT() algorithm

is Ο(n
2
s

2
).

 Similarly, in ADD_BACKUP_COPIES(), for each task

i, for each copy of task i (at most one copy per server), for

each predecessor j of i, for each copy of j (at most one per

server), one small computation is done. Thus the

complexity of ADD_BACKUP_COPIES() is bounded by

Ο(n
2
s

2
), where n is the number of tasks in P, and s is the

number of servers in DSS. Thus we have:

Theorem 3: The complexity of the DSS_1FAULT

algorithm is Ο(n
2
s

2
).

IV. PERFORMANCE EVALUATION

 To evaluate DSS_1FAULT, we have compared the

fault tolerant solutions it generated on some classical

problems and DAG to optimal solutions without fault

tolerancy. These numerical experiments were done using

simulations on three different kinds of graphs. The first one

is a simple, semi-random, one level ‘fork-join’ DAG (see

Fig. 6. a.), with limited parallelism. The second one is a

regular simple two-dimensional grid DAG (see Fig. 6. b.),

exhibited by some numerical applications, with lot of

parallelism and very local communications. The last one is

the “butterfly” DAG (see Fig6. c.) present in applications

such as the FFT or shuffles algorithms, again with lot of

parallelism, but a more complex communication pattern.

The servers performances are independent random values

for each task of the DAG, and so is each communication

delay.

Fig. 6. Three different kind of graphs

4.1. Fork-Join DAG

 As expected, this kind of DAG does show a very

limited parallelism. On the Gantt chart example in Fig. 7,

one can distinguish the original copies of the tasks on the

left part of each server’s simulated activity chart, and the

added backup copies on the right part.

Fig. 7. Gantt chart for Fork-Join DAG

A. These lines represent the execution of the originals copies

B. These lines represent the execution of the backups copies.

A
B

backup copies

originals copies

servers s

time

server

time

330

4.2. 2-Dimensional grid DAG

 This highly parallel DAG is much more efficiently

executed on the servers. On the Gantt chart example in Fig.

8, the original copies of the tasks are grouped in the left

part of each server’s simulated activity chart, with the

added backup copies spread more widely on the rights part.

Although this is not clearly visible on the black and white

figure, some added backup copies of the earliest tasks of

the DG are present in the mist of the original copies.

Fig. 8. Gantt chart for grid DAG

A. These lines represent the execution of the originals copies

 B. These lines represent the execution of the backups copies.

4.3. Butterfly DAG

 The Butterfly is a highly parallel DAG too. On the

Gantt chart example of Fig. 9, the original copies are

clearly distinguishable one the left, as bands. Because of

the random nature of the server’s performances, these

bands tend to become fuzzier as time passes, however. The

backup copies are scheduled later on the right part of the

chart.

Fig.9. Gantt chart for Butterfly DAG

A. These lines represent the execution of the originals copies

B. These lines represent the execution of the backups copies.

4.4. Makespan with and without backup copies

 In all three kinds of DAGs, it is found that the

makespan average with backup copies is between 1.5

(usually) and 2 (at most) times the makespan without

backup copies. For example, in the Butterfly DAGs, we

obtained the following figure (Fig . 10). In this simulation

the number of tasks varies from 10 to 1200 tasks and we

have the average over 50 random DAGs.

Fig.10. Makespan average for Butterfly DAGs

A. Makespan without backup, B. Makespan with backup,

V. ANALYSIS

 This algorithm has two advantages:

• when no server fails, the DSS-1FAULT’s solution

is optimal as it uses the optimal solution computed by

DSS-OPT.

• when there is a failure of one server, the DSS-

1FAULT’s solution is certain to finish correctly, because

every tasks has two or more scheduled copies on different

servers in the final solution. If more than one fault occur,

the solution may still finish, but there is no guaranty there.

 We do not establish backup copies for tasks which have

already two or more original copies from the DSS-OPT

algorithm scheduling to limit tasks duplication and

processor. It also gives indications on the sensibility of an

application to one server failure when compared to the

solution without any server failure, because the makespan

in the presence of one failure is a worst case analysis.

 The model of failure, as it features at most 1 crash, may

seem poor. However, if the probability of any failure is

very low, and the probabilities of failure are independent,

then the probability of two failures will be much smaller

indeed. Furthermore, the algorithm may be extended to 2

or more failures, by using two or more backup copies per

task. The efficiency of this kind of solution to the “k-

failures” problem is not investigated, yet.

 Finally, the solution solved by this new algorithm uses

the classical CPM/PERT relaxation, namely that an

unbounded number of tasks may be processed on each

server in parallel without any effect on the tasks’

processing time, in the same sense that the CPM/PERT

method do not consider resources constraints in order to

get earliest execution dates. This relaxation is not far from

the reality, if each server is a multiprocessors architecture.

Or if each server is a time-shared, multi-users system with

a permanent heavy load coming from other applications,

and the tasks of an application on each server represent a

negligible additional load. In other cases, the same way

these CPM/PERT results are used in some real-life systems

as the priority values of tasks in some list-scheduling

algorithms, the result found by our algorithm may be used

as the first step of a list scheduling algorithm, in which the

earliest execution dates of primary and backup copies are

A
B

B A

A

B

time

server

s s

time

server

s s

Makespan

number of tasks

331

used as priority values to schedule these copies on the

servers of a real-life system.

VI. CONCLUSION AND FUTURE WORKS

 In this paper, we have proposed a polynomial

scheduling algorithm in which tasks with precedence

constraints and communication delays have to be

scheduled on an heterogeneous distributed system

environment with one fault hypothesis. To provide a fault-

tolerant capability, we employed primary and backup

copies. But no backup copies were established for tasks

which have more than one primary copy.

 The result have been a schedule in polynomial time that

gives earliest execution dates to copies of tasks when there

is no failure, and is a good resilient schedule in the case of

one failure. Performance evaluation on some DAGs gave

an increase in case of one server failure in makespan of 1.5

to 2 times the optimal makespan without server failure.

 The execution dates of the original and backup copies

may be used as priority values for list scheduling algorithm

in cases of real-life, limited resources, and systems.

 In our future work, we intend to study the same

problem with sub-networks failures. Also, we intend to

consider the problem of non permanent failures of servers.

Finally, we want to consider the problem of the partial

failure of one server, in which one server is not completely

down but loses the ability to execute some tasks and keeps

the ability to execute at least one other task.

REFERENCES

A. H. Alhusaini, V. K. Prasanna, C.S. Raghavendra. 1999. “A

Unified Resource Scheduling Framework for

Heterogeneous, Computing Environments”, Proceedings of

the 8th IEEE Heterogeneous Computing Workshop, Puerto

Rico, pp.156- 166.

R.E. Bellman. 1957. “Dynamic Programming”. Princeton

University Press, Princeton, New Jersey.

H. Chen, M. Maheswaran 2002. “Distributed Dynamic

Scheduling of Composite Tasks on Grid Computing

Systems”, Proceedings of the 11th IEEE Heterogeneous

Computing Workshop ,pp. 88b-98b, Fort Lauderdale.

L. Chen, A. Avizienis. 1978. “N-version programming: a fault

tolerant approach to reliability of software operation”,

Proceeding of the IEEE Fault-Tolerant Computing

Symposium, pp. 3-9.

J.-Y. Colin, P. Chrétienne 1991. "Scheduling with Small

Communication Delays and Task Duplication", Operations

Research, vol. 39, n o 4, 680684.

J.-Y. Colin , M. Nakechbandi, P. Colin, F. Guinand. 1999.

“Scheduling Tasks with communication Delays on Multi-

Levels Clusters”, PDPTA'99 : Parallel and Distributed

Techniques and Application, Las Vegas, U.S.A..

J.-Y. Colin , M. Nakechbandi, P. Colin. 2005. "A multi-valued

DAG model and an optimal PERT-like Algorithm for the

Distribution of Applications on Heterogeneous, Computing

Systems", PDPTA'05, Las Vegas, Nevada, USA, June, pp.

876-882.

M.J. Flynn. 1972. “Some computer organization and their

effectiveness.”, IEEE Transactions on Computer, pp. 948-

960, September.

M.R. Garey and D.S. Johnson. 1979. ”Computers and

Intractability, a Guide to the Theory of NP-Completeness”,

W. H. Freeman Company, San Francisco.

A. Girault, H. Kalla, and Y. Sorel. J 2004. “A scheduling

heuristics for distributed real-time embedded systems

tolerant to processor and communication media failures”.

International Journal of Production Research, 42(14):2877-

2898.

M. Iverson, F. Özgüner. 1998. “Dynamic, Competitive

Scheduling of Multible DAGs in a Distributes

Heterogeneous Environment”, Proceedings of the 7th IEEE

Heterogeneous Computing Workshop (HCW'98), pp. 70–78,

Orlando, Florida.

Yu-Kwong Kwok, and Ishfaq Ahmad. 1999. “Static scheduling

algorithms for allocating directed task graphs to

multiprocessors”, ACM Computing Surveys (CSUR), 31 (4):

406 – 471.

M. Maheswaran and H. J. Siegel. 1998. “A Dynamic matching

and scheduling algorithm for heterogeneous computing

systems”, Proceedings of the 7th IEEE Heterogeneous

Computing Workshop(HCW '98), pp. 5769, Orlando,

Florida.

M. Nakechbandi, J.-Y. Colin , C. Delaruelle. 2002. “Bounding

the makespan of best pre-scheduling of task graphs with

fixed communication delays and random execution times on

a virtual distributed system”, OPODIS02, Reims; pp. 225-

233.

M. Nakechbandi, J.-Y. Colin, J.B. Gashumba. 2007. "An efficient

fault-tolerant scheduling algorithm for precedence

constrained tasks in heterogeneous distributed systems";

CIS2E06 International Joint Conferences on Computer,

Information, and Systems Sciences, and Engineering,

December, 2006. Published in : Innovations & advanced

techniques in computer & information sciences &

engineering, Springer, 06-2007, pp 301-307.

P. Palmerini. 2004. “On performance of data mining: from

algorithms to management systems for data exploration”,

PhD. Thesis: TD-2004-2, Universit`a Ca’Foscari di

Venezia.

X. Qin and H. Jiang. 2006. “A Novel Fault-tolerant Scheduling

Algorithm for Precedence Constrained Tasks in Real-Time

Heterogeneous Systems” , Parallel Computing, vol. 32, no.

5-6, pp. 331-356.

B. Randell. 1975. “System structure for software fault-tolerance”,

IEEE Trans. Software Eng. 1(2,) pp. 220-232.

Christoph Ruffner, Pedro José Marrón, Kurt Rothermel. 2003

“An Enhanced Application Model for Scheduling in Grid

Environments”, TR-2003-01, University of Stuttgart,

Institute of Parallel and Distributed Systems (IPVS).

H. Topcuoglu, S. Hariri, and M.-Y. Wu. 1999. “Task scheduling

algorithms for heterogeneous processors”. In 8th

Heterogeneous Computing Workshop (HCW’ 99), pp. 3–14.

Srikumar Venugopal, Rajkumar Buyya and Lyle Winton. 2004.

“A Grid Task Broker for Scheduling Distributed Data-

Oriented Applications on Global Grids”, Technical Report,

GRIDS-TR-2004-1, Grid Computing and Distributed

Systems Laboratory, University of Melbourne, Australia.

AUTHOR BIOGRAPHIES

Moustafa NAKECHBANDI is Associate Professor at the

University of Le Havre, France. He received a Ph.D (1984) in

Computer Science from Besançon University. His research

interests are in optimization problems relative to parallel

computing and in fault-tolerant scheduling.

Jean-Yves COLIN is Assistant Professor at the University of

Le Havre, France. He received a Ph.D (1989) in Computer

Science from Paris 6 University. His research interests include

scheduling in heterogeneous distributed systems, and

optimization of parallel programs.

332

Structure and Latency Analyses for High Performance Computing System

Based on Asynchronous Optical Packet Switching

Zhao Jun and Sun Xiaohan

Department of Electronic Engineering

 Southeast University

 Nanjing 210096, China

E-mail: zhaojun1115@seu.edu.cn

xhsun@seu.edu.cn

KEYWORDS

High performance computing system, Asynchronous

optical packet switching, Distributed management

structure, Stability, Latency

ABSTRACT

A novel high performance computing system based on

optical packet switching and optical multicast

technologies is presented. Distributed management

architecture is used to alleviate the storing and

computing pressures of every stage, which is easy to

realize all-optical scalability. Asynchronous switching

mode is accepted at every stage for high-speed and

huge-capacity burst services transmission. The system

scale and the stability features are analyzed, and a two

stage system which interconnects 38,400 CPUs is

adopted. Moreover, the average packets waiting

latencies caused by the scheduling units and the

recycling-fiber-delay-line based collision resolution

units are simulated as 12.9ns and 0.63ns, respectively.

1. INTRODUCTION

High performance computing systems (HPCS) use

high-bandwidth and low-latency links to interconnect

huge amounts of distributed microprocessors for

providing timely exchanging of high-speed and

large-capacity services[1,2]. The BlueGene/L System, a

joint development of IBM and the Department of

Energy's (DOE) National Nuclear Security

Administration (NNSA), has been significantly scaled

up from 65,536 to 106,496 nodes and now has achieved

a Linpack benchmark performance of 478.2 TFop/s.

Accordingly, the development of HPCS is in the

tendency of higher speed and more processors, so more

pressures are placed on the performance of the

interconnection network [3].

The traditional electrical link is becoming the

bottleneck for high-speed and high-capability data

transmission, on the other hand, the static optical

interconnection technology, such as optical circuit

switching, can not meet the need for burst services

transmission [4]. Optical packet switching (OPS)

technology which has the effective bandwidth

utilization ability and fine exchanging granularity is

becoming the most promising one in next generation

optical network. HPCS based on OPS technology can

improve the parallel exchanging ability for the system

and is very attractively in HPCS design [5, 6]. However,

the switching unit as well as the collision resolution

module are still not mature, also, synchronous switching

technology and centralized management structure are

commonly used which are not easy to be constructed

and not favorable for system scalability and will also

induce more queue latencies [7].

This paper proposes a HPCS system based on

asynchronous OPS and optical multicast (AOPS

M-HPCS) technologies. Distributed management

structure is used to alleviate the storing and computing

pressures of every stage and can easily to realize

all-optical scalability. Multiple CPUs share one optical

transceiver which can increase the system scale. The

optical-switch (OS) based on semiconductor optical

amplifiers (SOA) combining with optical splitter are

used as switching units, meanwhile, the recycling fiber

delay lines (Rec-FDL) are used as collision resolution

units. The system scale, stability and delays induced by

scheduling-unit and Rec-FDL are simulated.

2. ARCHITECTURE ANALYSES FOR AOPS

M-HPCS SYSTEM

Figure 1 shows two-stage AOPS M-HPCS system

structure where the master-node which has higher level

controls n slave-nodes only, meanwhile, each

slave-node manages n scheduling-units (SU) which

controls m CPUs respectively and ordinal sends packets

from CPUs to the optical transceiver (TX/RX). By using

the 80 wavelength dense wavelength division

multiplexing (DWDM) links with single channel

capacity of 40 Gbit/s, the value of n can be confirmed as

80, and the two-stage system can interconnect 6,400×m
CPUs.

The Edge-note (EN) which constituted by electrical

buffers and packets assembly units can assemble the

data from CPUs into packet-payloads, which will be

exchanged by the optical switching units (OSU) in

optical domain. Information such as storage capacities

and computing abilities needed by each service is

carried in the packet-labels which will be extracted and

processed electronically by the controlling-units

(CU).Each packet is transmitted asynchronously for

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

333

decreasing the queue delay, and is exchanged firstly

among CPUs inside the slave node where it is generated

in, which can reduce the transmission latencies and

arbitration complexities of every stage. If no

destinations can be found in this slave-node, the packet

will be exchanged to the master-node, and then will be

allocated to other slave-nodes.

The SOA has lots of advantages such as

nanosecond high-speed switching ability, low

controlling voltage, easily been integrated, and so on.

Consequently, it can improve the switching speed by

using the SOA based optical-switches and a 1×81

optical splitter to construct the OSU. 80 of the splitter

output are used to interconnect the SUs in the

slave-node, while the additional one is dedicated to the

master-node connection. A packet can be switched to

one or more destinations by controlling the on-off states

of all the SOAs which can realize the optical multicast.

It may cause wrong receiving if two or more

packets arrive at the SOA-switch in its once tuning-time.

Here we use a 2×2 optical switch (OS) combine with a

Rec-FDL as the collision resolution units, which will

send the lower priority packets into the Rec-FDL for

delaying. The tunable wavelength converters (TWC)

can avoid wavelength conflicts between the downstream

signals and the slave-node signals and can also avoid

collisions among upstream signals in the master-node.

AWG

1

TWC

n

TWC

SOA 1 81 splitter

RX

TX
SU

EN

EN

TX

RX
SU

EN

EN

1

n

CU

Slave-node1

TWC

TWC
CU

Master-node

1 81 splitter

SOA

Splitter

FDL
Rec-FDL

OS

FDL

Rec-FDL

Splitter

AWG

OS

to slave-node1

to slave-noden

from slave-node1

from slave-noden

Figure 1: The Infrastructure for Two-stage AOPS M-HPCS (EN: Edge Node; SU: Scheduling Unit; RX/TX:

Optical Transceiver; CU: Controlling Unit; Rec_FDL: Recycling Fiber Delay Line; OS: Optical Switch).

3. PERFORMANCE ANALYSES FOR AOPS

M-HPCS SYSTEM

3.1. Latencies Caused by the Scheduling Units

The SU transmit the packets from all the attached ENs

in a polling mode. The inquiry time t´ for one EN is L/V,

where the packet length L is 256Byte in this paper, and

the optical transmitter rate V is 40Gbit/s. If the SU finds

no packets in the EN, then t´ equals to 0, and the

probability distribution for t´ is approximated expressed

as follows:
/

/

1 , '

, ' 0

mL V

mL V

e t L
P

e t

/V
 (1)

Here, represents the new packets arriving rate.

Therefore, the average value for t´ can be obtained from

(1), which is shown as /(1)(/)mL Vt e L V , then the

polling cycle for all the m ENs is tm . If one EN

generates j packets in this period, then the packets

longest waiting latency is
1T jmt , and this value will

change in the subsequent polling cycle, the fluctuation

value t1 has two possibilities, which are shown as

follows:
1t mt , there have no new packets arrive

at this EN in time mt , while
1t imt (i=1,2,…)

represent that i new packets are generated. Therefore,

the mean value for t1 is:

1

1

()
()

!

i
mt mt

i

mt
E t mte imt e

i
 2

The system is stable only if the longest waiting

latency is gradually decreasing. Accordingly, the

expression of E(t1)<0 must be contented for ensuring

the system to be stable

Assuming that the time required for T1 to decrease

to zero is represented as T1(j), which is schematically

depicted by the calculation flow-chart as shown in

figure 2, so the average latencies for the packets waiting

in the SU is given by:

1

1

()
()

!

j
mt

SU

j

mt
T e

j
T j 3

T1=T1+E(1t)

n=n+1

Yes

T1>0?

T1=j tm

n=0

No

Output n

T1(j)=n tm

Figure 2: Calculation Flow-chart for T1(j)

334

3.2. Latencies Caused by the Rec-FDL

A wrong receiving occurs whenever j+1 packets arrive

simultaneously at a SOA-switch inside its once

tuning-time t, then j lower priority packets will be

switched into the Rec-FDL, with the arriving as well as

departing time shown in figure 3. Here, T represents

the interval of the packets arriving time, T´ represents

the time-slot that may generate packets in the period of t

since the packet pj enter the Rec-FDL.

The longest waiting latency for the j packets is T2=jt,
which will be changed if other packets arrive at the

Rec-FDL inside the next period of T´. There also have

two values for the fluctuation-value (t2), one is t2=-t,
represents that no packets arrive at the Rec-FDL, and

the other is t2=it (i=1,2,…), which shows that i packets

are sent into the Rec-FDL. Accordingly, the mean value

for t2 can be shown as follows:

80 ' ' ' '

2

1

(80 ' ')
()

!

i
T T

i

T
E t te it e

i
 4

Where, ´represents the departing rate for the packets

from the SU, and the value of 80 is the number of the

SUs controlled by one slave-node.

If there have i CPUs generate packets in once

polling cycle tm , then /()i mt , and the mean value

can be shown in (5).

0

80 (1) () /()
m

mt i mt m i

i

m
e e i m

i
t 5

The system is stable only if the T2 can decrease to

zero. Accordingly, the other stability condition for the

system is E(t2)<0.

2t

jt

T´

P1 arriving

P2 arriving

Pj arriving

T T

t P1 departing P2 departing Pj departing

Figure 3: The Arriving and Departing Time for the j Packets inside the Rec-FDL.

The average waiting latencies (TRec-FDL) induced by

the Rec-FDL can be expressed in equation (6), where

T2(j) represents the time required for T2 to decrease to

zero, with the calculation flow-chart shown in figure 4.

'

Re 2

1

(')
()

!

j
t

c FDL

j

t
T e

j
T j 6

T2 >0?

T2 = T2+E(T´)
T2(j)= T2(j)+ T´
T´=t-T´/(T´+1)

Output T2(j)

T2=jt

T2(j) =t

T´=t-t/j

Yes

No

Figure 4: Calculation Flow-chart for T2(j)

4. SIMULATION ANALYSES

The simulation parameters are shown as follows:

t=2ns, T´=1ns. According to above analyses, E(t1)<0

as well as E(t2)<0 must be satisfied for ensuring the

stabilities of the system. It can be seen from figure 5

that the number of the CPUs (m) controled by the SU

varies inversely with , the maximum value of m is 19

as =1×106packets/s, and is 29 when decreases to

0.6×106packets/s. Accordingly, both the system scale

and the packets arriving rate must be considered in this

 design. Moreover, these values can

always ensure E(t2)<0 according to figure 6. In this

paper, the value of =1×106packets/s and m=6 are

adopted, therefore, the two-stage system can

interconnect 38,400 CPUs.

0 5 10 15 20 25 30 35 40

0.0

5.0x10
-7

1.0x10
-6

1.5x10
-6

2.0x10
-6

2.5x10
-6

E
(
t 1
)

m

Figure 5: Relations of E(t1) versus m and

0 5 10 15 20 25 30 35 40

-1.8x10
-9

-1.8x10
-9

-1.8x10
-9

-1.8x10
-9

-1.8x10
-9

-1.8x10
-9

-1.8x10
-9

-1.7x10
-9

-1.7x10
-9

-1.7x10
-9

-1.7x10
-9

-1.7x10
-9

-1.7x10
-9

-1.7x10
-9

-1.7x10
-9

-1.7x10
-9

-1.7x10
-9

-1.6x10
-9

-1.6x10
-9

E
(
t 2
)

m

Figure 6: Relations of E(t2) versus m and

As the system scale increases with m, and the

number of the packets, which enter the system

simultaneously, are also increased with , therefore, the

larger value of the m will cause more collisions, which

will induce higher blocking rate and more waiting

latencies. From figure 7 and figure 8 we can see that

335

when m =6×106packets/s, the latencies caused by the

SU collisions (TSU) and the Rec-FDL collisions (TRec-FDL)

equals to 12.9ns and 0.63ns, respectively.

2 4 6 8 10 1

0

50

100

150

200

2

T
S
U
(n
s
)

m

2

Figure 7: Relations of TSU versus m and

2 4 6 8 10 1

0.40

0.45

0.50

0.55

0.60

0.65

T
R
e
c
-F
D
L
(n
s
)

m

Figure 8: Relations of TRec-FDL versus m and

Furthermore, the latencies caused by the Rec-FDL

in the master-node can be analyzed with the same

methods as described above, and the simulation results

are influenced by the system parameters, such as the

packet length, optical transceiver rate, as well as the

tuning-time for the SOA-switch, and so on.

5. CONCLUSIONS

A novel HPCS based on asynchronous OPS and optical

multicast technologies is presented. The dense

wavelength division multiplexing transmission

technologies together with the multistage distributed

management topologies are used to construct a scalable

interconnection network, which is suitable for timely and

stochastic accesses for high-speed and massive burst

services. The collision resolution unit based on the

Rec-FDL are described in detail. The stabilities and the

scale of the system are analyzed, and the latencies

caused by the the Rec-FDL and the collisions in the

scheduling units for a 38,400 CPUs interconnection

system are simulated, which is 0.63ns and 12.9ns,

respectively. Moreover, the experimental researches will

be done later.

REFERENCES

[1] Hawkins C, Small B A, Wills D S, et al, “The data

vortex, an all optical path multicomputer interconnection

network [J]”, IEEE Transactions on Parallel and

Distributed Systems, 2007, 18(3), pp. 409-420.

[2] Hawkins C, Wills D S, “Impact of number of angles on

the performance of the data vortex optical

interconnection network [J]”, Journal of Lightwave

technology, 2006, 24(9), pp. 3288-3294.

[3] Drost R, Forrest C, Guenin B, et al, “Challenges in

building a flat-bandwidth memory hierarchy for a

large-scale computer with proximity communication

[C]”, Proceedings of the 13th Symposium on High

Performance Interconnects, Palo Alto, CA, August 2005,

Page(s):13-22.

[4] Barker K J, Benner A, Hoare R, “On the feasibility of

optical circuit switching for high performance

computing systems [C]”, IEEE, Conference on

Supercomputing. Seattle, USA, 2005, pp. 1-22.

[5] Masetti F, Chiaroni D, Dragnea R, et al, “High-speed

high-capacity packet-switching fabric: a key system for

required flexibility and capacity [J]”, Journal of Optical

Networking, 2003, 2(7), pp. 255-265.

[6] Hemenway R, Richard R. Grzybowski,

“Optical-packet-switched interconnect for

supercomputer applications [J]”, Journal of Optical

Networking, 2004, 3(12), pp. 900-913.

[7] Minkenberg C, Abel F, Muller P, et al, “Designing a

Crossbar Scheduler for HPC Applications [J]”, IEEE

Micro , 2006, 26(3), pp. 58-71.

AUTHOR BIOGRAPHIES

JUN ZHAO, he is currently pursuing his Ph.D degree

in the lab of optical communications, department of

electronics engineering, Southeast University, Nanjing,

China. His research interests include the high

performance computing system design, optical packet

switching, high speed optical signal processing, and

transparent optical networks.

XIAOHAN SUN, a professor of electronics engineering,

Southeast University, Nanjing, China. She was the

visiting professor at Research Lab of Electronics, MIT,

USA from 2002 to 2004. Her current research interests

are photonic devices, high-speed photonics systems and

next generation optical networks (NGON), including (a)

optical pulse propagation in WDM systems influenced

by nonlinear effects, PMD, crosstalk and so on, (b)

management and control for NGON, (c) reliability and

survivability for NGON, (d) Optical fiber sensor

technology and optical imaging, and (e) design and

measurement for semiconductor materials based PLCs.

336

HPCS 2008 POSTER
and Work in Progress Session (Partial)

337

338

 COMMUNICATION COST OF A MATRIX PRODUCT ON
 SUPER-HYPERCUBE ARCHITECTURE

 Maryam Amiripour and Hamid Abachi

 Department of Electrical and Computer Systems Engineering
 Monash University
 Australia
 E-mail: maryam.amiripour@eng.monash.edu.au

KEYWORDS
Communication Cost, Hypercube, Super Hypercube,
Dynastatic, Matrix Product

ABSTRACT

Processor allocation and the task scheduling technique
in parallel processing systems play a significant role in
improving the performance of a message-passing
architecture. Adapting the right algorithms and further
improvements in areas such as time complexity,
execution time, speed up and synchronization
mechanisms undoubtedly facilitates implementation of
advanced applications on a parallel processing system.
These applications include but are not limited to DNA
computing, artificial immune systems and optical
computing to name a few. This paper highlights the
communication cost related to a Super-Hypercube
topology for being a subclass of traditional
Hypercube architecture.

Furthermore, a particular reference is made to the
mathematical modeling of Hypercube and Super-
Hypercube architectures. Finally, graphical
presentations are carried out based on mathematical
calculations to address the advantage of Super-
Hypercube topology.

INTRODUCTION

Parallel processing systems are commonly applied in
areas such as military, space, signal processing, image
processing and pattern recognition that require high
computational power. These parallel processing
systems could be implemented to solve many
engineering problems that suffer from lack of high
reliability, performance, flexibility and compatibility,
availability, portability, and low in cost and size.

Hypercube architectures perform well for a large range
of problems. It is well suited for both general-purpose
and special-purpose applications. They are mainly used
in matrix operations, sorting, signal and image
processing where extensive data processing is required
(Walker 1998). Figure 1 illustrates the general form of
this architecture.

Figure 1: 3 D Hypercube Architecture

In Hypercube architectures when communication
between two indirectly connected Processing Elements
(PEs) is required, the message has to cross one or more
hyper-planes and go through intermediate PEs before
reaching its destination. The PEs involved are required
to compute and handle message-passing, which
reduces the overall computational power and
performance. In addition, if one of the intermediate
PEs is faulty or busy performing tasks, there will be a
significant downtime in communication between the
source and destination PEs.

In order to overcome Hypercube limitations such as
routing and expandability, an enhanced version of the
Hypercube architecture namely Super-Hypercube was
developed (Abachi 1997). This architecture includes
applying a Router (R) to the basic Hypercube. This
router acts as a crossbar switch, which can provide a
communication path between two indirect PEs. Its
usage in conjunction with SGI (Silicon Graphics Inc.)
products relieves the processor of the routing task and
provides more efficient computing activities. Figure 2
shows the basic principle of this architecture.
.
As reported in (Grama et al. 2003), interconnection
networks can be classified as either dynamic or static.
The former interconnection is designed by using
switches to connect PEs together. On the other hand,
the latter deals with the networks consist of point-to-
point communication links among PEs. In the Super-
Hypercube topology, the adjacent PEs are directly
connected together without use of the Router (R) and
indirect PEs are connected together through a Router
(R).

PE

PE

PEPE

PE

PEPE

PE

PE: Processor Element

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

339

mailto:maryam.amiripour@eng.monash.edu.au

PE

PE

PEPE

PE

PEPE

PE

PE: Processor Element, R: Router

R

Figure 2: Super- Hypercube Architecture

The Super-Hypercube outlined in this paper uses
combination of both categories (dynamic and static). In
this paper it is coined as Dynamic-Static (Dynastatic)
interconnection.

The aim of this research is to identify the advantages of
communication cost for Dynastatic Super-Hypercube
architecture when is compared with the traditional
Hypercube topology.

MATRIX MULTIPLICATION ON
DISTRIBUTED MEMORY SYSTEMS

In many applications, matrix multiplication involves
dealing with different sizes (squares vs. rectangular)
and may include the communication cost. The size of
the matrix can significantly impact on the performance
of parallel matrix multiplication algorithm (Dongarra
et al 2007).
This section outlines the general mathematical model
for square matrix multiplication.

Basic Concepts, Definitions and Assumptions

Let and be matrices of size and
respectively. The product of and is a matrix of
size which denoted by and is given by:

for each pair and with and .

For the purpose of this paper, we perform a matrix
multiplication on a DMS which is more favorable than
shared memory. In doing so, we consider the following
definitions (Li 2007):

Definition 1: In order to construct our mathematical
we consider that a DMS can support one-to-one
communication in time unit. For this
purpose, a fast and scalable parallel matrix algorithm is
required.

Definition 2: We assume that a DMS consists of
PEs with their own local
memory . In addition, we
consider that PEs have the capability of

communicating with each other through message-
passing scheme. Moreover, the computation and
communication are globally synchronized into steps.
That is to say, a step is either a computation step or a
communication step. In former, each PE has a
capability of performing a local logic/ arithmetic
operation or in worse scenario is idle and it utilises
constant amount of time.
In latter, PEs could communicate with one another bio-
directionally via an interconnection network. In this
case, a communication step can be mathematically
expressed as:

 where
 . This results in PE sending a value to

PE and is a mapping
.

Definition 3: If PE doesn’t send any messages
during the communication step, then and

 is undefined.
However, in a practical situation, there is at most one j
such that . This implies each PE can
maximum receive one message in one-to-one
communication step. This also reviles that based on
definition 1, the DMS supports the above
communication step in time frame.
From a practical application point of view, in the
busiest communication step, every PE sends a message
to another processor and

is a permutation of

Definition 4: Based on the above definitions and
assumptions, if a computation step and the
communication step in performing a parallel task on a
DMS, are and respectively, then the time
complexity of performing parallel tasks can be
presented as: .

Furthermore, if the number of PEs in parallel
processing system is less than the required sub-tasks,
then the time complexity can be shown as:

 (1)

 where is the problem size, is the number of PEs
available, is the time complexity of the best
sequential algorithm, and is the
overall communication overhead of a parallel
computation.

 From an algorithmic point of view, a DMS is
characterized by the function which
measures the communication capability of the
interconnection network.

According to (Coppersmith and Winograd 1990), the
fastest sequential algorithm for matrix multiplication

340

has the time complexity of where currently the
best value for is 2.3755.
Based on these definitions, we try to find out the best
time of running this sequential algorithm in parallel
form on Hypercube and Super-Hypercube.

MATRIX MULTIPLICATION ON HYPERCUBE
AND SUPER-HYPERCUBE

In multiplying two matrices where the number
of PEs is less than the number of sub-tasks , i.e.

, we assume that is an integer such that
 i.e. which has the matrices of sub-

matrices (i.e., all the matrices
 and are partitioned

to sub-matrices of size). Therefore, one can
conclude that, in terms of computation time, if we
multiply matrix by matrix sequentially
on PEs it will take units of time.

Calculation of the Communication Time for Matrix
Multiplication on Hypercube

As we know the identification of each PE in
dimensional Hypercube is based on their binary
representation. The set of PEs which are distance
from one PE to another in Hypercube is showed by
and it includes PEs. Since Hypercube is a
symmetrical architecture, so any algorithm which is
written for any PE can be converted to an identical
algorithm for PE by binary
product of all PE i.d’s referenced in any specific PE
algorithm with .

We assume that it takes time for a
PE to send a message of length to a neighbor, where

 represents the transfer rate of a message and
the time for start up and termination.

According to (F. Stout and Wagar. 1990), the fastest
possible time for one PE in dimensional
Hypercube to send a message to an arbitrary PE with
distance is:

(2)

In this scenario, we assume that all PEs can
communicate to one another simultaneously.
So, when multiplying two matrices of size on a

-dimensional Hypercube by applying sub-matrices

of size , each PE can broadcast the message of
length .

For calculating the communication time in the
Hypercube, we consider the worse case scenario. This
simply implies that if we intend to send a message of
length from any PE to the farthest PE (

), that would include the communication
time for all the PEs within this range.

Therefore, the time takes to multiply two
matrices in forms of sub-matrices on a Hypercube is:

This results in:

 (3)

where denotes the number of PEs in Hypercube.

Calculation of the Communication Time for Matrix
Multiplication on Super- Hypercube

Now we are in the position to expand the above
methodology to cover the Super-Hypercube
architecture. This means for the case of Super-
Hypercube:

By including the Router (R) in the middle of
Hypercube, we have provided a direct connection
between any two PEs in Hypercube. Therefore, all PEs
in Super- Hypercube are in equal distance to one
another.

Moreover, the required time to multiply two
matrices in form of sub-matrices on a Super-
Hypercube is:

(4)

where is the number of PEs in Super-Hypercube.
In deriving equation (4) we assumed that .

341

COMPARISON

 Figure 4 shows the graphical presentation of
communication cost with variable number of PEs and
Figure 5 presents the graphical presentation of the
communication cost with variable matrix size. In
evaluating these results we have assumed that

.

Figure 4. Graphical Presentation of communication
cost for Matrix Multiplication with variable number of
PEs.

Figure 5. Graphical Presentation of communication
cost for Martix Multiplication with variable matrix
size.

By providing a direct path between any two indirect
nodes through a Router (R), the communication time
of a matrix product is sigificanytly shorter in Super-
Hypercube compare with the Hypercube archticture.
This is evident by analyzing Figure 4 and Figure 5
respectively. This accomplishment has played an
important part towards improving the overall
operation time and hence the performance of the
message-passing architecture. This is clearly evident
in Figure 4, when the number of PEs exceeds 256.

CONCLUSION

This paper has addressed the communication cost of a
matrix product on message-passing architectures. The
mathematical modeling for matrix multiplication on
Hypercube and Super-Hypercube architectures was
derived and numerical results for both architectures
were presented. The existence of a Router (R) in a
traditional Hypercube which results in having the
Super-Hypercube has significantly improved the
overall performance of the system. As a further work,
we intend to propose an enhanced version of Super-
Hypercube architecture. Then we will deliver the
general formula for parallel time computation. This
will be complementing the mathematical calculations
and simulation carried out for this architecture.
Furthermore, to validate this analysis, the most
appropriate architecture will be chosen and compared
with our findings to support our claims.

REFRENCES

Abachi, H and A.L, Walker. 1997. “Simulation
Modeling of Fault-Tolerant Hypercube, Super-
Hypercube and Torus Networks” Proceeding of 12th
International Conference on Computers and Their
Applications (ISCA), Arizona, U.S.A, 50-53 (March).

Amiripour, M.; H. Abachi; and R. Lee. 2007. “Total
System Cost and Average Routing Distance Analysis
of Master-Slave Super-Super-Hypercube 4-Cube
Message-Passing Architecture” The International
Journal of Computer and Information Science (IJCIS),
Vol 10, No 2, 269-279 (June).

Coppersmith, D and S. Winograd. 1990. “Matrix
Multiplication via Arithmetic Progressions.” J.
Symbolic Computation, Vol 9, 251-280.

Dongarra, J; J.F. Pineau; Y. Robert; Zh. Shi; and F.
Vivien. 2007 “ Revisiting Matrix Product on Mater-
Worker Platform.”IEEE Proceding on Parallel and
Distributed Processing Symposium,(IPDPS 2007) ,1-8,
(March)

F. Stout, Q. and B. Wagar. 1990. “Intensive Hypercube
Communication: Prearranged Communication in Link-
Bound Machines.” Journal of Parallel and Distributed
Computing 10, 167-181.

Grama, A.; A. Gupta; G. Karypis; and V. Kumar.
2003. “Introduction to Parallel Computing.” Addison
Wesley, U.S.A.

342

 MARYAM AMIRIPOUR
 received her B.A. in Mathematics from
Al-Zahra University in Iran in 1999. That was
followed by a Post Graduate Diploma in Information
and System Management form
Queensland University in Australia in 2001.She is
currently pursuing her PhD degree in Department of
Electrical and Computer Systems
Engineering at Monash University in Australia. Her
area of research includes hardware design, modeling
and simulation of advance parallel processing systems.
The main parameters of her investigation include
evaluation of performance, reliability, speed and cost
analysis of massively parallel processing systems. She
has a number of referred journal and conference papers
in these areas. Her e-mail address is:
maryam.amiripour@eng.monash.edu.au.

 HAMID ABACHI received his
Ph.D. degree in Computer Engineering from
University College Cardiff in Wales, Britain, in 1981.
He has twenty five years of teaching, research and
administrative experiences in international universities
around the world. He is currently an Associate
Professor in the Department of Electrical and
Computer Systems Engineering at Monash University
in Australia. He has more than 95 referred international
publications including Journal and conference papers.
He has served as a member of international program
committee to more than 72 international conferences
around the world. On a number of occasions has acted
as the conference chairman and on many occasions as
the session chairman at international conferences. He
has also participated in the plenary sessions at sessions
at international conferences. He has been a co-recipient
of the John Madsen Medal for his best Journal paper in
the discipline of Electrical Engineering form the
Institution of Engineers Australia (IEAust) in 2002,
plus receiving a number of best paper awards in
international conferences. In addition he has been
invited as a keynote speaker at four international
conferences. He is a Fellow of The Institution of
Engineering and Technology (the IET, formerly IEE)
in Britain, a Fellow of the Institution of Engineers in

Australia (IEAust) and a Senior Member of IEEE in
the USA. His research interests include design and
simulation of parallel processing systems, modeling of
advanced computer architectures, application of
distributed multimedia computing in advanced
Engineering Education. His e-mail address is:
hamid.abachi@eng.monash.edu.au.

343

mailto:maryam.amiripour@eng.monash.edu.au

Application Of Novel Techniques In RIPEMD-160 Hash Function Aiming At
High-Throughput

H. Michail,V. Thanasoulis, D. Schinianakis, G. Panagiotakopoulos and C. Goutis

Electrical and Computer Engineering Department
University of Patras

Gr-26500 Patra, GREECE
E-mail: michail@ece.upatras.gr, vthanasouli@upnet.gr, dimmugr@yahoo.gr, gpanagiotak@upnet.gr,

goutis.ece.upatras.gr

KEYWORDS
Security, hash functions, RIPEMD-160, hardware
implementation, high-throughput.

ABSTRACT

Hash functions, form a special family of cryptographic
algorithms that address the requirements for security,
confidentiality and validity for several applications in
technology. Many applications like PKI, IPSec, DSA,
MAC’s need the requirements mentioned before. All the
previous applications incorporate hash functions and
address, as time passes, to more and more users-clients
and thus the increase of their throughput is necessary. In
this paper we propose an implementation that increases
throughput and operating frequency significantly and at
the same time keeps the area small enough for the hash
function RIPEMD-160. The deployed technique
involves the application of spatial and temporal pre-
computation to the conventional operation block. The
proposed implementation leads to an implementation
that achieves 35% higher throughput.

INTRODUCTION

Nowadays many applications like the Public Key
Infrastructure (PKI) (Entrust Technologies 1999), IPSec
(National Institute of Standards and Technology 2005), and
the 802.16 (Johnston and Walker 2004) standard for Local
and Metropolitan Area Networks incorporate
authenticating services. All these applications pre-
suppose that an authenticating module, that includes a
hash function, is nested in the implementation of the
application. Moreover, digital signature algorithms like
DSA (National Institute of Standards and Technology 1994)
used for authenticating services like electronic mail,
electronic funds transfer, electronic data interchange,
software distribution, data storage etc are based on
using critical cryptographic primitives like block
ciphers and hash functions . Hashes are used also in
identifying files on peer-to-peer filesharing networks,
for example in an ed2k link. Furthermore, hashing cores
are also essential for security in networks and mobile
services, as in SSL. They are also the main modules that
exist in the HMAC implementations that produce
Message Authentication Codes (MAC’s) (National
Institute of Standards and Technology 1995).

Taking into consideration the rapid evolution of the
communication standards that include message
authenticity, integrity verification and nοn-repudiation
of the sender’s identity, it is obvious that hash functions
are widely used in most popular cryptographic schemes.
All the aforementioned applications ,which incorporate
hash functions, are being used more and more as time
goes by. So, it is necessary to increase their throughput,
so as to enable the cryptographic system to satisfy
immediately all requests from all users-clients. In some
of these cryptographic schemes the throughput of the
incorporated hash functions determines the throughput
of the whole security scheme.
The latter mentioned facts were a strong motivation to
propose a novel technique for increasing throughput of
hash functions. In this work we propose an optimizes
implementation for RIPEMD-160. The proposed
implementation introduces a negligible area penalty,
increasing the throughput and keeping the area small
enough as required by most portable communication
devices.

PROPOSED IMPLEMENTATION

In Fig. 1, the general architecture of RIPEMD-160 core
with pipelined structure is illustrated. It has to be
mentioned that no many research work has been
conducted concerning the RIPEMD algorithm since the
vast majority of both academia nad industry is focused
on proposing optimizations for the SHA hash family
which is the most widely adopted.
From (Dobbertin, et al 1996) it can be seen that
RIPEMD-160 uses two parallel processes of five
rounds, with sixteen operations for each round (5 x 16
operations for the process). This lead us to the logical
assumption to use five pipeline stages for each process
and a single operation block for each round among with
the rest necessary parts. This way not only do we
achieve to increase throughput drastically but also keep
the hash core small enough.
However this what most researchers do and not much
effort has been made in optimization of the operational
block. In our paper we propose a methodology that
intends to optimize the implementation both by
applying pipeline stages but also by optimizing the
internal operational block so as to achieve an even
shorter critical path. This way it will be achieved to

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

344

obtain an implementation with much higher throughput
and with negligible and small area penalty which is the
main objective of our work.
The critical path of the illustrated architecture is located
between the pipeline stages. Thus, the optimization of
the critical path is focused on the operation block. This
way the increase of operating frequency can be
achieved resulting to an implementation with a higher
throughput. The throughput of a hash function
implementation is given by the following equation:

 #
#

operationbits f
Throughput

operations
⋅

= (1)

where #bits is equal to the number of bits processed by
the hash function, #operations corresponds to the
required clock cycles between successive messages to
generate each Message Digest and foperation indicates the
maximum operating frequency of the circuit.
A message block, as provided by the padding unit, is at
most 512 bits, therefore the two terms that can be
manipulated in Eq.(1) is either #operations or the
circuit’s operating frequency, foperation. Manipulation of
the #operations is translated to the introduction of more
than five pipeline stages. This is possible but it might
result in area violation since extra circuitry must be
inserted.
Thus, the targeted design approach should focus on
increasing the operating frequency, foperation, without
introducing any significant area penalty.

Optimizing block's operating frequency

The applied technique consists of the following 2 sub-
techniques:

 • Spatial Pre-computation of additions
contributing to the critical path

 • Temporal Pre-computation of some values that
are needed in following operations

Unfolding the expressions of at, bt, ct, dt, et as they are
described in [8], it is observed that bt-1, ct-1 , dt-1 , et-1
values are assigned directly to outputs ct, dt, et, at
respectively. In Eq. (2) the expressions of at, bt , ct , dt ,
et are defined.

et = dt-1
dt = ROL10(ct-1)
ct= bt-1 (2)
bt = et-1 + ROLs[ft(bt-1,ct-1, dt-1) +at-1+Xi + Kj]
at = et-1

where ROLx(y) represents cyclic shift (rotation) of
word y to the left by x bits and ft(z, w, v) denotes the
non-linear function which depends on the round being
in process.

From Eq.(2), it is derived that the maximum delay is
observed on the calculation of the bt, value from at-1 and
value bt-1, value. Obviously the critical path consists of
three addition stages as it can be seen observing Fig. 2
and a multiplexer via which the values pass each time
to/and feed the operation block.
A notice that one can make observing the Eq. (2) is that
some outputs derive directly from some inputs values
respectively. So it can be assumed that is possible
during one operation to pre-calculate some intermediate
values that will be used in the next operation so as to
achieve concurrent calculations.
 Therefore, while the main calculations are in progress,
at the same time some values that are needed in the next
operation can also be in progress of calculation.
Furthermore, moving the pipeline stage to an
appropriate intermediate point to store these
intermediate calculated values, the critical path is
divided resulting in a decrease of the maximum delay
without paying any worth-mentioning area penalty. This
way higher operating frequency is achieved and
consequently higher throughput
This technique introduces the spatial pre-computation
and it is used in order to reduce the critical path. From
the Eq. (2) we can observe that the outputs ct, dt, et, at
derive directly from the values bt-1, ct-1, dt-1, et-1,
respectively, and it is possible to pre-calculate some
intermediate values.
Thus, Eq. (2) is transformed to generate the
intermediate values a*t-1, b*t-1, c*t-1, d*t-1, e*t-1 and gt-1 as
described in Table 1.

Figure 1: RIPEMD - 160 Architecture Core with Five

Pipeline Stages Including a Single Operation Block

345

Figure 2: A Single RIPEMD - 160 Operation Block

Table 1: Expressions for Spatial Technique

In Fig.3 the pre-computation technique applied in
RIPEMD-160 hash function is illustrated. Each
operation block now consists of two units the “Pre-
Computation” unit which is responsible for the pre-
computation of the values that are needed in the next
operation and the “Final-Calculation” unit which is
responsible for the final computations of each
operation.
Notice that in Fig.3 output bt enters the multiplexer and
feeds a no-load wire bt-1 which stores its value to the
register as b*t-1. Also notice at the "Pre-Computation"
unit that the inputs at-1, ct-1, dt-1, et-1, which is equal with
the values a*t-1, c*t-1, d*t-1, e*t-1 respectively, are fed
through the multiplexer from the intermediate register
outputs e*t-1, b*t-1, c*t-1, d*t-1 respectively.
The introduced area penalty is small, only a single
register for each “round”, that stores the intermediate
value gt-1.
 Moreover, power dissipation is kept low and almost the
same to that of the initial implementation as illustrated
in Fig.2.In order to reduce the critical path by one
addition level, we will continue with the application of
the second technique, which introduces a temporal pre-
computation of the values. From the “Final-Calculation”
stage of Fig.3, one can observe that in every operation,
from the current value of dt-1, derives directly the value

of et (at the next operation). Also, from the current
value of et, derives directly the value
of at+1. Consequently, the value of a, is the same as the
value of was two operations earlier. So it is valid to
write the following equation:

 at+1 =et = dt-1 (3)

Thus, we perform the temporal pre-computation of the
sum (Xt+2 + Kt+2) + at+1 two operations before it is used,
by calculating the sum (Xt+2 + Kt+2) + dt-1 at the “Final-
Calculation” unit, when the operation t is being
executed. Then this sum at the “Pre-Computation” stage
of the next operation (t+1) saved into the register h and
represent the sum (Xt+2 + Kt+2) + et.

Figure 3: The Modified Operation Block of RIPEMD-
160 Hashing Algorithm

At the “Final-Calculation” unit of the same operation,
the value of W derives directly from the value of h. The
computed sum now of the value W represents the sum
(Xt+2 + Kt+2) + at+1. Finally at the “Pre-Computation”
unit on the next operation (which is the operation t+2)
the sum Z= W + ft is calculated.
 The computed sum now represents the value (Xt+2

+Kt+2) + ft + at+1. This sum is part of the computations
needed for the calculation of bt+2 value. What remains
for the computation of the value bt+2 is the rotation
(Rols) of the value Z and then its addition with the value
e*t+1, as is performed in the “Final-Calculation” in
Fig.4.
Observing Fig.4 it can be realized that the critical path
is not located any more in the computation of the bt
value but in the computation of the value of Z. This
means that the critical path in Fig. 4 has been reduced
from three addition stages, a Non Linear Function ft and

346

a multiplexer in Fig.3 to two addition stages, a Non
Linear Function ft and a multiplexer.
Hence, the critical path is shortened by one adder level,
which contributes approximately 30% to the overall
maximum delay. Moreover, it has to be noticed that an
initialization of the values of W and h is needed as
illustrated in Fig.4. At the first operation of every round
the current values of Xt and Kt contribute for the
computation of the value bt+2. Thus, before the first
operation begins, the value of W must be equal to the
sum (X1 + K1) + a0, which will be used at the “Final-
Calculation” of the first operation for the calculation of
the value bt . Also the value of h must be equal to the
sum (X2 + K2) + e0, which will be used for the
calculation of the value bt+1 at the “Final-Calculation
stage of the second operation. Therefore, another one
modification that introduces two adders is needed.
However, this change does not have any effect on the
critical path.

Figure 4: The Proposed Operation Block of RIPEMD-

160 algorithm

The introduced area penalty is only two 32-bit registers,
which are used for storing the intermediate results of the
values W and h that are required. This area penalty sure
enough is worth paying for an increase of throughput at
about 36%.

EXPERIMENTAL RESULTS

The proposed hashing cores that were presented as
examples were captured in VHDL and were fully
simulated and verified using the Model Technology’s
ModelSim Simulator. The designs were fully verified
using a large set of test vectors, apart from the test
example proposed by the standards. The synthesis tool
used to port VHDL to the targeted technologies was
Synplicity’s Synplify Pro Synthesis Tool. Simulation of
the designs was also performed after synthesis,

exploiting the back annotated information that was
extracted from the synthesis tool. Further evaluation of
the designs was performed using the prototype board
for the Xilinx Virtex device family.
Probing of the FPGA’s pins was done using a logic
analyzer. No scaling frequency technique was followed,
selecting one master clock for the system, which was
driven in the FPGA from an onboard oscillator. The
behavior of the implementation was verified exploiting
the large capacity of the FPGA device. The achieved
operating frequency is equal to 87,6 MHz.
Furthermore, as far as it concerns the introduced area
overhead for the RIPEMD-160 hash core, the proposed
implementation presents an increase of approximately
8%. From the experimental results, it was proved that
RIPEMD-160 proposed implementation was about 36%
faster than the conventional implementation. From the
above results, it derives that the proposed
implementation is a worth-making optimization for the
hashing core since the required area for the whole
security scheme is much more than that needed for the
RIPEMD-160 hashing core.

Table 2: Performance Characteristics of RIPE-MD 160

Hash Function Implementations and Comparisons

It has to be added that the above comparisons concern
hardware implementations mainly in FPGA boards.
However due to the limited number of published work
concerning RIPEMD all implementation results have
been included regardless of the utilized FPGA family.
For this reason the evaluation board in each case is
mentioned so as to be easy to adapt the results and make
a fair comparison.
Beyond that however, the comparison results just
confirm the efficiency of the proposed technique and
this is accomplished with the comparison to the
conventional implementation that has also been
evaluated from our research time in the same FPGA
board. From this comparison it can be inferred that the
proposed implementation achieves its objective of
higher throughput of about 35% with only 8% area

347

National Instititute of Standards and Technlogy. 1994. “FIPS
186, (DSS), Digital Signature Standard”

penalty for evaluation in the same FPGA board (used
in our research laboratory).

National Instititute of Standards and Technlogy. 1995. “FIPS
198, The Keyed-Hash Message Authentication Code
(HMAC)”

CONCLUSIONS

A novel hardware implementation of RIPEMD-160
hash function was presented in this paper. Two
techniques were evaluated so as to increase throughput
and thus make it suitable for the corresponding server of
data intensive applications. The proposed
implementation has a throughput of about 2.8 Gbps,
about 35% higher from the next better performing
implementation. The experimental results showed that a
small area penalty was introduced for a remarkable
increase of throughput.

National Instititute of Standards and Technlogy. 2005.
SP800-77 , “Guide to IPSec VPN’s”.

 Ng C.W., Ng T.S. and Yip K.W. , 2004. “A unified
architecture of MD5 and RIPEMD-160 Hash algorithms”,
IEEE International Symposium on Circuits and Systems.

Sklavos N. and Koufopavlou O. .2005. “On the hardware
implementation of RIPEMD processor: Networking high
speed hashing, up to 2 Gbps”, Computers and Electrical
Engineering Journal 31 361–379.

Therefore, the proposed implementation increases the
throughput and frequency significantly and keeps at the
same time the area small. This makes the proposed
implementation suitable for server side cryptographic
schemes as well as and for every new wireless and
mobile communication application that urges for high-
performance and small-sized solutions.

AUTHOR BIOGRAPHIES

HARRIS MICHAIL (S’04) received a Diploma in
Electrical & Computer Engineering from the University
of Patras, Greece and since then he has been working
towards his PhD degree, in the domain of computer
security, hardware design and reconfigurable
architectures.

This methodology can be applied to all other hash
functions such as MD-5, SHA-1, SHA-256, SHA-384,
SHA-512 in order to increase their throughput.

ACKNOWLEDGEMENT

VASSILIS THANASOULIS is an under-graduate
student in the Department of Electrical .Eng, University
of Patras, Greece. He is currently working on his thesis
that lies in the domain of security.

This work was supported by the project PENED 2003
No 03ΕD507, which is funded in 75% by the European
Union- European Social fund and in 25% by the Greek
state-Greek Secretariat for Research and Technology.

DIMITRIS SCHINIANAKIS received a Diploma in
Electrical & Computer Engineering from the University
of Patras, Greece and since then he has been working
towards his PhD degree, in the domain of of computer
security, hardware design

REFERENCES

Akashi S. and T, Inoue. 2007. “ASIC-hardware-focused
comparison for hash functions MD5, RIPEMD-160, and
SHS” Intergration, the Vlsi Journal 40 , 3-10. Dobbertin H., Bosselaers A. and Preneel B. 1996. “
RIPEMD-160: A Strengthened Version of RIPEMD”. GEORGE PANAGIOTAKOPOULOS received a

Diploma in Electrical & Computer Engineering from
the University of Patras, Greece and since then he has
been working towards his PhD degree, in the domain of
embedded computers.

Dominikus S. 2002. “A hardware implementation of MD4-
family hash algorithms,” Proc. 9th Int. Conf. on
Electronics, Circuits and Systems, vol. 3, pp. 1143-1146.

Entrust Technologies. 1999. “RFC 2510 - Internet X.509 PKI
- Certificate Management Protocols”,

Ganesh T.S, Frederick M.T, Sudarshan T.S.B. and.Somani
A.K. 2007. "Hashchip: A shared-resource multi-hash
function processor architecture on FPGA" Intergration, the
Vlsi Journal 40 11-19.

COSTAS GOUTIS (S’70-M’78) received B.Sc in
Physics, Diploma in Electronic Engineering, M.Sc from
the University of Heriott-Watt and Ph.D from the
University of Southampton. He is currently a Professor
with the ECE Department, University of Patras.

Johnston D, and Walker J. 2004. “Overview of IEEE802.16
Security” , IEEE Security and Privacy.

348

MASSIVELY PARALLEL SIMULATIONS OF ASTROPHYSICAL PLASMAS:

STATUS AND PERSPECTIVES OF THE COAST PROJECT

B. Thooris, E. Audit, A. S. Brun, Y. Fidaali, F. Masset, D. Pomarède, R. Teyssier

Institut de Recherche sur les Lois Fondamentales de l’Univers

DSM/IRFU CEA/Saclay 91191 Gif-sur-Yvette France

email: Bruno.Thooris@cea.fr

http://irfu.cea.fr/Projets/COAST

KEYWORDS

Large scale computing, parallel computing, astrophysics,

plasmas simulation, visualization.

ABSTRACT

The COAST (for Computational Astrophysics) project is

a program of massively parallel numerical simulations in

astrophysics involving astrophysicists and software

engineers from CEA/IRFU Saclay. The scientific

objective is the understanding of the formation of

structures in the Universe, including the study of large-

scale cosmological structures and galaxy formation,

turbulence in interstellar medium, stellar

magnetohydrodynamics and protoplanetary systems. The

simulations of astrophysical plasmas are performed on

massively parallel mainframes (MareNostrum Barcelona,

CCRT CEA France), using 3-D magnetohydrodynamics

and N-body parallelized codes developed locally. We

present in this paper an overview of the software codes

and tools developed and some results of such simulations.

We also describe the Saclay SDvision graphical interface,

implemented in the framework of IDL Object graphics,

our 3-D visualization tool for analysis of the computation

results.

1. Introduction

The COAST project [1,2] is dedicated to high

performance computing in astrophysics. The goal is the

understanding of the formation of structures in the

Universe, by developing advanced techniques in parallel

computing and in applied mathematics to model galaxy

formation and predict their observational signatures, as a

function of physical parameters. Astrophysicists and

software engineers collaborate to rationalize and optimize

the development of simulation programs by creating a

core of common specific modules and using common

software tools for data handling, post-treatment,

visualization, numerical methods, parallelization and

optimization.

2. Overview of the simulation programs

Four major numerical simulation programs are used to

cover different physics scales:

- The RAMSES code

RAMSES [3,4,5,6] is a hybrid, N-body and

hydrodynamical 3-D code which solves the interplay of

the dark matter component and the baryon gas for

studying the structure and the distribution of galaxy

clusters starting for the initial conditions of the Big Bang.

The code is based on the Adaptive Mesh Refinement

(AMR) technique, written in FORTRAN90 and

parallelized with the MPI library [7]. Current

developments focus on solving the full MHD set of

equations.

- The HERACLES code

HERACLES [8,9,10,11,12] is a 3-D code which solves

the equations of radiative transfer coupled to

hydrodynamics. It studies thermal condensation in

molecular clouds in the Interstellar Medium, radiative

shocks, molecular jets of young stars and proto-planetary

disks. It is written in FORTRAN90, parallelized with MPI

and implemented in cartesian, cylindrical and spherical

coordinates with regular mesh grids.

- The ASH [13,14] code

ASH (for Anelastic Spherical Harmonic) performs 3-D

magnetohydrodynamics simulations in spherical geometry

for the study of the turbulence and magnetic dynamo

process in solar and stellar interiors. ASH, unlike the

others codes presented which are completely developed in

CEA/Saclay, is jointly developed at Saclay and at the

University of Boulder.

- The JUPITER [15,16,17] code

JUPITER is a mutidimensional astrophysical hydrocode.

It is based on a Godunov method, written in C and

parallelized with MPI. The mesh geometry can either be

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

349

cartesian, cylindrical or spherical. It allows mesh

refinement and includes special features adapted to the

description of planets embedded in disks.

3. Computing facilities

The COAST team uses local resources for development

and post-treatment: the 256 cores 2.6 GHz opteron

cluster DAPHPC, with an infiniband interface and four

visualization stations with 16 to 32 Gb RAM, ~1Tb disk,

4 processors, 1Gb memory graphics cards, 30 inches

screens.

Massive simulations are performed at CCRT (CEA

National Supercomputing Center) on Platine, ranking

26th in the TOP500 world supercomputer list (November

2007): 7456 Itanium cores, total 23 Tb memory, 47.7

Teraflops (4 Mhrs computation in 2007).

Other resources for massive simulations (2 Mhrs for

2007) can be accessed on MareNostrum at the Barcelona

Supercomputing Center, ranking 13th in the TOP500

world supercomputer list (November 2007): 10240 IBM

PowerPC 2.3 GHz cores with 94.2 Teraflops, 20Tb of

main memory.

Furthermore, the project will have access in 2008 to the

IDRIS (French CNRS Supercomputing Center) new Blue

Gene/P system with 40000 cores.

4. The recent COAST computational milestones

COAST members are participating in French or European

founded collaborations (Horizon, Magnet, Sinerghy or

STARS
2
).

In the context of the Horizon collaboration [18], COAST

members succeeded in the HORIZON Grand Challenge

Simulation at CEA/CCRT on Platine in September 2007,

which is the largest ever N-body cosmological simulation

performed. For the first time, have been performed a

simulation of half the observable universe, with enough

resolution to describe a Milky Way-like galaxy with more

than 100 dark matter particles. The RAMSES code has

been run on 6144 cores, 18 Tb RAM used for 2 months to

simulate 4096
3
≈ 70 billions particles. This is an

improvement of about an order of magnitude with respect

to previous experiments, as illustrated in Fig.1. This

simulation has been chosen to simulate future weak-

lensing surveys like DUNE or LSST [19,20].

Another challenge in computing in astrophysics in 2007

was the HORIZON “galaxy formation” simulation at

MareNostrum. The characteristics of the run are the

following: 1024
3
 dark matter particles, 4 billions AMR

cells, box size 50 Mpc/h, resolution in space 2 kpc. 2048

processors were needed for computing, 64 processors

dedicated to I/O, 3 weeks of computations so far, down to

z=1.9, 20 Tb of data generated and stored. The run

performed simulations from large scale filaments to

galactic discs.

Fig.1 Size of the N-body simulations versus time (cour-

tesy V. Springel [21]).

Two examples of MareNostrum data visualization are

shown in Fig.2 and Fig.3, displaying the density

distribution of the baryon gas at two different scales.

Fig.2 Density distribution of the baryon gas in the central

region of simulation domain. Visualization made with

SDvision software.

350

Fig.3 Zoom of galactic spirals, density distribution of the

baryon gas. Visualization made with SDvision software

5. Data Handling

A unique format, HDF5 [22] (Hierarchical Data Format),

has been chosen for the data produced by all our

simulations codes. HDF5 is developed and maintained by

NCSA (National Center for Supercomputing

Applications). This library emphasizes storage and I/O

efficiency in particular for data intensive computing

environments. For instance, the HDF5 format can

accommodate data in a variety of ways, such as

compressed or chunked and the library is tuned and

adapted to read and write data efficiently on parallel

computing systems. NCSA maintains a suite of free, open

source software, including the HDF5 I/O library and

several utilities. The visualization tools developed is using

IDL, which integrate a module able to read easily the

HDF5 files.

6. Visualization

The visualization plays a very important role in the

development of simulations codes. Fundamental aspects

including domain decomposition, initial conditions,

message passing and parallelization, treatment of

boundary limits, can be controlled and evaluated

qualitatively through visualization. Once in production

phase, visualization is also used for the validation, the

analysis and the interpretation of the results. A complete

graphical interface named SDvision [23,24,25] has been

developed in order to participate in the development of

the simulation codes and visualize the large astrophysical

simulation datasets produced in the context of the COAST

program.

The SDvision graphical interface

The interface is implemented as a graphical widget

providing interactive and immersive 3-dimensional

navigation capabilities. The baseline technology is the

object-oriented programming offered by IDL’s Objects

Graphics [26]. It benefits from hardware acceleration

through its interface to the OpenGL libraries. An example

of the widget displayed in its running state is shown in

Fig. 4.

Fig.4 The SDvision widget used to visualize the levels

11,12,13 AMR cells of a galaxy cluster simulation mesh.

SDvision has been developed to visualize the huge

amount of data produced by the codes RAMSES,

HERACLES, JUPITER and ASH. It allows the display of

complex scenes with scalar fields (volume projection, 3D

isosurface, slices), vector fields (streamlines) and particle

clouds.

Two examples of such visual representations are shown in

Fig.5 and Fig.6.

Fig.5 Visualization of the iso-density surfaces obtained in

a high-resolution 1200
3
 HERACLES 256-processors

simulation of turbulences in the interstellar medium.

351

Fig.6 SDvision display of a 500x500x500 ASH

simulation. This view of the azimuthal component of the

magnetic field in the solar convection zone (positive in

red, negative in blue) are obtained by the volume

rendering technique with clipping.

7. Perspectives and conclusion

To be able to follow the improvements of the computers

techniques, the COAST team dedicates a part of his

human resources in training on software tools such as

optimization techniques on recent mainframes (IDRIS

Blue Gene) and R&D on new promising technologies for

computing (GPU, Cells,…). Future challenges include

the improvement by an order of magnitude in the N-body

simulation of cosmological structure formation to

improve the resolution. Using the next generation of high-

performance centers, the objective is to simulate 8192
3

≈ 550 billions particles

Computational astrophysics has a bright future, lying on

the ever increasing performances of massively parallel

mainframes. To achieve his ambitions, the project relies

on a synergy between astrophysicists and software

developers, local computing resources and access to

supercomputers. Other major projects and initiatives are

currently following the same approach: e.g. the FLASH

Center at the University of Chicago [27], the ASTROSIM

European Network for Computational Astrophysics [28],

or the VIRGO consortium for Cosmological

Supercomputer Simulations [29].

8. References

[1] http://irfu.cea.fr/Projets/COAST

[2] D. Pomarède, B. Thooris, E. Audit, R. Teyssier.

Numerical Simulations of Astrophysical Plasmas.

Proceedings of the 6
th

 IASTED International

Conference on Modelling, Simulations, and

Optimization (MSO2006), Gaborone, Botswana,

September 11-13, 2006, ed. H. Nyongesa, 507-058,

Acta Press, ISBN:0-88986-618-X

[3] R.Teyssier, Cosmological hydrodynamics with

adaptive mesh refinement - A new high resolution

code called RAMSES, Astronomy and Astrophysics,

385 (2002) 337-364

[4] S. Fromang, P. Hennebelle, R. Teyssier. A high order

Godunov scheme with constrained transport and

adaptive mesh refinement for astrophysical

magnetohydrodynamics, A&A 457 (2006) 371

[5] R. Teyssier, S. Fromang, and E. Dormy. Kinematic

dynamos using constrained transport with high order

Godunov schemes and adaptive mesh refinement , J.

Comp. Phys. 218 (2006) 44

[6] R. Osmont, D. Pomarède, V. Gautard, R. Teyssier, B.

Thooris. Monitoring and Control of the RAMSES

Simulation Program, Proceedings of the CCP2007

Conference on Computational Physics, Brussels,

Belgium, September 5-8, 2007

[7] The Message Passing Interface (MPI) Standard,

http://www-unix.mcs.anl.gov/mpi/

[8] M.Gonzalez, E.Audit, P.Huynh. HERACLES : a

Three Dimensional Radiation Hydrodynamics Code.

Astronomy and Astrophysics, 464 2 (2007) 429-435.

[9] E. Audit and P. Hennebelle, Thermal Condensation in

a Turbulent Atomic Hydrogen Flow, Astronomy and

Astrophysics, 433, 2005, 1-13.

[10]M. Gonzalez and P. Velarde. Radiative Shocks and

Jets Simulated with the ARWEN and HERACLES

codes. Proceedings of the IGPP/DAPNIA

International Conference on Numerical Modeling of

Space Plasma Flows, ASTRONUM2007, Paris,

France, June 11-15, 2007, to appear in the

Astronomical Society of the Pacific Conference

Series.

[11]E. Audit. Fragmentation in the Interstellar Medium.

Proceedings of the IGPP/DAPNIA International

Conference on Numerical Modeling of Space Plasma

Flows, ASTRONUM2007, Paris, France, June 11-15,

2007, to appear in the Astronomical Society of the

Pacific Conference Series.

[12] E. Audit, V. Gautard, D. Pomarède, B. Thooris.

Enabling Tools and Techniques for the Optimization

of the HERACLES Simulation Program, Proceedings

of the 6th EUROSIM Congress, Ljubljana, Slovenia,

September 9-13, 2007

[13] J. Ballot, A.S. Brun, and S. Turck-Chieze.

Simulations of turbulent convection in rotating young

solarlike stars: differential rotation and meridional

circulation. ApJ 669 (2007) 1190

352

[14] L. Jouve and A.S. Brun. On the role of meridional

flows in flux transport dynamo models. A&A 474

(2007) 239

[15] F. Masset, A. Morbidelli, and A. Crida. Disk surface

density transitions as protoplanet traps. ApJ 642

(2006) 478

[16] A. Crida, A. Morbidelli, and F. Masset. Simulating

planet migration in globally evolving disks. A&A

461 (2007) 1173

[17] http://www.maths.qmul.ac.uk/~masset/index.html

[18] http://www.projet-horizon.fr/

[19] http://www.dune-mission.net/

[20] http://www.lsst.org/lsst_home.shtml

[21] V. Springel, et al. Simulating the joint evolution of

quasars, galaxies and their large-scale distribution.

Astro-ph/0504097 (2005).

[22] http://www.hdfgroup.org

[23] D. Pomarède, E. Audit, R. Teyssier, B. Thooris.

Visualization of large astrophysical simulations

datasets. Proceedings of the Conference on

Computational Physics 2006, CCP2006, Gyeongju,

Republic of Korea, aug.29-sept.1 2006, ed. J.S. Kim,

Computer Physics Communication, 177 (2007) 263,

doi:10.1016/j.cpc.2007.02.065

[24] D. Pomarède, Y. Fidaali, E. Audit, A.S. Brun, F.

Masset, R. Teyssier. Interactive visualization of

astrophysical plasma simulations with SDvision,

Proceedings of the IGPP/DAPNIA International

Conference on Numerical Modeling of Space Plasma

Flows, ASTRONUM2007, Paris, France, June 11-15,

2007, to appear in the Astronomical Society of the

Pacific Conference Series.

[25] D. Pomarède, E. Audit, A.S. Brun, V. Gautard, F.

Masset, R. Teyssier, B. Thooris. Visualization of

astrophysical simulations using IDL Object Graphics,

Proceedings of the Computer Graphics Imaging and

Visualization 2007 Conference, Bangkok, Thailand,

August 14-17, 2007, IEEE Computer Society ISBN

0-7695-2928-3 p471-480

[26] http://www.ittvis.com/idl/

[27] http://flash.uchicago.edu/

[28] http://www.astrosim.net/

[29] http://www.virgo.dur.ac.uk/

353

354

HPCS 2008 AUTHOR INDEX

339 Abachi, Hamid
178 Abdullah, Abdul Hanan
75 Ahmed, Sid

290, 319 Alba, Enrique
255 Al-Dabass, David
135 Aloisio, Giovanni
339 Amiripour, Maryam
75 Ammenouche, Samir

283 An, Le Thi Hoai
304 Andronache, Adrian
349 Audit, E.
58 Avram, Camelia

107 Awadalla, Medhat H. A.
67 Bae, Seung-Hee

178 Bakar, Kamalrulnizam Abu
311 Bauer, Daniel
235 Becker, Matthias
89 Benchaib, Yacine
45 Bezerra, José Maria

185 Biscotti, Angelo
290, 297 Bouvry, P.

206 Briffaut, Jeremy
45 Brito Jr., Eduardo R. R.

349 Brun, A. S.
185 Capuzzi, Gianluca
185 Cardinale, Egidio
319 Chicano, Francisco
178 Chimphlee, Witcha
67 Chrysanthakopoulos, George

171 Clemente, Patrice
326 Colin, Jean-Yves
99 Corbalan, J.

178 Dahliyusmanto,
192 Dai, Jianyong
241 Damaj, Issam
290 Danoy, G.
155 Dekeyser, Jean-Luc
200 Dellutri, Fabio

241 Diab, Hassan
290, 297 Dorronsoro, B.

235 Drozda, Martin
107 Eladawy, Mohamed I.
107 Elewi, Abdullah M.
319 Ferreira, Marco
349 Fidaali, Y.
135 Fiore, Sandro
67 Fox, Geoffrey

311 Garcés-Erice, Luis
38 Getov, Vladimir

319 Gomez-Pulido, Juan A.
344 Goutis, C.
304 Gratz, Patrick
192 Guha, Ratan K.
99 Guim Bernat, Francesc

155 Guyomarc'h, Frédéric
220 Hahkala, Joni
241 Hamade, Samer
82 Harrison, Peter
89 Hecker, Artur

265 Hu, Wencong
117 Huedo, Eduardo
58 Hulea, Mihai

178 Ismail, Abdul Samad Haji
75 Jalby, William

333 Jun, Zhao
124 Kafri, Nedal
297 Khadraoui, D.
283 Khoa, Phan Tran
31 Knafla, Björn
38 Krafft, Gerald
99 Labarta, J.

206 Lalande, Jean-Francois
117 Leal, Katia
192 Lee, Joohan
31 Leopold, Claudia
58 Letia, Tiberiu

355

117 Llorente, Ignacio M.
349 Masset, F.
200 Me, Gianluigi
344 Michail, Harris
220 Mikkonen, Henri
117 Montero, Rubén S.
58 Muresan, Dana

326 Nakechbandi, Moustafa
135 Negro, Alessandro
178 Ngadi, Md Asri
67 Nielsen, Henrik Frystyk

141 Nygård, Mads
255 Osman, Taha
200 Ottaviani, Vittorio
213 Pais, Alwyn Roshan
213 Palavalli, Sharath
344 Panagiotakopoulos, G.
227 Pasquet, Marc
349 Pomarède, D.
67 Qiu, Xiaohong
58 Radu, Sergiu

311 Rooney, Sean
227 Rosenberger, Christophe
171 Rouzaud-Cornabas, Jonathan
297 Ruiz, P.
45 Santos, Félix

124 Sbeih, Jawad Abu
235 Schaust, Sven
344 Schinianakis, D.
249 Selka, Sadika

249 Semmache, Nabila
220 Silander, Mika
185 Spalazzi, Luca
213 Srinivas, U S
265 Sun, Weibin
272 Szpak, Zygmunt L.
155 Taillard, Julien
283 Tao, Pham Dinh
272 Tapamo, Jules R.
297 Tardón, L.
349 Teyssier, R.
255 Thakker, Dhavalkumar
344 Thanasoulis, V.
349 Thooris, B.
283 Thuan, Nguyen Quang

171, 206 Toinard, Christian
141 Tøssebro, Erlend
75 Touati, Ali

227 Vacquez, Delphine
135 Vadacca, Salvatore
162 Weitzel, Michael
220 White, John
162 Wiechert, Wolfgang
31 Wirz,Alexander

265 Xiao, Shuangjiu
333 Xiaohan,Sun
265 Yang, Xubo
67 Yuan, Huapeng
82 Zertal, Soraya

356

	hpcs2008 proceed1.pdf
	 HPCS 2008 PROGRAM
	HPCS 2008 TECHNICAL PAPERS

	hpcs2008 proceed2.pdf
	hpc2008 proceeding2.pdf
	SPEAKER BIOGRAPHY
	SPEAKER BIOGRAPHY
	INSTRUCTORS BIOGRAPHIES
	INSTRUCTOR BIOGRAPHY
	HPCS 2008 SPONSORS
	HPCS 2008 EXHIBITORS

	parallel.pdf
	5-hpcs08abfe.pdf
	6-hpcs08ahd.pdf
	12-hpcs08ajc.pdf
	7-hpcs08ajb.pdf
	DISTRIBUTED REAL-TIME RAILWAY SIMULATOR
	
	
	KEYWORDS
	ABSTRACT
	The problem of control and management of railway transportation is a complex task with major outcomes in a modern society. Trains are suitable for transporting peoples and goods with a good trade-off between cost and rapidity. A railway system consists of a network of tracks, list of stations, safety devices (signals, sensors, etc) and a set of trains. Trains moves from one station to other along the network. Distributed applications are applicable in case of large systems.
	INTRODUCTION
	STATE OF THE ART
	DESIGN OF THE SIMULATOR
	Railway structure modeling
	System Architecture
	The communication model
	Time modeling

	SIMULATOR IMPLEMENTATION
	REFERENCES

	blank.pdf
	architecture.pdf
	3-hpcs08ahe.pdf
	1-hpcs08abaj.pdf
	8-hpcs08ahf.pdf
	17-hpcs08ajd.pdf
	blank.pdf
	resource.pdf
	4-hpcs08aje.pdf
	9-hpcs08aha.pdf
	blank.pdf
	partition.pdf
	10-hpcs08ahh.pdf
	16-hpcs08ahg.pdf
	blank.pdf
	databese.pdf
	hpcs08-DBMS-Fiore.pdf
	Nygaard.pdf
	code.pdf
	13-hpcs08ahc.pdf
	2-hpcs08agd.pdf
	shpcs.pdf
	hpcs08W1-8.pdf
	14-hpcs08abcb.pdf
	hpcs08w1-2.pdf
	hpcs08W1-9.pdf
	hpcs08w1-5.pdf
	hpcs08w1-7.pdf
	hpcs08w1-1.pdf
	hpcs08w1-6.pdf
	hpcs08W1-4.pdf
	hpcs08w1-3.pdf
	19-hpcs08abhd.pdf
	wssg.pdf
	hpcs08SS1-3.pdf
	hpcs08SS1-1.pdf
	par.pdf
	hpcs08ss3-3.pdf
	hpcs08ss3-4.pdf
	optim.pdf
	blank.pdf
	hpcs08w2-1.pdf
	hpcs08w2-2.pdf
	hpcs08w2-3.pdf
	hpcs08w2-4.pdf
	hpcs08w2-5.pdf
	hpcs08W2-6.pdf
	hpcs08w2-7.pdf
	hpcs08w2-8.pdf
	poster.pdf
	p5-hpcs08afj.pdf
	p3-hpcs08agj.pdf
	p1-hpcs08aii.pdf
	blank.pdf
	hpcs2008 author index.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

